1
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
2
|
Gay EA, Harris DL, Wilson JW, Blough BE. The development of diphenyleneiodonium analogs as GPR3 agonists. Bioorg Med Chem Lett 2023; 94:129427. [PMID: 37541631 PMCID: PMC10631289 DOI: 10.1016/j.bmcl.2023.129427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
G protein-coupled receptor 3 (GPR3) is an orphan receptor potentially involved in many important physiological processes such as drug abuse, neuropathic pain, and anxiety and depression related disorders. Pharmacological studies of GPR3 have been limited due to the restricted number of known agonists and inverse agonists for this constitutively active receptor. In this medicinal chemistry study, we report the discovery of GPR3 agonists based off the diphenyleneiodonium (DPI) scaffold. The most potent full agonist was the 3-trifluoromethoxy analog (32) with an EC50 of 260 nM and 90% efficacy compared to DPI. Investigation of a homology model of GPR3 from multiple sequence alignment resulted in the finding of a binding site rich in potential π-π and π-cation interactions stabilizing DPI-scaffold agonists. MMGBSA free energy analysis showed a good correlation with trends in observed EC50s. DPI analogs retained the same high receptor selectivity for GPR3 over GPR6 and GPR12 as observed with DPI. Collectively, the DPI analog series shows that order of magnitude improvements in potency with the scaffold were attainable; however, attempts to replace the iodonium ion to make the scaffold more druggable failed.
Collapse
Affiliation(s)
- Elaine A Gay
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA.
| | - Danni L Harris
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Joseph W Wilson
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Huang Y, Rafael Guimarães T, Todd N, Ferguson C, Weiss KM, Stauffer FR, McDermott B, Hurtle BT, Saito T, Saido TC, MacDonald ML, Homanics GE, Thathiah A. G protein-biased GPR3 signaling ameliorates amyloid pathology in a preclinical Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2022; 119:e2204828119. [PMID: 36161942 PMCID: PMC9546571 DOI: 10.1073/pnas.2204828119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Biased G protein-coupled receptor (GPCR) ligands, which preferentially activate G protein or β-arrestin signaling pathways, are leading to the development of drugs with superior efficacy and reduced side effects in heart disease, pain management, and neuropsychiatric disorders. Although GPCRs are implicated in the pathophysiology of Alzheimer's disease (AD), biased GPCR signaling is a largely unexplored area of investigation in AD. Our previous work demonstrated that GPR3-mediated β-arrestin signaling modulates amyloid-β (Aβ) generation in vitro and that Gpr3 deficiency ameliorates Aβ pathology in vivo. However, Gpr3-deficient mice display several adverse phenotypes, including elevated anxiety-like behavior, reduced fertility, and memory impairment, which are potentially associated with impaired G protein signaling. Here, we generated a G protein-biased GPR3 mouse model to investigate the physiological and pathophysiological consequences of selective elimination of GPR3-mediated β-arrestin signaling in vivo. In contrast to Gpr3-deficient mice, G protein-biased GPR3 mice do not display elevated anxiety levels, reduced fertility, or cognitive impairment. We further determined that G protein-biased signaling reduces soluble Aβ levels and leads to a decrease in the area and compaction of amyloid plaques in the preclinical AppNL-G-F AD mouse model. The changes in amyloid pathology are accompanied by robust microglial and astrocytic hypertrophy, which suggest a protective glial response that may limit amyloid plaque development in G protein-biased GPR3 AD mice. Collectively, these studies indicate that GPR3-mediated G protein and β-arrestin signaling produce discrete and separable effects and provide proof of concept for the development of safer GPCR-targeting therapeutics with more directed pharmacological action for AD.
Collapse
Affiliation(s)
- Yunhong Huang
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
| | - Thais Rafael Guimarães
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA,15260
| | - Nicholas Todd
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
- Graduate Program in Molecular Pharmacology, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Carolyn Ferguson
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Kathryn M. Weiss
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
| | - Fiona R. Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
| | - Breanne McDermott
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
| | - Bryan T. Hurtle
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA,15260
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, 467-8601, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA,15260
| | - Gregg E. Homanics
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260
- University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, 15260
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
- University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, 15260
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260
- Center for Protein Conformational Diseases, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA,15260
| |
Collapse
|
4
|
Masuda S, Tanaka S, Shiraki H, Sotomaru Y, Harada K, Hide I, Kiuchi Y, Sakai N. GPR3 expression in retinal ganglion cells contributes to neuron survival and accelerates axonal regeneration after optic nerve crush in mice. Neurobiol Dis 2022; 172:105811. [PMID: 35809764 DOI: 10.1016/j.nbd.2022.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Glaucoma is an optic neuropathy and is currently one of the most common diseases that leads to irreversible blindness. The axonal degeneration that occurs before retinal ganglion neuronal loss is suggested to be involved in the pathogenesis of glaucoma. G protein-coupled receptor 3 (GPR3) belongs to the class A rhodopsin-type GPCR family and is highly expressed in various neurons. GPR3 is unique in its ability to constitutively activate the Gαs protein without a ligand, which elevates the basal intracellular cAMP level. Our earlier reports suggested that GPR3 enhances both neurite outgrowth and neuronal survival. However, the potential role of GPR3 in axonal regeneration after neuronal injury has not been elucidated. Herein, we investigated retinal GPR3 expression and its possible involvement in axonal regeneration after retinal injury in mice. GPR3 was relatively highly expressed in retinal ganglion cells (RGCs). Surprisingly, RGCs in GPR3 knockout mice were vulnerable to neural death during aging without affecting high intraocular pressure (IOP) and under ischemic conditions. Primary cultured neurons from the retina showed that GPR3 expression was correlated with neurite outgrowth and neuronal survival. Evaluation of the effect of GPR3 on axonal regeneration using GPR3 knockout mice revealed that GPR3 in RGCs participates in axonal regeneration after optic nerve crush (ONC) under zymosan stimulation. In addition, regenerating axons were further stimulated when GPR3 was upregulated in RGCs, and the effect was further augmented when combined with zymosan treatment. These results suggest that GPR3 expression in RGCs helps maintain neuronal survival and accelerates axonal regeneration after ONC in mice.
Collapse
Affiliation(s)
- Shun Masuda
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Department of Ophthalmology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Hiroko Shiraki
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
5
|
Shiraki H, Tanaka S, Guo Y, Harada K, Hide I, Yasuda T, Sakai N. Potential role of inducible GPR3 expression under stimulated T cell conditions. J Pharmacol Sci 2022; 148:307-314. [PMID: 35177210 DOI: 10.1016/j.jphs.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor 3 (GPR3) constitutively activates Gαs proteins without any ligands and is predominantly expressed in neurons. Since the expression and physiological role of GPR3 in immune cells is still unknown, we examined the possible role of GPR3 in T lymphocytes. The expression of GPR3 was upregulated 2 h after phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation and was sustained in Jurkat cells, a human T lymphocyte cell line. In addition, the expression of nuclear receptor 4 group A member 2 (NR4A2) was highly modulated by GPR3 expression. Additionally, GPR3 expression was linked with the transcriptional promoter activity of NR4A in Jurkat cells. In mouse CD4+ T cells, transient GPR3 expression was induced immediately after the antigen receptor stimulation. However, the expression of NR4A2 was not modulated in CD4+ T cells from GPR3-knockout mice after stimulation, and the population of Treg cells in thymocytes and splenocytes was not affected by GPR3 knockout. By contrast, spontaneous effector activation in both CD4+ T cells and CD8+ T cells was observed in GPR3-knockout mice. In summary, GPR3 is immediately induced by T cell stimulation and play an important role in the suppression of effector T cell activation.
Collapse
Affiliation(s)
- Hiroko Shiraki
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
6
|
GPR3 accelerates neurite outgrowth and neuronal polarity formation via PI3 kinase-mediating signaling pathway in cultured primary neurons. Mol Cell Neurosci 2021; 118:103691. [PMID: 34871769 DOI: 10.1016/j.mcn.2021.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022] Open
Abstract
During neuronal development, immature neurons extend neurites and subsequently polarize to form an axon and dendrites. We have previously reported that G protein-coupled receptor 3 (GPR3) levels increase during neuronal development, and that GPR3 has functions in neurite outgrowth and neuronal differentiation in cerebellar granular neurons. Moreover, GPR3 is transported and concentrated at the tips of neurite, thereby contributing to the local activation of protein kinase A (PKA). However, the signaling pathways for GPR3-mediated neurite outgrowth and its subsequent effects on neuronal polarization have not yet been elucidated. We therefore analyzed the signaling pathways related to GPR3-mediated neurite outgrowth, and also focused on the possible roles of GPR3 in axon polarization. We demonstrated that, in cerebellar granular neurons, GPR3-mediated neurite outgrowth was mediated by multiple signaling pathways, including those of PKA, extracellular signal-regulated kinases (ERKs), and most strongly phosphatidylinositol 3-kinase (PI3K). In addition, the GPR3-mediated activation of neurite outgrowth was associated with G protein-coupled receptor kinase 2 (GRK2)-mediated signaling and phosphorylation of the C-terminus serine/threonine residues of GPR3, which affected downstream protein kinase B (Akt) signaling. We further demonstrated that GPR3 was transiently increased early in the development of rodent hippocampal neurons. It was subsequently concentrated at the tip of the longest neurite, and was thus associated with accelerated polarity formation in a PI3K-dependent manner in rat hippocampal neurons. In addition, GPR3 knockout in mouse hippocampal neurons led to delayed neuronal polarity formation, thereby affecting the dephosphorylation of collapsing response mediator protein 2 (CRMP2), which is downstream of the PI3K signaling pathway. Taken together, these findings suggest that the intrinsic expression of GPR3 in differentiated neurons constitutively activates PI3K-mediated signaling pathway predominantly, thus accelerating neurite outgrowth and further augmenting polarity formation in primary cultured neurons.
Collapse
|
7
|
Galiazzo G, De Silva M, Giancola F, Rinnovati R, Peli A, Chiocchetti R. Cellular distribution of cannabinoid-related receptors TRPV1, PPAR-gamma, GPR55 and GPR3 in the equine cervical dorsal root ganglia. Equine Vet J 2021; 54:788-798. [PMID: 34418142 PMCID: PMC9293124 DOI: 10.1111/evj.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/18/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The activation of cannabinoid and cannabinoid-related receptors by endogenous, plant-derived or synthetic cannabinoids may exert beneficial effects on pain perception. Of the cannabinoids contained in Cannabis sativa, cannabidiol (CBD) does not produce psychotropic effects and seems to represent a molecule having great therapeutic potential. Cannabidiol acts on a great number of cannabinoid and cannabinoid-related G-protein-coupled receptors and ionotropic receptors which have, to date, been understudied in veterinary medicine particularly in equine medicine. OBJECTIVES To localise the cellular distribution of four putative cannabinoid-related receptors in the equine cervical dorsal root ganglia (DRG). STUDY DESIGN A qualitative and quantitative immunohistochemical study. METHODS The cervical (C6-C8) DRG of six slaughtered horses were obtained from a local slaughterhouse. The tissues were fixed and processed for immunohistochemistry, and the resulting cryosections were used to investigate immunoreactivity for the following putative CBD receptors: Transient receptor potential vanilloid type 1 (TRPV1), nuclear peroxisome proliferator-activated receptor gamma (PPARγ), and G protein-coupled receptors 55 (GPR55) and 3 (GPR3). RESULTS Large percentages of neuronal cell bodies showed immunoreactivity for TRPV1 (80 ± 20%), PPARγ (100%), GPR55 (64 ± 15%) and GPR3 (63 ± 11%). The satellite glial cells (SGCs) were immunoreactive for TRPV1, PPARγ and GPR55. In addition, GPR55 immunoreactivity was expressed by DRG interneuronal macrophages. In addition, microglia cells were observed surrounding the neuron-SGC complex. MAIN LIMITATIONS The limited number of horses included in the study. CONCLUSIONS Cannabinoid-related receptors were distributed in the sensory neurons (TRPV1, PPARγ, GPR55 and GPR3), SGCs (TRPV1, PPARγ and GPR55), macrophages (GPR55) and other interneuronal cells (PPARγ and GPR55) of the equine DRG. Given the key role of DRG cellular elements and cannabinoid receptors in the pathophysiology of pain, the present findings provided an anatomical basis for additional studies aimed at exploring the therapeutic uses of non-psychotropic cannabinoid agonists for the management of pain in horses.
Collapse
Affiliation(s)
- Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| | - Angelo Peli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| |
Collapse
|