1
|
Ge Y, Song J, Zhao R, Guo X, Chu X, Zhou J, Xue Y. Intra- and inter-network connectivity abnormalities associated with surgical outcomes in degenerative cervical myelopathy patients: a resting-state fMRI study. Front Neurol 2024; 15:1490763. [PMID: 39574511 PMCID: PMC11580013 DOI: 10.3389/fneur.2024.1490763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Resting-state functional MRI (fMRI) has revealed functional changes at the cortical level in degenerative cervical myelopathy (DCM) patients. The aim of this study was to systematically integrate static and dynamic functional connectivity (FC) to unveil abnormalities of functional networks of DCM patients and to analyze the prognostic value of these abnormalities for patients using resting-state fMRI. In this study, we collected clinical data and fMRI data from 44 DCM patients and 39 healthy controls (HC). Independent component analysis (ICA) was performed to investigate the group differences of intra-network FC. Subsequently, both static and dynamic FC were calculated to investigate the inter-network FC alterations in DCM patients. k-means clustering was conducted to assess temporal properties for comparison between groups. Finally, the support vector machine (SVM) approach was performed to predict the prognosis of DCM patients based on static FC, dynamic FC, and fusion of these two metrics. Relative to HC, DCM patients exhibited lower intra-network FC and higher inter-network FC. DCM patients spent more time than HC in the state in which both patients and HC were characterized by strong inter-network FC. Both static and dynamic FC could successfully classify DCM patients with different surgical outcomes. The classification accuracy further improved after fusing the dynamic and static FC for model training. In conclusion, our findings provide valuable insights into the brain mechanisms underlying DCM neuropathology on the network level.
Collapse
Affiliation(s)
- Yuqi Ge
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiajun Song
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'An, China
| | - Xing Guo
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xu Chu
- Department of Shoulder and Elbow of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'An, China
| | - Jiaming Zhou
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Xue
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Muhammad F, Weber KA, Rohan M, Smith ZA. Patterns of cortical thickness alterations in degenerative cervical myelopathy: associations with dexterity and gait dysfunctions. Brain Commun 2024; 6:fcae279. [PMID: 39364309 PMCID: PMC11448325 DOI: 10.1093/braincomms/fcae279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) can lead to significant brain structural reorganization. The association between the cortical changes and specific motor symptoms in DCM has yet to be fully elucidated. We investigated the associations between cortical thickness changes with neurological symptoms, such as dexterity and gait abnormalities, in patients with DCM in a case-control study. A 3 Tesla MRI scanner was used to acquire high-resolution T1-weighted structural scans from 30 right-handed patients with DCM and 22 age-matched healthy controls. Pronounced cortical thinning was observed in DCM patients relative to healthy controls, particularly in the bilateral precentral and prefrontal gyri, left pars triangularis, left postcentral gyrus, right transverse temporal and visual cortices (P ≤ 0.04). Notably, cortical thickness in these regions showed strong correlations with objective motor deficits (P < 0.0001). Specifically, the prefrontal cortex, premotor area and supplementary motor area exhibited significant thickness reductions correlating with diminished dexterity (R2 = 0.33, P < 0.0007; R2 = 0.34, P = 0.005, respectively). Similarly, declines in gait function were associated with reduced cortical thickness in the visual motor and frontal eye field cortices (R2 = 0.39, P = 0.029, R2 = 0.33, P = 0.04, respectively). Interestingly, only the contralateral precuneus thickness was associated with the overall modified Japanese Orthopaedic Association (mJOA) scores (R2 = 0.29, P = 0.003). However, the upper extremity subscore of mJOA indicated an association with the visual cortex and the anterior prefrontal (R2 = 0.48, P = 0.002, R2 = 0.33, P = 0.0034, respectively). In conclusion, our findings reveal patterns of cortical changes correlating with motor deficits, highlighting the significance of combining objective clinical and brain imaging assessments for understanding motor network dysfunction in DCM.
Collapse
Affiliation(s)
- Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kenneth A Weber
- Systems Neuroscience and Pain Lab, Division of Pain Medicine, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Michael Rohan
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Oughourlian TC, Rizvi S, Wang C, Kostiuk A, Salamon N, Holly LT, Ellingson BM. Sex-specific alterations in functional connectivity and network topology in patients with degenerative cervical myelopathy. Sci Rep 2024; 14:16020. [PMID: 38992236 PMCID: PMC11239916 DOI: 10.1038/s41598-024-67084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Patients with degenerative cervical myelopathy (DCM) experience structural and functional brain reorganization. However, few studies have investigated the influence of sex on cerebral alterations. The present study investigates the role of sex on brain functional connectivity (FC) and global network topology in DCM and healthy controls (HCs). The resting-state functional MRI data was acquired for 100 patients (58 males vs. 42 females). ROI-to-ROI FC and network topological features were characterized for each patient and HC. Group differences in FC and network topological features were examined. Compared to healthy counterparts, DCM males exhibited higher FC between vision-related brain regions, and cerebellum, brainstem, and thalamus, but lower FC between the intracalcarine cortex and frontal and somatosensory cortices, while DCM females demonstrated higher FC between the thalamus and cerebellar and sensorimotor regions, but lower FC between sensorimotor and visual regions. DCM males displayed higher FC within the cerebellum and between the posterior cingulate cortex (PCC) and vision-related regions, while DCM females displayed higher FC between frontal regions and the PCC, cerebellum, and visual regions. Additionally, DCM males displayed significantly greater intra-network connectivity and efficiency compared to healthy counterparts. Results from the present study imply sex-specific supraspinal functional alterations occur in patients with DCM.
Collapse
Affiliation(s)
- Talia C Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shan Rizvi
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Undergraduate Interdepartmental Program, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
| | - Alex Kostiuk
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
| | - Langston T Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA.
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Freund P, Boller V, Emmenegger TM, Akbar M, Hupp M, Pfender N, Wheeler‐Kingshott CAMG, Cohen‐Adad J, Fehlings MG, Curt A, Seif M. Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative magnetic resonance imaging. Eur J Neurol 2024; 31:e16297. [PMID: 38713645 PMCID: PMC11235710 DOI: 10.1111/ene.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND AND PURPOSE Simultaneous assessment of neurodegeneration in both the cervical cord and brain across multiple centres can enhance the effectiveness of clinical trials. Thus, this study aims to simultaneously assess microstructural changes in the cervical cord and brain above the stenosis in degenerative cervical myelopathy (DCM) using quantitative magnetic resonance imaging (MRI) in a multicentre study. METHODS We applied voxelwise analysis with a probabilistic brain/spinal cord template embedded in statistical parametric mappin (SPM-BSC) to process multi parametric mapping (MPM) including effective transverse relaxation rate (R2*), longitudinal relaxation rate (R1), and magnetization transfer (MT), which are indirectly sensitive to iron and myelin content. Regression analysis was conducted to establish associations between neurodegeneration and clinical impairment. Thirty-eight DCM patients (mean age ± SD = 58.45 ± 11.47 years) and 38 healthy controls (mean age ± SD = 41.18 ± 12.75 years) were recruited at University Hospital Balgrist, Switzerland and Toronto Western Hospital, Canada. RESULTS Remote atrophy was observed in the cervical cord (p = 0.002) and in the left thalamus (0.026) of the DCM group. R1 was decreased in the periaqueductal grey matter (p = 0.014), thalamus (p = 0.001), corpus callosum (p = 0.0001), and cranial corticospinal tract (p = 0.03). R2* was increased in the primary somatosensory cortices (p = 0.008). Sensory impairments were associated with increased iron-sensitive R2* in the thalamus and periaqueductal grey matter in DCM. CONCLUSIONS Simultaneous assessment of the spinal cord and brain revealed DCM-induced demyelination, iron deposition, and atrophy. The extent of remote neurodegeneration was associated with sensory impairment, highlighting the intricate and expansive nature of microstructural neurodegeneration in DCM, reaching beyond the stenosis level.
Collapse
Affiliation(s)
- Patrick Freund
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Viveka Boller
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Tim M. Emmenegger
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Muhammad Akbar
- Spine Program Division of NeurosurgeryUniversity of Toronto and Toronto Western HospitalTorontoOntarioCanada
| | - Markus Hupp
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Nikolai Pfender
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Claudia Angela Michela Gandini Wheeler‐Kingshott
- NMR Research Unit, Queen Square MS CentreUniversity College London (UCL) Queen Square Institute of Neurology, Faculty of Brain SciencesLondonUK
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Digital Neuroscience Research UnitIRCCS Mondino FoundationPaviaItaly
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique MontrealMontrealQuebecCanada
- Functional Neuroimaging Unit, CRIUGMUniversity of MontrealMontrealQuebecCanada
| | - Michael G. Fehlings
- Spine Program Division of NeurosurgeryUniversity of Toronto and Toronto Western HospitalTorontoOntarioCanada
| | - Armin Curt
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Maryam Seif
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
5
|
Akimoto H, Suzuki H, Kan S, Funaba M, Nishida N, Fujimoto K, Ikeda H, Yonezawa T, Ikushima K, Shimizu Y, Matsubara T, Harada K, Nakagawa S, Sakai T. Resting-state functional magnetic resonance imaging indices are related to electrophysiological dysfunction in degenerative cervical myelopathy. Sci Rep 2024; 14:2344. [PMID: 38282042 PMCID: PMC10822854 DOI: 10.1038/s41598-024-53051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/27/2024] [Indexed: 01/30/2024] Open
Abstract
The age-related degenerative pathologies of the cervical spinal column that comprise degenerative cervical myelopathy (DCM) cause myelopathy due spinal cord compression. Functional neurological assessment of DCM can potentially reveal the severity and pathological mechanism of DCM. However, functional assessment by conventional MRI remains difficult. This study used resting-state functional MRI (rs-fMRI) to investigate the relationship between functional connectivity (FC) strength and neurophysiological indices and examined the feasibility of functional assessment by FC for DCM. Preoperatively, 34 patients with DCM underwent rs-fMRI scans. Preoperative central motor conduction time (CMCT) reflecting motor functional disability and intraoperative somatosensory evoked potentials (SEP) reflecting sensory functional disability were recorded as electrophysiological indices of severity of the cervical spinal cord impairment. We performed seed-to-voxel FC analysis and correlation analyses between FC strength and the two electrophysiological indices. We found that FC strength between the primary motor cortex and the precuneus correlated significantly positively with CMCT, and that between the lateral part of the sensorimotor cortex and the lateral occipital cortex also showed a significantly positive correlation with SEP amplitudes. These results suggest that we can evaluate neurological and electrophysiological severity in patients with DCM by analyzing FC strengths between certain brain regions.
Collapse
Affiliation(s)
- Hironobu Akimoto
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hidenori Suzuki
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Shigeyuki Kan
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Masahiro Funaba
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Norihiro Nishida
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kazuhiro Fujimoto
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Ikeda
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Teppei Yonezawa
- Department of Radiological Technology, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kojiro Ikushima
- Department of Radiological Technology, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoichiro Shimizu
- Department of Radiological Technology, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Takashi Sakai
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
6
|
Chen R, Liu J, Zhao Y, Diao Y, Chen X, Pan S, Zhang F, Sun Y, Zhou F. Predictive Value of Preoperative Short Form-36 Survey Scale for Postoperative Axial Neck Pain in Patients With Degenerative Cervical Myelopathy. Global Spine J 2023:21925682231200136. [PMID: 37684040 DOI: 10.1177/21925682231200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
STUDY DESIGN Prospective observational study. OBJECTIVE To evaluate the predictive value of the preoperative Short Form-36 survey (SF-36) scale for postoperative axial neck pain (ANP) in patients with degenerative cervical myelopathy (DCM) who underwent anterior cervical decompression and fusion (ACDF) surgery. METHODS This study enrolled patients with DCM who underwent ACDF surgery at author's Hospital between May 2010 and June 2016. RESULTS Out of 126 eligible patients, 122 completed the 3-month follow-up and 117 completed the 1-year follow-up. The results showed that the preoperative social functioning (SF) subscale score of the SF-36 scale was significantly lower in patients with moderate-to-severe postoperative ANP than in those with no or mild postoperative ANP at both follow-up timepoints (P < .05). ACDF at C4-5 level resulted in a higher ANP rate than ACDF at C5-6 or C6-7 level, both at 3-month (P = .019) and 1-year (P = .004) follow-up. Multivariate logistic regression analysis confirmed that the preoperative social functioning subscale score was an independent risk factor for moderate-to-severe postoperative ANP at 3 months and 1 year after surgery, and preoperative NRS was an independent risk factor at 1-year follow-up. No other demographic, clinical, or radiographic factors were found to be associated with postoperative ANP severity (P < .05). CONCLUSIONS Preoperative social functioning subscale score of SF-36 scale might be a favorable predictive tool for postoperative ANP in DCM patients who underwent ACDF surgery.
Collapse
Affiliation(s)
- Rui Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Jiesheng Liu
- Department of Spine and Spinal Cord Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yanbin Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Yinze Diao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Xin Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Shengfa Pan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Fengshan Zhang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Yu Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Feifei Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Wang C, Sanvito F, Oughourlian TC, Islam S, Salamon N, Holly LT, Ellingson BM. Structural Relationship between Cerebral Gray and White Matter Alterations in Degenerative Cervical Myelopathy. Tomography 2023; 9:315-327. [PMID: 36828377 PMCID: PMC9961386 DOI: 10.3390/tomography9010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with degenerative cervical myelopathy (DCM) undergo adaptive supraspinal changes. However, it remains unknown how subcortical white matter changes reflect the gray matter loss. The current study investigated the interrelationship between gray matter and subcortical white matter alterations in DCM patients. Cortical thickness of gray matter, as well as the intra-cellular volume fraction (ICVF) of subcortical whiter matter, were assessed in a cohort of 44 patients and 17 healthy controls (HCs). The results demonstrated that cortical thinning of sensorimotor and pain related regions is associated with more severe DCM symptoms. ICVF values of subcortical white matter underlying the identified regions were significantly lower in study patients than in HCs. The left precentral gyrus (r = 0.5715, p < 0.0001), the left supramarginal gyrus (r = 0.3847, p = 0.0099), the left postcentral gyrus (r = 0.5195, p = 0.0003), the right superior frontal gyrus (r = 0.3266, p = 0.0305), and the right caudal (r = 0.4749, p = 0.0011) and rostral anterior cingulate (r = 0.3927, p = 0.0084) demonstrated positive correlations between ICVF and cortical thickness in study patients, but no significant correlations between ICVF and cortical thickness were observed in HCs. Results from the current study suggest that DCM may cause widespread gray matter alterations and underlying subcortical neurite loss, which may serve as potential imaging biomarkers reflecting the pathology of DCM.
Collapse
Affiliation(s)
- Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Talia C. Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Sabah Islam
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Langston T. Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
8
|
Evolution of brain functional plasticity associated with increasing symptom severity in degenerative cervical myelopathy. EBioMedicine 2022; 84:104255. [PMID: 36116214 PMCID: PMC9483733 DOI: 10.1016/j.ebiom.2022.104255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Advanced imaging modalities have helped elucidate the cerebral alterations associated with neurological impairment caused by degenerative cervical myelopathy (DCM), but it remains unknown how brain functional network changes at different stages of myelopathy severity in DCM patients, and if patterns in network connectivity can be used to predict transition to more myelopathic stages of DCM. METHODS This pilot cross-sectional study, which involves the collection of resting-state functional MRI (rs-fMRI) images and the modified Japanese Orthopedic Association (mJOA) score, enrolled 116 participants (99 patients and 17 healthy controls) from 2016 to 2021. The patient cohort included 21patients with asymptomatic spinal cord compression, 48 mild DCM patients, and 20 moderate or severe DCM patients. Functional connectivity networks were quantified for all participants, and the transition matrices were quantified to determine the differences in network connectivity through increasingly myelopathic stages of DCM. Additionally, a link prediction model was used to determine whether more severe stages of DCM can be predicted from less symptomatic stages using the transition matrices. FINDINGS Results indicated interruptions in most connections within the sensorimotor network in conjunction with spinal cord compression, while compensatory connectivity was observed within and between primary and secondary sensorimotor regions, subcortical regions, visuospatial regions including the cuneus, as well as the brainstem and cerebellum. A link prediction model achieved an excellent predictive performance in estimating connectivity of more severe myelopathic stages of DCM, with the highest area under the receiver operator curve (AUC) of 0.927 for predicting mild DCM from patients with asymptomatic spinal cord compression. INTERPRETATION A series of predictable changes in functional connectivity occur throughout the stages of DCM pathogenesis. The brainstem and cerebellum appear highly influential in optimizing sensorimotor function during worsening myelopathy. The link predication model can inclusively estimate brain alterations associated with myelopathy severity. FUNDING NIH/NINDS grants (1R01NS078494-01A1, and 2R01NS078494).
Collapse
|
9
|
Neck Disability at Presentation Influences Long Term Clinical Improvement for Neck Pain, Arm Pain, Disability and Physical Function in Patients Undergoing Anterior Cervical Discectomy and Fusion. World Neurosurg 2022; 163:e663-e672. [PMID: 35460906 DOI: 10.1016/j.wneu.2022.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
STUDY DESIGN Retrospective cohort PURPOSE: To compare perioperative characteristics, patient-reported outcome measures (PROMs) and minimum clinical important difference (MCID) achievement following anterior cervical discectomy and fusion (ACDF) in patients stratified by preoperative neck disability. OVERVIEW OF LITERATURE The Neck Disability Index (NDI) assesses a patient's self-perceived neck disability and is often utilized to assess the efficacy of cervical surgical intervention. Our study evaluates how preoperative severity of patient neck disability influences postoperative clinical improvement following ACDF. METHODS Primary, single or multi-level ACDF procedures were included. PROMs were administered at preoperative/6-week/12-week/6-month/1-year/2-year timepoints and included PROMIS-PF, VAS for neck and arm pain, NDI, and SF-12 PCS. Patients were grouped: preoperative NDI score<50 (mild to moderate neck disability) or NDI score≥50 (Severe neck disability). Demographics/perioperative characteristics/postoperative complications/mean PROMs/MCID achievement rates were compared using chi-squared or Student's t-test. Postoperative improvement from preoperative baseline within each cohort was assessed with paired samples t-test. MCID achievement was determined by comparing ΔPROMs to established thresholds. RESULTS 225 patients were included, 150 NDI<50 and 75 NDI≥50. NDI≥50 cohort was significantly younger(p=0.002). Cohorts did not differ for spinal pathology/operative duration/estimated blood loss/postoperative length of stay/postoperative narcotic consumption/adjacent segment disease rate/1-year arthrodesis rate/6-month pseudoarthrosis rate. Postoperative VAS pain score on POD0 and 1 was significantly increased in NDI≥50 cohort(p<0.048, all). Postoperative complication rates did not differ. All mean PROMs differed at all timepoints(p<0.043, all). NDI<50 patient cohort significantly improved from preoperative baseline for all PROMs and timepoints except SF-12 PCS/PROMIS-PF at 6-weeks. NDI≥50 cohort significantly improved for all PROMs and timepoints except SF-12 PCS at 6-weeks. NDI≥50 cohort demonstrated greater proportion achieving MCID for NDI at 6-weeks/2-years/overall(p<0.037, all). CONCLUSION Both cohorts demonstrated significant long-term clinical improvement for neck pain/arm pain/physical function/neck disability, though patients with severe preoperative neck disability reported inferior mean scores for these outcomes at all timepoints.
Collapse
|
10
|
Singh K, García-Gomar MG, Cauzzo S, Staab JP, Indovina I, Bianciardi M. Structural connectivity of autonomic, pain, limbic, and sensory brainstem nuclei in living humans based on 7 Tesla and 3 Tesla MRI. Hum Brain Mapp 2022; 43:3086-3112. [PMID: 35305272 PMCID: PMC9188976 DOI: 10.1002/hbm.25836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Autonomic, pain, limbic, and sensory processes are mainly governed by the central nervous system, with brainstem nuclei as relay centers for these crucial functions. Yet, the structural connectivity of brainstem nuclei in living humans remains understudied. These tiny structures are difficult to locate using conventional in vivo MRI, and ex vivo brainstem nuclei atlases lack precise and automatic transformability to in vivo images. To fill this gap, we mapped our recently developed probabilistic brainstem nuclei atlas developed in living humans to high‐spatial resolution (1.7 mm isotropic) and diffusion weighted imaging (DWI) at 7 Tesla in 20 healthy participants. To demonstrate clinical translatability, we also acquired 3 Tesla DWI with conventional resolution (2.5 mm isotropic) in the same participants. Results showed the structural connectome of 15 autonomic, pain, limbic, and sensory (including vestibular) brainstem nuclei/nuclei complex (superior/inferior colliculi, ventral tegmental area‐parabrachial pigmented, microcellular tegmental–parabigeminal, lateral/medial parabrachial, vestibular, superior olivary, superior/inferior medullary reticular formation, viscerosensory motor, raphe magnus/pallidus/obscurus, parvicellular reticular nucleus‐alpha part), derived from probabilistic tractography computation. Through graph measure analysis, we identified network hubs and demonstrated high intercommunity communication in these nuclei. We found good (r = .5) translational capability of the 7 Tesla connectome to clinical (i.e., 3 Tesla) datasets. Furthermore, we validated the structural connectome by building diagrams of autonomic/pain/limbic connectivity, vestibular connectivity, and their interactions, and by inspecting the presence of specific links based on human and animal literature. These findings offer a baseline for studies of these brainstem nuclei and their functions in health and disease, including autonomic dysfunction, chronic pain, psychiatric, and vestibular disorders.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Escuela Nacional de Estudios Superiores, Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Research Center E. Piaggio, University of Pisa, Pisa, Italy
| | - Jeffrey P Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Nouri A, Tessitore E, Molliqaj G, Meling T, Schaller K, Nakashima H, Yukawa Y, Bednarik J, Martin AR, Vajkoczy P, Cheng JS, Kwon BK, Kurpad SN, Fehlings MG, Harrop JS, Aarabi B, Rahimi-Movaghar V, Guest JD, Davies BM, Kotter MRN, Wilson JR. Degenerative Cervical Myelopathy: Development and Natural History [AO Spine RECODE-DCM Research Priority Number 2]. Global Spine J 2022; 12:39S-54S. [PMID: 35174726 PMCID: PMC8859703 DOI: 10.1177/21925682211036071] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES To discuss the current understanding of the natural history of degenerative cervical myelopathy (DCM). METHODS Literature review summarizing current evidence pertaining to the natural history and risk factors of DCM. RESULTS DCM is a common condition in which progressive arthritic disease of the cervical spine leads to spinal cord compression resulting in a constellation of neurological symptoms, in particular upper extremity dysfunction and gait impairment. Anatomical factors including cord-canal mismatch, congenitally fused vertebrae and genetic factors may increase individuals' risk for DCM development. Non-myelopathic spinal cord compression (NMSCC) is a common phenomenon with a prevalence of 24.2% in the healthy population, and 35.3% among individuals >60 years of age. Clinical radiculopathy and/or electrophysiological signs of cervical cord dysfunction appear to be risk factors for myelopathy development. Radiological progression of incidental Ossification of the Posterior Longitudinal Ligament (OPLL) is estimated at 18.3% over 81-months and development of myelopathy ranges between 0-61.5% (follow-up ranging from 40 to 124 months between studies) among studies. In patients with symptomatic DCM undergoing non-operative treatment, 20-62% will experience neurological deterioration within 3-6 years. CONCLUSION Current estimates surrounding the natural history of DCM, particularly those individuals with mild or minimal impairment, lack precision. Clear predictors of clinical deterioration for those treated with non-operative care are yet to be identified. Future studies are needed on this topic to help improve treatment counseling and clinical prognostication.
Collapse
Affiliation(s)
- Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Enrico Tessitore
- Division of Neurosurgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Granit Molliqaj
- Division of Neurosurgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Torstein Meling
- Division of Neurosurgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasutsugu Yukawa
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Josef Bednarik
- Department of Neurology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Allan R. Martin
- Department of Neurosurgery, University of California Davis, Sacramento, CA, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité Universitätsmedizin, Berlin, Germany
| | - Joseph S. Cheng
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Brian K. Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, University of Toronto, Ontario, Canada
| | - James S. Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland, Baltimore, MD, USA
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - James D. Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, FL, USA
| | - Benjamin M. Davies
- Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Myelopathy.org, International Charity for Degenerative Cervical Myelopathy, United Kingdom
| | - Mark R. N. Kotter
- Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Myelopathy.org, International Charity for Degenerative Cervical Myelopathy, United Kingdom
| | - Jefferson R. Wilson
- Division of Neurosurgery and Spine Program, University of Toronto, Ontario, Canada
| |
Collapse
|
12
|
Davies BM, Mowforth O, Gharooni AA, Tetreault L, Nouri A, Dhillon RS, Bednarik J, Martin AR, Young A, Takahashi H, Boerger TF, Newcombe VF, Zipser CM, Freund P, Koljonen PA, Rodrigues-Pinto R, Rahimi-Movaghar V, Wilson JR, Kurpad SN, Fehlings MG, Kwon BK, Harrop JS, Guest JD, Curt A, Kotter MRN. A New Framework for Investigating the Biological Basis of Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 5]: Mechanical Stress, Vulnerability and Time. Global Spine J 2022; 12:78S-96S. [PMID: 35174728 PMCID: PMC8859710 DOI: 10.1177/21925682211057546] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Literature Review (Narrative). OBJECTIVE To propose a new framework, to support the investigation and understanding of the pathobiology of DCM, AO Spine RECODE-DCM research priority number 5. METHODS Degenerative cervical myelopathy is a common and disabling spinal cord disorder. In this perspective, we review key knowledge gaps between the clinical phenotype and our biological models. We then propose a reappraisal of the key driving forces behind DCM and an individual's susceptibility, including the proposal of a new framework. RESULTS Present pathobiological and mechanistic knowledge does not adequately explain the disease phenotype; why only a subset of patients with visualized cord compression show clinical myelopathy, and the amount of cord compression only weakly correlates with disability. We propose that DCM is better represented as a function of several interacting mechanical forces, such as shear, tension and compression, alongside an individual's vulnerability to spinal cord injury, influenced by factors such as age, genetics, their cardiovascular, gastrointestinal and nervous system status, and time. CONCLUSION Understanding the disease pathobiology is a fundamental research priority. We believe a framework of mechanical stress, vulnerability, and time may better represent the disease as a whole. Whilst this remains theoretical, we hope that at the very least it will inspire new avenues of research that better encapsulate the full spectrum of disease.
Collapse
Affiliation(s)
- Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Oliver Mowforth
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Aref-Ali Gharooni
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Lindsay Tetreault
- New York University, Langone Health, Graduate Medical Education, 5894Department of Neurology, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Genève, Switzerland
| | - Rana S Dhillon
- Department of Neurosurgery, 60078St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Josef Bednarik
- Department of Neurology, University Hospital Brno and Faculty of Medicine, 37748Masaryk University, Brno, Czech Republic
| | - Allan R Martin
- Department of Neurosurgery, 8789University of California Davis, Sacramento, CA, USA
| | - Adam Young
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, 12978Niigata University, Niigata, Japan
| | - Timothy F Boerger
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Virginia Fj Newcombe
- Division of Anaesthesia, Department of Medicine, 2152University of Cambridge, Cambridge, UK
| | - Carl Moritz Zipser
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, 25809The University of Hong Kong, Hong Kong, China
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, 112085Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- 89239Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6559Thomas Jefferson University, Philadelphia, PA, USA
| | - James D Guest
- Department of Neurosurgery and the Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Oughourlian TC, Wang C, Salamon N, Holly LT, Ellingson BM. Sex-Dependent Cortical Volume Changes in Patients with Degenerative Cervical Myelopathy. J Clin Med 2021; 10:jcm10173965. [PMID: 34501413 PMCID: PMC8432178 DOI: 10.3390/jcm10173965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Abstract
Degenerative cervical myelopathy (DCM) is a progressive condition characterized by degeneration of osseocartilaginous structures within the cervical spine resulting in compression of the spinal cord and presentation of clinical symptoms. Compared to healthy controls (HCs), studies have shown DCM patients experience structural and functional reorganization in the brain; however, sex-dependent cortical differences in DCM patients remains largely unexplored. In the present study, we investigate the role of sex differences on the structure of the cerebral cortex in DCM and determine how structural differences may relate to clinical measures of neurological function. T1-weighted structural MRI scans were acquired in 85 symptomatic and asymptomatic patients with DCM and 90 age-matched HCs. Modified Japanese Orthopedic Association (mJOA) scores were obtained for patients. A general linear model was used to determine vertex-level significant differences in gray matter volume (GMV) between the following groups (1) male HCs and female HCs, (2) male patients and female patients, (3) male patients and male HCs, and (4) female patients and female HCs. Within patients, males exhibited larger GMV in motor, language, and vision related brain regions compared to female DCM patients. Males demonstrated a significant positive correlation between GMV and mJOA score, in which patients with worsening neurological symptoms exhibited decreasing GMV primarily across somatosensory and motor related cortical regions. Females exhibited a similar association, albeit across a broader range of cortical areas including those involved in pain processing. In sensorimotor regions, female patients consistently showed smaller GMV compared with male patients, independent of mJOA score. Results from the current study suggest strong sex-related differences in cortical volume in patients with DCM, which may reflect hormonal influence or differing compensation mechanisms.
Collapse
Affiliation(s)
- Talia C. Oughourlian
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (T.C.O.); (C.W.); (B.M.E.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chencai Wang
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (T.C.O.); (C.W.); (B.M.E.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Langston T. Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-(310)-319-3475
| | - Benjamin M. Ellingson
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (T.C.O.); (C.W.); (B.M.E.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Degenerative Cervical Myelopathy: Clinical Presentation, Assessment, and Natural History. J Clin Med 2021; 10:jcm10163626. [PMID: 34441921 PMCID: PMC8396963 DOI: 10.3390/jcm10163626] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Degenerative cervical myelopathy (DCM) is a leading cause of spinal cord injury and a major contributor to morbidity resulting from narrowing of the spinal canal due to osteoarthritic changes. This narrowing produces chronic spinal cord compression and neurologic disability with a variety of symptoms ranging from mild numbness in the upper extremities to quadriparesis and incontinence. Clinicians from all specialties should be familiar with the early signs and symptoms of this prevalent condition to prevent gradual neurologic compromise through surgical consultation, where appropriate. The purpose of this review is to familiarize medical practitioners with the pathophysiology, common presentations, diagnosis, and management (conservative and surgical) for DCM to develop informed discussions with patients and recognize those in need of early surgical referral to prevent severe neurologic deterioration.
Collapse
|
15
|
Sher IK, Davis GA. Commentary: Asymptomatic Spinal Cord Compression: Is Surgery Necessary to Return to Play. Neurosurgery 2021; 88:E556-E557. [PMID: 33677587 DOI: 10.1093/neuros/nyab055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Idrees K Sher
- Department of Neurosurgery, Austin Health, Melbourne, Australia
| | - Gavin A Davis
- Department of Neurosurgery, Austin Health, Melbourne, Australia.,Neurosurgery, Cabrini Health, Melbourne, Australia
| |
Collapse
|