1
|
Qi Y, Zhou Y, Li J, Zhu F, Guo G, Wang C, Yu M, Wang Y, Ma T, Feng S, Zhou L. 3'-Deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome. Neural Regen Res 2024; 19:2270-2280. [PMID: 38488561 PMCID: PMC11034599 DOI: 10.4103/1673-5374.392887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00028/figure1/v/2024-02-06T055622Z/r/image-tiff Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome. 3'-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3'-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3'-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3'-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3'-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3'-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3'-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3'-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yize Qi
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yao Zhou
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiyang Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fangyuan Zhu
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Gengni Guo
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Can Wang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Man Yu
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yijie Wang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Anesthesiology, The Second People’s Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Shanwu Feng
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Li Zhou
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Jha D, Bakker ENTP, Kumar R. Mechanistic and therapeutic role of NLRP3 inflammasome in the pathogenesis of Alzheimer's disease. J Neurochem 2024; 168:3574-3598. [PMID: 36802053 DOI: 10.1111/jnc.15788] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Several pathological hallmarks have been identified, including neuroinflammation. A comprehensive insight into the underlying mechanisms that can fuel the development of novel therapeutic approaches is necessary because of the alarmingly rapid increase in the frequency of incidence. Recently, NLRP3 inflammasome was identified as a critical mediator of neuroinflammation. Activation of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome by amyloid, neurofibrillary tangles, impaired autophagy and endoplasmic reticulum stress, triggers the release of pro-inflammatory cytokines such as IL-1β and IL-18. Subsequently, these cytokines can promote neurodegeneration and cognitive impairment. It is well established that genetic or pharmacological ablation of NLRP3 alleviates AD-related pathological features in in vitro and in vivo models. Therefore, several synthetic and natural compounds have been identified that exhibit the potential to inhibit NLRP3 inflammasome and alleviate AD-associated pathology. The current review article will highlight the various mechanisms by which activation of NLRP3 inflammation occurs during Alzheimer's disease, and how it influences neuroinflammation, neurodegeneration and cognitive impairment. Moreover, we will summarise the different small molecules that possess the potential to inhibit NLRP3 and can pave the path for developing novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Dhanshree Jha
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Rahul Kumar
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Fang Y, Shen P, Xu L, Shi Y, Wang L, Yang M. PDTC improves cognitive impairment in LPS-induced ARDS by regulating miR-181c/NF-κB axis-mediated neuroinflammation. Brain Inj 2024; 38:918-927. [PMID: 38828532 DOI: 10.1080/02699052.2024.2361623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Cognitive impairment is a severe complication of acute respiratory distress syndrome (ARDS). Emerging studies have revealed the effects of pyrrolidine dithiocarbamate (PDTC) on improving surgery-induced cognitive impairment. The major aim of the study was to investigate whether PDTC protected against ARDS-induced cognitive dysfunction and to identify the underlying mechanisms involved. METHODS The rat model of ARDS was established by intratracheal instillation of lipopolysaccharide (LPS), followed by treatment with PDTC. The cognitive function of rats was analyzed by the Morris Water Maze, and pro-inflammatory cytokines were assessed by quantitative real-time PCR, enzyme-linked immunosorbent assay, and western blot assays. A dual-luciferase reporter gene assay was performed to identify the relationship between miR-181c and its target gene, TAK1 binding protein 2 (TAB2). RESULTS The results showed that PDTC improved cognitive impairment and alleviated neuroinflammation in the hippocampus in LPS-induced ARDS model. Furthermore, we demonstrated that miR-181c expression was downregulated in the hippocampus of the ARDS rats, which was restored by PDTC treatment. In vitro studies showed that miR-181c alleviated LPS-induced pro-inflammatory response by inhibiting TAB2, a critical molecule in the nuclear factor (NF)-κB signaling pathway. CONCLUSION PDTC improves cognitive impairment in LPS-induced ARDS by regulating miR-181c/NF-κB axis-mediated neuroinflammation, providing a potential opportunity for the treatment of this disease.
Collapse
Affiliation(s)
- Ying Fang
- Department of Pathology, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Peng Shen
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Longsheng Xu
- Department of Central Laboratory, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yunchao Shi
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liyan Wang
- Department of General Practice, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Maoxian Yang
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
4
|
Li W, Gong Q, Zhu W, Ali T, Yu ZJ, Li S, Yu X. AMPA receptor potentiation alleviates NLRP3 knockout-induced fear generalization in mice. Biochem Biophys Res Commun 2024; 722:150074. [PMID: 38805785 DOI: 10.1016/j.bbrc.2024.150074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Genetic knockout and pharmaceutical inhibition of the NLRP3 inflammasome enhances the extinction of contextual fear memory, which is attributed to its role in neuronal and synaptic dysregulation, concurrent with neurotransmitter function disturbances. This study aimed to determine whether NLRP3 plays a role in generalizing fear via the inflammatory axis. We established the NLRP3 KO mice model, followed by behavioral and biochemical analyses. The NLRP3 KO mice displayed impaired fear generalization, lower neuroinflammation levels, and dysregulated neurotransmitter function. Additionally, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not the inhibition of NMDA or 5-HT2C receptors, resulted in fear generalization in NLRP3 KO mice because TAT-GluA2 3Y, but not SB242084 and D-cycloserine, treated blocked NLRP3 deprivation effects on fear generalization. Thus, global knockout of NLRP3 is associated with aberrant fear generalization, possibly through AMPA receptor signaling.
Collapse
Affiliation(s)
- Weifen Li
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China; State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Qichao Gong
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wenhui Zhu
- Southern Medical University, Nanfang Hospital, Department of Laboratory Medicine, Guangzhou, 510515, Guangdong, China.
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xiaoming Yu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
5
|
Khilazheva ED, Mosiagina AI, Panina YA, Belozor OS, Komleva YK. Impact of NLRP3 Depletion on Aging-Related Metaflammation, Cognitive Function, and Social Behavior in Mice. Int J Mol Sci 2023; 24:16580. [PMID: 38068904 PMCID: PMC10705877 DOI: 10.3390/ijms242316580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Immunosenescence and chronic inflammation associated with old age accompany brain aging and the loss of complex behaviors. Neuroinflammation in the hippocampus plays a pivotal role in the development of cognitive impairment and anxiety. However, the underlying mechanisms have not been fully explained. In this study, we aimed to investigate the disruption of insulin signaling and the mechanisms underlying metabolic inflammation ("metaflammation") in the brains of wild-type (WT) and NLRP3 knockout (KO) mice of different ages. We found a significant upregulation of the NLRP3 inflammasome in the hippocampus during aging, leading to an increase in the expression of phosphorylated metaflammation proteinases and inflammatory markers, along with an increase in the number of senescent cells. Additionally, metaflammation causes anxiety and impairs social preference behavior in aged mice. On the other hand, deletion of NLRP3 improves some behavioral and biochemical characteristics associated with aging, such as signal memory, neuroinflammation, and metabolic inflammation, but not anxious behavior. These results are associated with reduced IL-18 signaling and the PKR/IKKβ/IRS1 pathway as well as the SASP phenotype. In NLRP3 gene deletion conditions, PKR is down-regulated. Therefore, it is likely that slowing aging through various NLRP3 inhibition mechanisms will lessen the corresponding cognitive decline with aging. Thus, the genetic knockout of the NLRP3 inflammasome can be seen as a new therapeutic strategy for slowing down central nervous system (CNS) aging.
Collapse
Affiliation(s)
- Elena D. Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia (A.I.M.)
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Angelina I. Mosiagina
- Research Institute of Molecular Medicine and Pathobiochemistry, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia (A.I.M.)
| | - Yulia A. Panina
- Research Institute of Molecular Medicine and Pathobiochemistry, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia (A.I.M.)
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Olga S. Belozor
- Research Institute of Molecular Medicine and Pathobiochemistry, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia (A.I.M.)
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Yulia K. Komleva
- Research Institute of Molecular Medicine and Pathobiochemistry, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia (A.I.M.)
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| |
Collapse
|
6
|
Fang S, Wu Z, Guo Y, Zhu W, Wan C, Yuan N, Chen J, Hao W, Mo X, Guo X, Fan L, Li X, Chen J. Roles of microglia in adult hippocampal neurogenesis in depression and their therapeutics. Front Immunol 2023; 14:1193053. [PMID: 37881439 PMCID: PMC10597707 DOI: 10.3389/fimmu.2023.1193053] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Adult hippocampal neurogenesis generates functional neurons from neural progenitor cells in the hippocampal dentate gyrus (DG) to complement and repair neurons and neural circuits, thus benefiting the treatment of depression. Increasing evidence has shown that aberrant microglial activity can disrupt the appropriate formation and development of functional properties of neurogenesis, which will play a crucial role in the occurrence and development of depression. However, the mechanisms of the crosstalk between microglia and adult hippocampal neurogenesis in depression are not yet fully understood. Therefore, in this review, we first introduce recent discoveries regarding the roles of microglia and adult hippocampal neurogenesis in the etiology of depression. Then, we systematically discuss the possible mechanisms of how microglia regulate adult hippocampal neurogenesis in depression according to recent studies, which involve toll-like receptors, microglial polarization, fractalkine-C-X3-C motif chemokine receptor 1, hypothalamic-pituitary-adrenal axis, cytokines, brain-derived neurotrophic factor, and the microbiota-gut-brain axis, etc. In addition, we summarize the promising drugs that could improve the adult hippocampal neurogenesis by regulating the microglia. These findings will help us understand the complicated pathological mechanisms of depression and shed light on the development of new treatment strategies for this disease.
Collapse
Affiliation(s)
- Shaoyi Fang
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhibin Wu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yali Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wenjun Zhu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunmiao Wan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Naijun Yuan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Shenzhen People’s Hospital, 2Clinical Medical College, Jinan University, Shenzhen, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenzhi Hao
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaowei Mo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lili Fan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Shi HJ, Wang S, Wang XP, Zhang RX, Zhu LJ. Hippocampus: Molecular, Cellular, and Circuit Features in Anxiety. Neurosci Bull 2023; 39:1009-1026. [PMID: 36680709 PMCID: PMC10264315 DOI: 10.1007/s12264-023-01020-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/13/2022] [Indexed: 01/22/2023] Open
Abstract
Anxiety disorders are currently a major psychiatric and social problem, the mechanisms of which have been only partially elucidated. The hippocampus serves as a major target of stress mediators and is closely related to anxiety modulation. Yet so far, its complex anatomy has been a challenge for research on the mechanisms of anxiety regulation. Recent advances in imaging, virus tracking, and optogenetics/chemogenetics have permitted elucidation of the activity, connectivity, and function of specific cell types within the hippocampus and its connected brain regions, providing mechanistic insights into the elaborate organization of the hippocampal circuitry underlying anxiety. Studies of hippocampal neurotransmitter systems, including glutamatergic, GABAergic, cholinergic, dopaminergic, and serotonergic systems, have contributed to the interpretation of the underlying neural mechanisms of anxiety. Neuropeptides and neuroinflammatory factors are also involved in anxiety modulation. This review comprehensively summarizes the hippocampal mechanisms associated with anxiety modulation, based on molecular, cellular, and circuit properties, to provide tailored targets for future anxiety treatment.
Collapse
Affiliation(s)
- Hu-Jiang Shi
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shuang Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin-Ping Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Rui-Xin Zhang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| |
Collapse
|
8
|
Hadipour M, Refahi S, Jangravi Z, Meftahi GH. Tarooneh extract relieves anxiety-like behaviors and cognitive deficits by inhibiting synaptic loss in the hippocampus and frontal cortex in rats subjected to chronic restraint stress. 3 Biotech 2023; 13:156. [PMID: 37152003 PMCID: PMC10154453 DOI: 10.1007/s13205-023-03577-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
In traditional medicine, Tarooneh (a hardcover of the date palm; Phoenix dactylifera) has known as a sedative and relaxant medicine. In this study, we evaluated the protective effects of Tarooneh in the anxiety-like behavior, cognitive deficit, and neuronal damages in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and frontal cortex neurons employing a rat model of chronic restraint stress. The animal received Tarooneh extract for 14 consecutive days in water, and chronic restraint stress was performed daily during this period. The results of the Barnes maze test showed that treatment with Tarooneh significantly improves spatial memory parameters such as latency time to find the target hole, number of errors, and distance traveling compared to the stress group. The EPM results showed that Tarooneh significantly increased the time spent in open arms and the percentage of entries into open arms and significantly decreased the frequency of head dipping behavior compared to animals in the stress group. Golgi-Cox staining indicates that loss of neural spine density in DG, CA1, CA3, and frontal cortex due to chronic restraint stress, was prevented with daily administration of Tarooneh. The results of cresyl-violet staining indicate that Tarooneh significantly increased the number of CV-positive neurons in the frontal cortex and CA1 region of the hippocampus compared to the stress group. Our results suggest that Tarooneh potentially prevented and improved effects in anxiety-like behavior, memory impairment, and synaptic plasticity loss in frontal and hippocampal neurons induced by chronic restraint stress. In conclusion, our results suggest that Tarooneh prevented and improved anxiety-like behavior, cognitive deficit, and neuronal damages in the CA1, CA3, and DG regions of the hippocampus and frontal cortex neurons induced by chronic restraint stress.
Collapse
Affiliation(s)
| | - Soheila Refahi
- Department of Medical Physics, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Zhang WJ, Li KY, Lan Y, Zeng HY, Chen SQ, Wang H. NLRP3 Inflammasome: A key contributor to the inflammation formation. Food Chem Toxicol 2023; 174:113683. [PMID: 36809826 DOI: 10.1016/j.fct.2023.113683] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Inflammation is an important part of the development of various organ diseases. The inflammasome, as an innate immune receptor, plays an important role in the formation of inflammation. Among various inflammasomes, the NLRP3 inflammasome is the most well studied. The NLRP3 inflammasome is composed of skeletal protein NLRP3, apoptosis-associated speck-like protein (ASC) and pro-caspase-1. There are three types of activation pathways: (1) "classical" activation pathway; (2) "non-canonical" activation pathway; (3) "alternative" activation pathway. The activation of NLRP3 inflammasome is involved in many inflammatory diseases. A variety of factors (such as genetic factors, environmental factors, chemical factors, viral infection, etc.) have been proved to activate NLRP3 inflammasome and promote the inflammatory response of the lung, heart, liver, kidney and other organs in the body. Especially, the mechanism of NLRP3 inflammation and its related molecules in its associated diseases remains not to be summarized, namely they may promote or delay inflammatory diseases in different cells and tissues. This article reviews the structure and function of the NLRP3 inflammasome and its role in various inflammations, including inflammations caused by chemically toxic substances.
Collapse
Affiliation(s)
- Wen-Juan Zhang
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Ke-Yun Li
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Yi Lan
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Han-Yi Zeng
- Department of Genetics, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Shui-Qin Chen
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, PR China.
| |
Collapse
|
10
|
Qin Z, Shi DD, Li W, Cheng D, Zhang YD, Zhang S, Tsoi B, Zhao J, Wang Z, Zhang ZJ. Berberine ameliorates depression-like behaviors in mice via inhibiting NLRP3 inflammasome-mediated neuroinflammation and preventing neuroplasticity disruption. J Neuroinflammation 2023; 20:54. [PMID: 36859349 PMCID: PMC9976521 DOI: 10.1186/s12974-023-02744-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES Neuroinflammation has been suggested that affects the processing of depression. There is renewed interest in berberine owing to its anti-inflammatory effects. Herein, we investigated whether berberine attenuate depressive-like behaviors via inhibiting NLRP3 inflammasome activation in mice model of depression. METHODS Adult male C57BL/6N mice were administrated corticosterone (CORT, 20 mg/kg/day) for 35 days. Two doses (100 mg/kg/day and 200 mg/kg/day) of berberine were orally administrated from day 7 until day 35. Behavioral tests were performed to measure the depression-like behaviors alterations. Differentially expressed gene analysis was performed for RNA-sequencing data in the prefrontal cortex. NLRP3 inflammasome was measured by quantitative reverse transcription polymerase chain reaction, western blotting, and immunofluorescence labeling. The neuroplasticity and synaptic function were measured by immunofluorescence labeling, Golgi-Cox staining, transmission electron microscope, and whole-cell patch-clamp recordings. RESULTS The results of behavioral tests demonstrated that berberine attenuated the depression-like behaviors induced by CORT. RNA-sequencing identified that NLRP3 was markedly upregulated after long-term CORT exposure. Berberine reversed the concentrations of peripheral and brain cytokines, NLRP3 inflammasome elicited by CORT in the prefrontal cortex and hippocampus were decreased by berberine. In addition, the lower frequency of neuronal excitation as well as the dendritic spine reduction were reversed by berberine treatment. Together, berberine increases hippocampal adult neurogenesis and synaptic plasticity induced by CORT. CONCLUSION The anti-depressants effects of berberine were accompanied by reduced the neuroinflammatory response via inhibiting the activation of NLRP3 inflammasome and rescued the neuronal deterioration via suppression of impairments in synaptic plasticity and neurogenesis.
Collapse
Affiliation(s)
- Zongshi Qin
- grid.11135.370000 0001 2256 9319Peking University Clinical Research Institute, Peking University, Beijing, China ,grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dong-Dong Shi
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Li
- grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dan Cheng
- grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ying-Dan Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bun Tsoi
- grid.16890.360000 0004 1764 6123Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jia Zhao
- grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Inhibition of NLRP3 alleviated chemotherapy-induced cognitive impairment in rats. Neurosci Lett 2023; 793:136975. [PMID: 36427814 DOI: 10.1016/j.neulet.2022.136975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Chemotherapy results in long-term effects on cognitive dysfunction called chemotherapy-induced cognitive impairment (CICI) in cancer survivors. However, little is known about the potential molecular mechanisms of CICI. This study aimed to determine the role and potential underlying mechanisms of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in cognitive impairments induced by chemotherapeutic agents commonly used in breast cancer. The cognitive effects of chemotherapy were investigated in a rat model using the cocktail of doxorubicin and cyclophosphamide. The NLRP3 pathway was found to be differentially expressed after chemotherapy by iTRAQ-based proteomic analysis of normal and chemotherapeutic hippocampi. Treatment with the NLRP3 inhibitor MCC950 following chemotherapy significantly reduced cognitive impairment and decreased the expression of NLRP3, caspase-1 and ASC. Chemotherapy led to increased expression of the glial response markers Iba-1 and GFAP and the axonal injury markers NF-L and NF-M, an elevated number of apoptotic cells and enhanced microstructural damage to axons and mitochondria, while MCC950 treatment alleviated the glial response, cell death and axonal injury. The protective effect of MCC950 was related to the NLRP3 pathway and levels of inflammatory cytokines (TNF-α, IL-1β, IL-18, IL-6, IL-4, and IL-10) and oxidative stress-responsive markers (SOD, MDA, CAT and GSH). The results indicate that CICI is associated with NLRP3 pathway-induced oxidative damage and the inflammatory response and provide a potential therapeutic target to treat cognitive impairment after chemotherapy (doxorubicin and cyclophosphamide).
Collapse
|
12
|
Khilazheva ED, Belozor OS, Panina YA, Gorina YV, Mosyagina AI, Vasiliev AV, Malinovskaya NA, Komleva YK. The Role of Metaflammation in the Development of Senescence-Associated Secretory Phenotype and Cognitive Dysfunction in Aging Mice. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Liu H, Yang Z, Yu C, Dong H, Wang S, Wang G, Wang D. Tau aggravates stress-induced anxiety by inhibiting adult ventral hippocampal neurogenesis in mice. Cereb Cortex 2022; 33:3853-3865. [PMID: 36047921 DOI: 10.1093/cercor/bhac312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Ventral adult hippocampal neurogenesis may be a key factor in determining individual levels of vulnerability to stress and related psychiatric disorders. However, the underlying mechanism remains unclear. Here, we show that the expression of Tau and Tau isoforms is markedly increased in the ventral dentate gyrus (vDG) after social defeat stress in young adult mice. Furthermore, glycogen synthase kinase-3β and calcium/calmodulin-dependent protein kinase II-α activity and calcium/calmodulin-dependent protein kinase II-β upregulation substantially promote Tau phosphorylation, which disrupts the dendritic structural plasticity of granule cells in the vDG of the hippocampus, and this action is necessary and sufficient for the stress response. In addition, Tau substantially inhibits the proliferation of newborn neurons in the vDG by regulating the PI3K-AKT signaling pathway in a mouse model of social defeat stress. Taken together, our findings reveal a novel mechanism by which Tau exacerbates stress responses and anxiety-related behavior by inhibiting the proliferation and maturation of hippocampal vDG neurons, providing a potential molecular target for the treatment of anxiety-like behavior induced by stress.
Collapse
Affiliation(s)
- Hao Liu
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhi Yang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chunyan Yu
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Gang Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Denian Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotheraoy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
14
|
Sun K, Xie R, Yi Z, Yin L, Guan Y, Wang L, Wang Y, Ding X, Luan Y, Liu H, Fan Y. Amentoflavone impairs the reconsolidated fear memories through inhibition of ERK pathway. Biochem Biophys Res Commun 2022; 622:8-14. [PMID: 35841770 DOI: 10.1016/j.bbrc.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a pathological fear memory-related disease. The persistence of pathological fearful memories is one of the most characteristic symptoms of PTSD. However, this can be eliminated by intervening in reconsolidation. Inflammation is intimately involved in the pathophysiologic progression of PTSD. Amentoflavone (AF) has anti-inflammatory effects. However, the effect of AF on fear memory reconsolidation remains unclear. In the present series of experiments, the CFC paradigm of rats were constructed. This was followed by AF administration immediately after exposure to the conditioning chamber to observe the maintenance of fear memory. Finally, a Western blot for the amygdala was used to explore the possible molecular biological mechanisms of AF affecting animal behavior. The findings suggest that re-exposure to the conditioning chamber for retrieval of CFC memory followed by immediate intragastric AF administration in rats attenuated the fear response for at least 14 days. In addition, the Western blot results show that the CFC memory intervention effect of AF administration during the reconsolidation phase may be related to the ERK signaling pathway inhibition. In general, the administration of AF in the reconsolidation phase to inhibit neuroinflammation can block the reconsolidation process and disrupt fear memory retention in the long term, at least in part through ERK pathway.
Collapse
Affiliation(s)
- Kuisheng Sun
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China.
| | - Ruizhu Xie
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhengjun Yi
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Liqian Yin
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yan Guan
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Lujuan Wang
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Ying Wang
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoyan Ding
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yaning Luan
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Huijie Liu
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yuhan Fan
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
15
|
Mata-Martínez E, Díaz-Muñoz M, Vázquez-Cuevas FG. Glial Cells and Brain Diseases: Inflammasomes as Relevant Pathological Entities. Front Cell Neurosci 2022; 16:929529. [PMID: 35783102 PMCID: PMC9243488 DOI: 10.3389/fncel.2022.929529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation mediated by the innate immune system is a physiopathological response to diverse detrimental circumstances such as microbe infections or tissular damage. The molecular events that underlie this response involve the assembly of multiprotein complexes known as inflammasomes. These assemblages are essentially formed by a stressor-sensing protein, an adapter protein and a non-apoptotic caspase (1 or 11). The coordinated aggregation of these components mediates the processing and release of pro-inflammatory interleukins (IL-β and IL-18) and cellular death by pyroptosis induction. The inflammatory response is essential for the defense of the organism; for example, it triggers tissue repair and the destruction of pathogen microbe infections. However, when inflammation is activated chronically, it promotes diverse pathologies in the lung, liver, brain and other organs. The nervous system is one of the main tissues where the inflammatory process has been characterized, and its implications in health and disease are starting to be understood. Thus, the regulation of inflammasomes in specific cellular types of the central nervous system needs to be thoroughly understood to innovate treatments for diverse pathologies. In this review, the presence and participation of inflammasomes in pathological conditions in different types of glial cells will be discussed.
Collapse
|
16
|
Wan T, Li X, Fu M, Gao X, Li P, Guo W. NLRP3-Dependent Pyroptosis: A Candidate Therapeutic Target for Depression. Front Cell Neurosci 2022; 16:863426. [PMID: 35722622 PMCID: PMC9204297 DOI: 10.3389/fncel.2022.863426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Depression, a major public health problem, imposes a significant economic burden on society. Recent studies have gradually unveiled the important role of neuroinflammation in the pathogenesis of depression. Pyroptosis, a programmed cell death mediated by Gasdermins (GSDMs), is also considered to be an inflammatory cell death with links to inflammation. Pyroptosis has emerged as an important pathological mechanism in several neurological diseases and has been found to be involved in several neuroinflammatory-related diseases. A variety of chemical agents and natural products have been found to be capable of exerting therapeutic effects by modulating pyroptosis. Studies have shown that depression is closely associated with pyroptosis and the induced neuroinflammation of relevant brain regions, such as the hippocampus, amygdala, prefrontal cortex neurons, etc., in which the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome plays a crucial role. This article provides a timely review of recent findings on the activation and regulation of pyroptosis in relation to depression.
Collapse
Affiliation(s)
- Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Teng Wan
| | - Xiaoyu Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|
17
|
Shuvaev AN, Belozor OS, Mozhei OI, Mileiko AG, Mosina LD, Laletina IV, Mikhailov IG, Fritsler YV, Shuvaev AN, Teschemacher AG, Kasparov S. Memantine Disrupts Motor Coordination through Anxiety-like Behavior in CD1 Mice. Brain Sci 2022; 12:brainsci12040495. [PMID: 35448027 PMCID: PMC9027563 DOI: 10.3390/brainsci12040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Memantine is an FDA approved drug for the treatment of Alzheimer’s disease. It reduces neurodegeneration in the hippocampus and cerebral cortex through the inhibition of extrasynaptic NMDA receptors in patients and mouse models. Potentially, it could prevent neurodegeneration in other brain areas and caused by other diseases. We previously used memantine to prevent functional damage and to retain morphology of cerebellar neurons and Bergmann glia in an optogenetic mouse model of spinocerebellar ataxia type-1 (SCA1). However, before suggesting wider use of memantine in clinics, its side effects must be carefully evaluated. Blockers of NMDA receptors are controversial in terms of their effects on anxiety. Here, we investigated the effects of chronic application of memantine over 9 weeks to CD1 mice and examined rotarod performance and anxiety-related behaviors. Memantine-treated mice exhibited an inability to adapt to anxiety-causing conditions which strongly affected their rotarod performance. A tail suspension test revealed increased signs of behavioral despair. These data provide further insights into the potential deleterious effects of memantine which may result from the lack of adaptation to novel, stressful conditions. This effect of memantine may affect the results of tests used to assess motor performance and should be considered during clinical trials of memantine in patients.
Collapse
Affiliation(s)
- Anton N. Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia;
- Correspondence: ; Tel.: +7-(391)-228-0769
| | - Olga S. Belozor
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Oleg I. Mozhei
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (O.I.M.); (S.K.)
| | - Aleksandra G. Mileiko
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Ludmila D. Mosina
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Irina V. Laletina
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Ilia G. Mikhailov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Yana V. Fritsler
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Andrey N. Shuvaev
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Anja G. Teschemacher
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK;
| | - Sergey Kasparov
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (O.I.M.); (S.K.)
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK;
| |
Collapse
|
18
|
Komleva YK, Potapenko IV, Lopatina OL, Gorina YV, Chernykh A, Khilazheva ED, Salmina AB, Shuvaev AN. NLRP3 Inflammasome Blocking as a Potential Treatment of Central Insulin Resistance in Early-Stage Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111588. [PMID: 34769018 PMCID: PMC8583950 DOI: 10.3390/ijms222111588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating neurodegenerative disorder. In recent years, attention of researchers has increasingly been focused on studying the role of brain insulin resistance (BIR) in the AD pathogenesis. Neuroinflammation makes a significant contribution to the BIR due to the activation of NLRP3 inflammasome. This study was devoted to the understanding of the potential therapeutic roles of the NLRP3 inflammasome in neurodegeneration occurring concomitant with BIR and its contribution to the progression of emotional disorders. METHODS To test the impact of innate immune signaling on the changes induced by Aβ1-42 injection, we analyzed animals carrying a genetic deletion of the Nlrp3 gene. Thus, we studied the role of NLRP3 inflammasomes in health and neurodegeneration in maintaining brain insulin signaling using behavioral, electrophysiological approaches, immunohistochemistry, ELISA and real-time PCR. RESULTS We revealed that NLRP3 inflammasomes are required for insulin-dependent glucose transport in the brain and memory consolidation. Conclusions NLRP3 knockout protects mice against the development of BIR: Taken together, our data reveal the protective role of Nlrp3 deletion in the regulation of fear memory and the development of Aβ-induced insulin resistance, providing a novel target for the clinical treatment of this disorder.
Collapse
Affiliation(s)
- Yulia K. Komleva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
- Correspondence:
| | - Ilia V. Potapenko
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Olga L. Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Shared Research Center for Molecular and Cellular Technologies, 660022 Krasnoyarsk, Russia
| | - Yana V. Gorina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Anatoly Chernykh
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Elena D. Khilazheva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Alla B. Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
- Laboratory of Experimental Brain Cytology, Division of Brain Sciences, Research Center of Neurology, 125367 Moscow, Russia
| | - Anton N. Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| |
Collapse
|