1
|
Singh NK, Singh P, Varshney P, Singh A, Bhushan B. Multimodal action of phosphodiesterase 5 inhibitors against neurodegenerative disorders: An update review. J Biochem Mol Toxicol 2024; 38:e70021. [PMID: 39425458 DOI: 10.1002/jbt.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Phosphodiesterase type 5 (PDE5) is an enzyme primarily found in the smooth muscle of the corpus cavernosum and also highly expressed in the substantia nigra, cerebellum, caudate, hippocampal regions and cerebellar purkinje cells, responsible for selectively breaking down cyclic guanosine monophosphate (cGMP) into 5'-GMP and regulate intracellular cGMP levels. As a second messenger, cyclic GMP enhances signals at postsynaptic receptors and triggers downstream effector molecules, leading to changes in gene expression and neuronal responses. Additionally, cGMP signaling transduction cascade, present in the brain, is also essential for learning and memory processes. Mechanistically, PDE5 inhibitors share structural similarities with cGMP, competitively binding to PDE5 and inhibiting cGMP hydrolysis. This action enhances the effects of nitric oxide, resulting in anti-inflammatory and neuroprotective effects. Neurodegenerative disorders entail the progressive loss of neuron structure, culminating in neuronal cell death, with currently available drugs providing only limited symptomatic relief, rendering neurodegeneration considered incurable. PDE5 inhibitors have recently emerged as a potential therapeutic approach for neurodegeneration, neuroinflammation, and diseases involving cognitive impairment. This review elucidates the principal roles of 3',5'-cyclic adenosine monophosphate (cAMP) and cGMP signaling pathways in neuronal functions, believed to play pivotal roles in the pathogenesis of various neurodegenerative disorders. It provides an updated assessment of PDE5 inhibitors as disease-modifying agents for conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral ischemia, Huntington's disease, and neuroinflammation. The paper aims to review the current understanding of PDE5 inhibitors, which concurrently regulate both cAMP and cGMP signaling pathways, positing that they may exert complementary and synergistic effects in modifying neurodegeneration, thus presenting a novel direction in therapeutic discovery. Moreover, the review provides critical about biological functions, therapeutic potentials, limitations, challenges, and emerging applications of selective PDE5 inhibitors. This comprehensive overview aims to guide future academic and industrial endeavors in this field.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Pranjul Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Prachi Varshney
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Bharat Bhushan
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| |
Collapse
|
2
|
Mayo P, Pascual J, Crisman E, Domínguez C, López MG, León R. Innovative pathological network-based multitarget approaches for Alzheimer's disease treatment. Med Res Rev 2024; 44:2367-2419. [PMID: 38678582 DOI: 10.1002/med.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Collapse
Affiliation(s)
- Paloma Mayo
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Jorge Pascual
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Cristina Domínguez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Li Q, Liao Q, Qi S, Huang H, He S, Lyu W, Liang J, Qin H, Cheng Z, Yu F, Dong X, Wang Z, Han L, Han Y. Opportunities and perspectives of small molecular phosphodiesterase inhibitors in neurodegenerative diseases. Eur J Med Chem 2024; 271:116386. [PMID: 38614063 DOI: 10.1016/j.ejmech.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aβ oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, PR China
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Province Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, Guizhou, PR China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Huan Qin
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Ziming Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 256699, Shandong, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yantao Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
4
|
Lin Y, Long Y, Wang Y, Wang L, Wang M, Xia X, Chen X, Huang Y, Du P, Wu J, Jia Y, Shen J. Age-related pharmacokinetics differences were observed between young and elderly populations of a novel PDE5 inhibitor, youkenafil, and its metabolite M459. Eur J Pharm Sci 2024; 196:106755. [PMID: 38556064 DOI: 10.1016/j.ejps.2024.106755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE Youkenafil is a novel oral selective PDE5 inhibitor for treating Erectile Dysfunction. This investigation assessed pharmacokinetics (PK), safety, and tolerability of youkenafil and its main metabolite (M459) after taking 100 mg youkenafil hydrochloride tablets in elderly and young subjects. METHODS This Phase I, single-center, open-label, parallel-group, single-dose study was conducted on 24 individuals (12 elders and 12 youngsters). Each subject received a single oral 100 mg youkenafil hydrochloride tablets. Blood samples were collected before medication and up to 48 h after medication for PK analysis. Safety and tolerability were also assessed, including treatment-emergent adverse events (TEAEs), laboratory tests, 12-lead ECG, vital sign inspections, color vision examinations, and physical examinations. RESULTS Plasma concentrations of youkenafil and M459 were quantified. PK parameters were determined by non-compartmental analysis. Median Tmax of elderly and young groups were both 0.733 h. However, Cmax, AUC0-t, and AUC0-∞ of youkenafil were separately 16.8 %, 37.2 %, and 37.5 % higher in elders and t1/2 of youkenafil was 2.1 h longer in elders. More great differences were observed for M459. T1/2 values were 4.05 h longer in elders, with Cmax, AUC0-t and AUC0-∞ 73.7 %, 81.1 %, and 81.4 % higher in elders. Two (8.3 %) elderly subjects reported TEAEs (all grade Ⅰ in severity) and both recovered without any treatment. No serious adverse reactions (SAEs) or serious unexpected suspected adverse reactions (SUSARs) occurred in this study. CONCLUSIONS This was the first PK research of youkenafil and M459 in elderly men. PK parameters differences between youkenafil and M459 were comparable between elderly and young groups. Moreover, safety and tolerability of youkenafil were favorable in both groups.
Collapse
Affiliation(s)
- Yuhong Lin
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, PR China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui, PR China
| | - Yao Long
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, PR China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui, PR China
| | - Yaqin Wang
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, PR China
| | - Lin Wang
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, PR China
| | - Minhui Wang
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, PR China
| | - Xiaocui Xia
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, PR China
| | - Xinyan Chen
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, PR China
| | - Yunzhe Huang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, PR China
| | - Pengfei Du
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, PR China
| | - Jianbang Wu
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, PR China
| | - Yuanwei Jia
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, PR China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui, PR China.
| | - Jie Shen
- Anhui Provincial Center of Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, PR China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui, PR China.
| |
Collapse
|
5
|
Vurmaz A, Atay E, Rakip U, Koca T. Observation of the neuroprotective efficacy of vitamin K in a streptozocin-induced diabetes model in chick embryos. J Biochem Mol Toxicol 2024; 38:e23609. [PMID: 38037266 DOI: 10.1002/jbt.23609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/03/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia due to insulin deficiency and/or resistance. Vitamin K (VK) is a group of fat-soluble molecules, including naturally occurring vitamin K1 (phylloquinone). vitamin K2 (menaquinone), and synthetic vitamin K3 (menadione). Beyond coagulation, the health benefits of VK have been described to play different roles in both physiological and pathological processes such as inflammation, energy metabolism, neuroprotection, cellular growth, and survival. It was aimed to observe the antioxidant and/or neuroprotective activity of vitamin K1 in our model of chick embryo diabetic neuropathy (DN) induced by streptozotocin (STZ). Ninety White Leghorn, fertile and 0-day-old SPF (specific pathogen-free) eggs (57 ± 4 gr) were used in the study. Chick embryo blood brain tissues were taken for biochemical evaluation. Plasma insulin and glucose levels were measured. In addition, brain tissue total antioxidant level (TAS), total oxidant level (TOS), malondialdehyde (MDA), and vascular endothelial growth factor (VEGF) levels were measured. Plasma glucose levels were higher in the STZ-treated groups and lower in the treatment groups. Plasma insulin levels were observed to be higher in STZ groups in groups treated with high VK. Low TAS, high MDA, TOS, and VEGF levels were recorded in brain tissue STZ groups. Low VEGF, TOS, and MDA levels were recorded in the group treated with the highest VK, while high TAS levels were observed. In our STZ-induced chick embryo diabetic neuropathy model, we observed that VK1 reduced oxidant damage by showing antioxidant properties or by modulating antioxidant enzymes.
Collapse
Affiliation(s)
- Ayhan Vurmaz
- Department of Medical Biochemistry, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Emre Atay
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Usame Rakip
- Department of Neurosurgery, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Tülay Koca
- Department of Physiology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
6
|
Liang B, Wang J, Bai N, Chi Y, Wang R, Cai Y. Safety, Tolerability, and Pharmacokinetics of Single and Multiple Ascending Oral Doses of Youkenafil Hydrochloride, a Phosphodiesterase Type 5 Inhibitor, in Healthy Chinese Male Volunteers. Clin Pharmacol Drug Dev 2022; 11:1184-1190. [PMID: 35491539 DOI: 10.1002/cpdd.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023]
Abstract
Youkenafil hydrochloride is a novel selective phosphodiesterase type 5 inhibitor for the treatment of erectile dysfunction. Its safety, tolerability, and pharmacokinetics were evaluated in healthy Chinese male volunteers. In addition, this study explored the effect of food on the pharmacokinetic parameters of youkenafil hydrochloride. The study was divided into 3 trials: a single ascending dose (25, 50, 100, 150, or 200 mg youkenafil), multiple dose (50, 100, or 150 mg youkenafil once daily for 7 consecutive days), and food effect (50 mg youkenafil single dose). The overall tolerability of youkenafil was good. Youkenafil was rapidly absorbed after a single oral dose. Food intake impeded absorption efficiency but had no significant effect on area under the plasma concentration-time curve values. The mean accumulation ratio in area under the plasma concentration-time curve and maximum plasma concentration ranged from 1.3 to 1.6 and from 1.2 to 1.4 after once-daily dosing. There was no apparent accumulation following consecutive administration for 7 days. Less than 1% of the dose was found in urine as the intact drug for all dose groups. Single-dose youkenafil up to 200 mg and multiple doses up to 150 mg were generally safe and well tolerated.
Collapse
Affiliation(s)
- Beibei Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplier Center, PLA General Hospital, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplier Center, PLA General Hospital, Beijing, China
| | - Nan Bai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplier Center, PLA General Hospital, Beijing, China
| | - Yulong Chi
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplier Center, PLA General Hospital, Beijing, China.,Graduate School of Chinese PLA General Hospital, Beijing, China
| | - Rui Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplier Center, PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplier Center, PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Matysek A, Kimmantudawage SP, Feng L, Maier AB. Targeting Impaired Nutrient Sensing via the Glycogen Synthase Kinase-3 Pathway With Therapeutic Compounds to Prevent or Treat Dementia: A Systematic Review. FRONTIERS IN AGING 2022; 3:898853. [PMID: 35923682 PMCID: PMC9341294 DOI: 10.3389/fragi.2022.898853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022]
Abstract
Background: Dementia is a global challenge with 10 million individuals being diagnosed every year. Currently, there are no established disease-modifying treatments for dementia. Impaired nutrient sensing has been implicated in the pathogenesis of dementia. Compounds that inhibit the glycogen synthase kinase-3 (GSK3) pathway have been investigated as a possible treatment to attenuate the progression of the disease, particularly the suppression of the hyper-phosphorylation process of the tau protein. Aims: Systematically summarizing compounds which have been tested to inhibit the GSK3 pathway to treat cognitive impairment and dementia. Methods: PubMed, Embase and Web of Science databases were searched from inception until 28 July 2021 for articles published in English. Interventional animal studies inhibiting the GSK3 pathway in Alzheimer’s disease (AD), Parkinson’s dementia, Lewy body dementia, vascular dementia, mild cognitive impairment (MCI) and normal cognitive ageing investigating the change in cognition as the outcome were included. The Systematic Review Centre for Laboratory animal Experimentation’s risk of bias tool for animal studies was applied. Results: Out of 4,154 articles, 29 described compounds inhibiting the GSK3 pathway. All studies were based on animal models of MCI, AD or normal cognitive ageing. Thirteen out of 21 natural compounds and five out of nine synthetic compounds tested in MCI and dementia animal models showed an overall positive effect on cognition. No articles reported human studies. The risk of bias was largely unclear. Conclusion: Novel therapeutics involved in the modulation of the GSK3 nutrient sensing pathway have the potential to improve cognitive function. Overall, there is a clear lack of translation from animal models to humans.
Collapse
Affiliation(s)
- Adrian Matysek
- Department of Human Genetics, University of Amsterdam, Amsterdam UMC, University Medical Centers, Amsterdam, Netherlands
| | - Sumudu Perera Kimmantudawage
- Department of Medicine and Aged Care, Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Andrea B. Maier
- Department of Medicine and Aged Care, Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
- *Correspondence: Andrea B. Maier,
| |
Collapse
|
8
|
Javadpour P, Askari S, Rashidi FS, Dargahi L, Ahmadiani A, Ghasemi R. Imipramine alleviates memory impairment and hippocampal apoptosis in STZ-induced sporadic Alzheimer's rat model: Possible contribution of MAPKs and insulin signaling. Behav Brain Res 2021; 408:113260. [PMID: 33775777 DOI: 10.1016/j.bbr.2021.113260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, associated with several pathophysiological complaints. Impaired insulin signaling in the brain, is one of the important characteristic features of AD which is accompanied by cognitive deficits. According to the multifactorial and complicated pathology of AD, no modifying therapy has been approved yet. Imipramine is a kind of tricyclic antidepressant with reported anti-inflammatory and anti-oxidant effects in the brain. There are controversial studies about the effect of this drug on spatial memory. This study investigates the effect of imipramine on streptozotocin (STZ) induced memory impairment in rats. Pursuing this objective, rats were treated with imipramine 10 or 20 mg/kg i.p. once a day for 14 days. 24 h after the last injection, memory function was evaluated by the Morris water maze (MWM) test in 4 consecutive days. Then, hippocampi were removed and the activity of caspase-3, mitogen activated protein kinases (MAPKs) family and inhibitory phosphorylation of insulin receptor substrate-1 (IRS-1ser307) were analyzed using Western blotting. Results showed that imipramine prevents memory impairment in STZ induced rats and this improvement was accompanied with an increase in ERK activity, reduction of caspase-3 and JNK activity, as well as partial restoration of P38 and IRS-1 activity. In conclusion, our study demonstrated that at least some members of the MAPK family are involved in the neuroprotective effect of imipramine.
Collapse
Affiliation(s)
- Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Gorny N, Kelly MP. Alterations in cyclic nucleotide signaling are implicated in healthy aging and age-related pathologies of the brain. VITAMINS AND HORMONES 2021; 115:265-316. [PMID: 33706951 DOI: 10.1016/bs.vh.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is not only important to consider how hormones may change with age, but also how downstream signaling pathways that couple to hormone receptors may change. Among these hormone-coupled signaling pathways are the 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) intracellular second messenger cascades. Here, we test the hypothesis that dysfunction of cAMP and/or cGMP synthesis, execution, and/or degradation occurs in the brain during healthy and pathological diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Although most studies report lower cyclic nucleotide signaling in the aged brain, with further reductions noted in the context of age-related diseases, there are select examples where cAMP signaling may be elevated in select tissues. Thus, therapeutics would need to target cAMP/cGMP in a tissue-specific manner if efficacy for select symptoms is to be achieved without worsening others.
Collapse
Affiliation(s)
- Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michy P Kelly
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
10
|
Park J, Won J, Seo J, Yeo HG, Kim K, Kim YG, Jeon CY, Kam MK, Kim YH, Huh JW, Lee SR, Lee DS, Lee Y. Streptozotocin Induces Alzheimer's Disease-Like Pathology in Hippocampal Neuronal Cells via CDK5/Drp1-Mediated Mitochondrial Fragmentation. Front Cell Neurosci 2020; 14:235. [PMID: 32903692 PMCID: PMC7438738 DOI: 10.3389/fncel.2020.00235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant brain insulin signaling plays a critical role in the pathology of Alzheimer’s disease (AD). Mitochondrial dysfunction plays a role in the progression of AD, with excessive mitochondrial fission in the hippocampus being one of the pathological mechanisms of AD. However, the molecular mechanisms underlying the progression of AD and mitochondrial fragmentation induced by aberrant brain insulin signaling in the hippocampal neurons are poorly understood. Therefore, we investigated the molecular mechanistic signaling associated with mitochondrial dynamics using streptozotocin (STZ), a diabetogenic compound, in the hippocampus cell line, HT-22 cells. In this metabolic dysfunctional cellular model, hallmarks of AD such as neuronal apoptosis, synaptic loss, and tau hyper-phosphorylation are induced by STZ. We found that in the mitochondrial fission protein Drp1, phosphorylation is increased in STZ-treated HT-22 cells. We also determined that inhibition of mitochondrial fragmentation suppresses STZ-induced AD-like pathology. Furthermore, we found that phosphorylation of Drp1 was induced by CDK5, and inhibition of CDK5 suppresses STZ-induced mitochondrial fragmentation and AD-like pathology. Therefore, these findings indicate that mitochondrial morphology and functional regulation may be a strategy of potential therapeutic for treating abnormal metabolic functions associated with the pathogenesis of AD.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Min Kyoung Kam
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| |
Collapse
|
11
|
Goyal A, Garabadu D. Sildenafil promotes the anti-amnesic activity of estrogen receptor alpha agonist in animals with estrogen insufficiency. Neurochem Int 2019; 132:104609. [PMID: 31778728 DOI: 10.1016/j.neuint.2019.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
The cognitive function in the females is observed to modulate with the fluctuation in plasma estrogen level. The specific estrogen receptor alpha (ERα) agonist, (4,4',4″-(4-propyl-[1H] pyrazole-1,3,5-triyl) tris phenol (PPT), exerts similar therapeutic activity to that of estrogen replacement therapy. It can also exert cyclic adenosine monophosphate (cAMP)-dependent carcinogenic activity in the uterus of the ovariectomized animals. However, there is no report of cGMP on the ERα-mediated phosphorylation of Akt in the experimental condition. Sildenafil increases the level of cGMP in most of the tissues including brain. Hence, the present study evaluated the therapeutic effect of Sildenafil with or without PPT in rats with experimentally-induced estrogen insufficiency. The condition of estrogen insufficiency was induced in female rats through bilateral ovariectomy on day-1 (D-1) of the experimental schedule. Sildenafil (1.0 and 10.0 mg/kg) and PPT attenuated ovariectomy-induced cognitive deficits in behavioural tests and increase in body weight in the rodents. Sildenafil and PPT increased the cholinergic function and the ratio of cGMP/cAMP in the hippocampus, pre-frontal cortex and amygdala of the animals. Further, the ovariectomy-induced decrease in the extent of phosphorylation of ERα in all the brain regions was attenuated with the monotherapy of either Sildenafil or PPT. Interestingly, the combination of Sildenafil and PPT exhibited better therapeutic effectiveness than their monotherapy. However, Sildenafil attenuated the PPT-induced increase in the level of expression of phosphorylated protein kinase-B (Akt) in the discrete brain regions and the weight of uterus of these rodents. Hence, it can be assumed that the combination could be a better therapeutic alternative with minimal side effect in the management of estrogen insufficiency-induced disorders.
Collapse
Affiliation(s)
- Ahsas Goyal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|