1
|
Martin ER, Gandawijaya J, Oguro-Ando A. A novel method for generating glutamatergic SH-SY5Y neuron-like cells utilizing B-27 supplement. Front Pharmacol 2022; 13:943627. [PMID: 36339621 PMCID: PMC9630362 DOI: 10.3389/fphar.2022.943627] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 08/26/2023] Open
Abstract
The human SH-SY5Y neuroblastoma cell line is widely used in neuroscience research as a neuronal cell model. Following differentiation to a neuron-like state, SH-SY5Y cells become more morphologically similar to neurons and form functional synapses. Previous studies have managed to differentiate SH-SY5Y cells towards cholinergic, dopaminergic and adrenergic fates. However, their application in disease modeling remains limited as other neuronal subtypes (e.g., glutamatergic, GABAergic) are also implicated in neurological disorders, and no current protocols exist to generate these subtypes of differentiated SH-SY5Y cells. Our study aimed to evaluate the use of a xeno-free version of B-27, a supplement commonly used in neuronal culture, for SH-SY5Y maintenance and differentiation. To evaluate the proliferative capacity of SH-SY5Y cells cultured in B-27, we performed growth curve analyses, immunocytochemical staining for Ki-67 and qRT-PCR to track changes in cell cycle progression. SH-SY5Y cells cultured in FBS or under serum-starved conditions were used as controls. We observed that SH-SY5Y cells show reduced growth and proliferation rates accompanied by decreased CDK6 and CDK1 expression following 4-day exposure to B-27, suggesting B-27 induces a quiescent state in SH-SY5Y cells. Importantly, this reduced growth rate was not due to increased apoptosis. As cell cycle exit is associated with differentiation, we next sought to determine the fate of SH-SY5Y cells cultured in B-27. B-27-cultured SH-SY5Y cells show changes in cell morphology, adopting pyramidal shapes and extending neurites, and upregulation of neuronal differentiation markers (GAP43, TUBB3, and SYP). B-27-cultured SH-SY5Y cells also show increased expression of glutamatergic markers (GLUL and GLS). These findings suggest that B-27 may be a non-toxic inducer of glutamatergic SH-SY5Y differentiation. Our study demonstrates a novel way of using B-27 to obtain populations of glutamatergic SH-SY5Y cells. As dysregulated glutamatergic signaling is associated with a variety of neuropsychiatric and neurodegenerative disorders, the capability to generate glutamatergic neuron-like SH-SY5Y cells creates endless disease modeling opportunities. The ease of SH-SY5Y culture allows researchers to generate large-scale cultures for high-throughput pharmacological or toxicity studies. Also compatible with the growing popularity of animal-component-free studies, this xeno-free B-27/SH-SY5Y culture system will be a valuable tool to boost the translational potential of preliminary studies requiring glutamatergic neuronal cells of human origin.
Collapse
Affiliation(s)
- Emily-Rose Martin
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
2
|
Remdesivir-loaded bis-MPA hyperbranched dendritic nanocarriers for pulmonary delivery. J Drug Deliv Sci Technol 2022; 75:103625. [PMID: 35966803 PMCID: PMC9364662 DOI: 10.1016/j.jddst.2022.103625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Remdesivir is the only clinically available antiviral drug for the treatment of COVID-19. However, its very limited aqueous solubility confines its therapeutic activity and the development of novel inhaled nano-based drug delivery systems of remdesivir for enhanced lung tissue targeting and efficacy is internationally pursued. In this work 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) hyperbranched dendritic nano-scaffolds were employed as nanocarriers of remdesivir. The produced nano-formulations, empty and loaded, consisted of monodisperse nanoparticles with spherical morphology and neutral surface charge and sizes ranging between 80 and 230 nm. The entrapment efficiency and loading capacity of the loaded samples were 82.0% and 14.1%, respectively, whereas the release of the encapsulated drug was complete after 48 h. The toxicity assays in healthy MRC-5 lung diploid fibroblasts and NR8383 alveolar macrophages indicated their suitability as potential remdesivir carriers in the respiratory system. The novel nano-formulations are non-toxic in both tested cell lines, with IC50 values higher than 400 μΜ after 72 h treatment. Moreover, both free and encapsulated remdesivir exhibited very similar IC50 values, at the range of 80-90 μM, while its aqueous solubility was increased, overall presenting a suitable profile for application in inhaled delivery of therapeutics.
Collapse
|
3
|
Jaiswal S, Gupta G, Ayyannan SR. Synthesis and evaluation of carbamate derivatives as fatty acid amide hydrolase and monoacylglycerol lipase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200081. [PMID: 35924298 DOI: 10.1002/ardp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022]
Abstract
Fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) are the primary catabolic enzymes for endocannabinoids, anandamide (AEA), and 2-arachidonoyl glycerol. Numerous studies have shown that FAAH and MAGL play an important role in modulating various central nervous system activities; hence, the development of small molecule FAAH/MAGL inhibitors is an active area of research. Several small molecules possessing the carbamate scaffold are documented as potential FAAH/MAGL inhibitors. Here, we designed and synthesized a series of open chain and cyclic carbamates and evaluated their dual FAAH-MAGL inhibition properties. Phenyl [4-(piperidin-1-ylmethyl)phenyl]carbamate (2e) emerged as the most potent MAGL inhibitor (IC50 = 19 nM), benzyl (1H-benzo[d]imidazol-2-yl)carbamate (3h) was the most potent FAAH inhibitor (IC50 = 55 nM), and phenyl (6-fluorobenzo[d]thiazol-2-yl)carbamate (2i) egressed as a nonselective dual FAAH-MAGL inhibitor (FAAH: 82 nM, MAGL: 72 nM). The enzyme kinetics experiments revealed that the compounds inhibit FAAH/MAGL in a covalent-reversible manner, with a mixed binding mode of action. Moreover, the lead compounds were found suitable for blood-brain permeation in the parallel artificial membrane permeation assay. Furthermore, docking simulation experiments suggested that the potency of the lead compounds was governed by hydrogen bonds and hydrophobic interactions with the enzyme active sites. In silico drug-likeness and ADMETox prediction studies provided useful information on the compounds' oral absorption, metabolism, and toxicity profiles. In summary, this study afforded potent multifunctional carbamates with appreciable pharmacokinetic profiles meriting further investigation.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Garima Gupta
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
4
|
Babaei E, Küçükkılınç TT, Jalili-Baleh L, Nadri H, Öz E, Forootanfar H, Hosseinzadeh E, Akbari T, Ardestani MS, Firoozpour L, Foroumadi A, Sharifzadeh M, Mirjalili BBF, Khoobi M. Novel Coumarin–Pyridine Hybrids as Potent Multi-Target Directed Ligands Aiming at Symptoms of Alzheimer’s Disease. Front Chem 2022; 10:895483. [PMID: 35844650 PMCID: PMC9280334 DOI: 10.3389/fchem.2022.895483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this research, a series of coumarin-based scaffolds linked to pyridine derivatives via a flexible aliphatic linkage were synthesized and assessed as multifunctional anti-AD agents. All the compounds showed acceptable acetylcholinesterase (AChE) inhibition activity in the nanomolar range (IC50 = 2–144 nM) and remarkable butyrylcholinesterase (BuChE) inhibition property (IC50 = 9–123 nM) compared to donepezil as the standard drug (IC50 = 14 and 275 nM, respectively). Compound 3f as the best AChE inhibitor (IC50 = 2 nM) showed acceptable BuChE inhibition activity (IC50 = 24 nM), 100 times more active than the standard drug. Compound 3f could also significantly protect PC12 and SH-SY5Y cells against H2O2-induced cell death and amyloid toxicity, respectively, superior to the standard drugs. It could interestingly reduce β-amyloid self and AChE-induced aggregation, more potent than the standard drug. All the results suggest that compound 3f could be considered as a promising multi-target-directed ligand (MTDL) against AD.
Collapse
Affiliation(s)
- Elaheh Babaei
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | | | - Leili Jalili-Baleh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Hamid Nadri
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esin Öz
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elaheh Hosseinzadeh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
- *Correspondence: Bi Bi Fatemeh Mirjalili, ; Mehdi Khoobi, ,
| | - Mehdi Khoobi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bi Bi Fatemeh Mirjalili, ; Mehdi Khoobi, ,
| |
Collapse
|
5
|
Kisspeptin-10 Rescues Cholinergic Differentiated SHSY-5Y Cells from α-Synuclein-Induced Toxicity In Vitro. Int J Mol Sci 2022; 23:ijms23095193. [PMID: 35563582 PMCID: PMC9105316 DOI: 10.3390/ijms23095193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
The neuropathological substrate of dementia with Lewy bodies (DLB) is defined by the inextricable cross-seeding accretion of amyloid-β (Aβ) and α-synuclein (α-syn)-laden deposits in cholinergic neurons. The recent revelation that neuropeptide kisspeptin-10 (KP-10) is able to mitigate Aβ toxicity via an extracellular binding mechanism may provide a new horizon for innovative drug design endeavors. Considering the sequence similarities between α-syn’s non-amyloid-β component (NAC) and Aβ’s C-terminus, we hypothesized that KP-10 would enhance cholinergic neuronal resistance against α-syn’s deleterious consequences through preferential binding. Here, human cholinergic SH-SY5Y cells were transiently transformed to upsurge the mRNA expression of α-syn while α-syn-mediated cholinergic toxicity was quantified utilizing a standardized viability-based assay. Remarkably, the E46K mutant α-syn displayed elevated α-syn mRNA levels, which subsequently induced more cellular toxicity compared with the wild-type α-syn in choline acetyltransferase (ChAT)-positive cholinergic neurons. Treatment with a high concentration of KP-10 (10 µM) further decreased cholinergic cell viability, while low concentrations of KP-10 (0.01–1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated toxicity. Correlating with the in vitro observations are approximations from in silico algorithms, which inferred that KP-10 binds favorably to the C-terminal residues of wild-type and E46K mutant α-syn with CDOCKER energy scores of −118.049 kcal/mol and −114.869 kcal/mol, respectively. Over the course of 50 ns simulation time, explicit-solvent molecular dynamics conjointly revealed that the docked complexes were relatively stable despite small-scale fluctuations upon assembly. Taken together, our findings insinuate that KP-10 may serve as a novel therapeutic scaffold with far-reaching implications for the conceptualization of α-syn-based treatments.
Collapse
|
6
|
Mandal S, Kumar BR P, Alam MT, Tripathi PP, Channappa B. Novel Imidazole Phenoxyacetic Acids as Inhibitors of USP30 for Neuroprotection Implication via the Ubiquitin-Rho-110 Fluorometric Assay: Design, Synthesis, and In Silico and Biochemical Assays. ACS Chem Neurosci 2022; 13:1433-1445. [PMID: 35417128 DOI: 10.1021/acschemneuro.2c00076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
USP30, a deubiquitinating enzyme family, forfeits the ubiquitination of E3 ligase and Parkin on the surface of mitochondria. Inhibition of USP30 results in mitophagy and cellular clearance. Herein, by understanding structural requirements, we discovered potential USP30 inhibitors from an imidazole series of ligands via a validated ubiquitin-rhodamine-110 fluorometric assay. A novel catalytic use of the Zn(l-proline)2 complex for the synthesis of tetrasubstituted imidazoles was identified. Among all compounds investigated, 3g and 3f inhibited USP30 at IC50 of 5.12 and 8.43 μM, respectively. The binding mode of compounds at the USP30 binding site was understood by a docking study and interactions with the key amino acids were identified. Compound 3g proved its neuroprotective efficacy by inhibiting apoptosis on SH-SY5Y neuroblastoma cells against dynorphin A (10 μM) treatment. Hence, the present study provides a new protocol to design and develop ligands against USP30, thereby offering a therapeutic strategy under conditions like kidney damage and neurodegenerative disorders including Parkinson's disease.
Collapse
Affiliation(s)
- Subhankar Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India
| | - Prashantha Kumar BR
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India
| | - Md Tanjim Alam
- Council of Scientific and Industrial Research−Indian Institute of Chemical Biology (CSIR−IICB), Kolkata 700032, India
- Indian Institute of Chemical Biology−Translational Research Unit of Excellence (IICB−TRUE), Kolkata 700091, India
| | - Prem Prakash Tripathi
- Council of Scientific and Industrial Research−Indian Institute of Chemical Biology (CSIR−IICB), Kolkata 700032, India
- Indian Institute of Chemical Biology−Translational Research Unit of Excellence (IICB−TRUE), Kolkata 700091, India
- Indian Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavya Channappa
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India
| |
Collapse
|
7
|
Jaiswal S, Akhilesh, Uniyal A, Tiwari V, Raja Ayyannan S. Synthesis and evaluation of dual fatty acid amide hydrolase-monoacylglycerol lipase inhibition and antinociceptive activities of 4-methylsulfonylaniline-derived semicarbazones. Bioorg Med Chem 2022; 60:116698. [PMID: 35296453 DOI: 10.1016/j.bmc.2022.116698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022]
Abstract
Fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) are promising targets for neuropathic pain and other CNS disorders. Based on our previous lead compound SIH 3, we designed and synthesized a series of 4-methylsulfonylphenyl semicarbazones and evaluated for FAAH and MAGL inhibition properties. Most of the compounds showed potency towards both enzymes with leading FAAH selectivity. Compound (Z)-2-(2,6-dichlorobenzylidene)-N-(4-(methylsulfonyl)phenyl)hydrazine-1-carboxamide emerged as the lead inhibitor against both FAAH (IC50 = 11 nM) and MAGL (IC50 = 36 nM). The lead inhibitor inhibited FAAH by non-competitive mode, but showed a mixed-type inhibition against MAGL. Molecular docking study unveiled that the docked ligands bind favorably to the active sites of FAAH and MAGL. The lead inhibitor interacted with FAAH and MAGL via π-π stacking via phenyl ring and hydrogen bonding through sulfonyl oxygen atoms or amide NH. Moreover, the stability of docked complexes was rationalized by molecular simulation studies. PAMPA assay revealed that the lead compound is suitable for blood-brain penetration. The lead compound showed better cell viability in lipopolysaccharide-induced neurotoxicity assay in SH-SY5Y cell lines. Further, in-vivo experiments unveiled that dual inhibitor was safe up to 2000 mg/kg with no hepatotoxicity. The dual FAAH-MAGL inhibitor produced significant anti-nociceptive effect in the CCI model of neuropathic pain without altering locomotion activity. Lastly, the lead compound exhibited promising ex-vivo FAAH/MAGL inhibition activity at the dose of 10 mg/kg and 20 mg/kg. Thus, these findings suggest that the semicarbazone-based lead compound can be a potential template for the development of agents for neuropathic pain.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Alachkar A, Agrawal S, Baboldashtian M, Nuseir K, Salazar J, Agrawal A. L-methionine enhances neuroinflammation and impairs neurogenesis: Implication for Alzheimer's disease. J Neuroimmunol 2022; 366:577843. [DOI: 10.1016/j.jneuroim.2022.577843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
|
9
|
Pourabdi L, Küçükkılınç TT, Khoshtale F, Ayazgök B, Nadri H, Farokhi Alashti F, Forootanfar H, Akbari T, Shafiei M, Foroumadi A, Sharifzadeh M, Shafiee Ardestani M, Abaee MS, Firoozpour L, Khoobi M, Mojtahedi MM. Synthesis of New 3-Arylcoumarins Bearing N-Benzyl Triazole Moiety: Dual Lipoxygenase and Butyrylcholinesterase Inhibitors With Anti-Amyloid Aggregation and Neuroprotective Properties Against Alzheimer’s Disease. Front Chem 2022; 9:810233. [PMID: 35127652 PMCID: PMC8812461 DOI: 10.3389/fchem.2021.810233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
A novel series of coumarin derivatives linked to the N-benzyl triazole group were synthesized and evaluated against 15-lipoxygenase (15-LOX), and acetyl- and butyrylcholinesterase (AChE and BuChE) to find the most potent derivative against Alzheimer’s disease (AD). Most of the compounds showed weak to moderate activity against ChEs. Among the most active BuChE and 15-LOX inhibitors, 8l and 8n exhibited an excellent neuroprotective effect, higher than the standard drug (quercetin) on the PC12 cell model injured by H2O2 and significantly reduced aggregation of amyloid Aβ1-42, with potencies of 1.44 and 1.79 times higher than donepezil, respectively. Compound 8l also showed more activity than butylated hydroxytoluene (BHT) as the reference antioxidant agent in reducing the levels of H2O2 activated by amyloid β in BV2 microglial cells. Kinetic and ligand–enzyme docking studies were also performed for better understanding of the mode of interaction between the best BuChE inhibitor and the enzyme. Considering the acceptable BuChE and 15-LOX inhibition activities as well as significant neuroprotection, and anti-amyloid aggregation activities, 8l and 8n could be considered as potential MTDLs for further modification and studies against AD.
Collapse
Affiliation(s)
- Ladan Pourabdi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | | | - Fatemeh Khoshtale
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Beyza Ayazgök
- Faculty of Pharmacy, Department of Biochemistry, Hacettepe University, Ankara, Turkey
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farid Farokhi Alashti
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohammad Shafiei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, The institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M. Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Pharmaceutical Sciences Research Center, The institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad M. Mojtahedi, ; Mehdi Khoobi, ,
| | - Mohammad M. Mojtahedi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
- *Correspondence: Mohammad M. Mojtahedi, ; Mehdi Khoobi, ,
| |
Collapse
|
10
|
Rathnayake AU, Abuine R, Palanisamy S, Lee JK, Byun HG. Characterization and purification of β−secretase inhibitory peptides fraction from sea cucumber (Holothuria spinifera) enzymatic hydrolysates. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Jaiswal S, Ayyannan SR. Discovery of Isatin-Based Carbohydrazones as Potential Dual Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase. ChemMedChem 2021; 17:e202100559. [PMID: 34637598 DOI: 10.1002/cmdc.202100559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/10/2021] [Indexed: 01/02/2023]
Abstract
Using ligand-based design strategy, a set of isatin-3-carbohydrazones was designed, synthesized and evaluated for dual fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) inhibition properties. Compound 5-chloro-N'-(5-chloro-2-oxoindolin-3-ylidene)-2-hydroxybenzohydrazide (13 b) emerged as a potent MAGL inhibitor with nanomolar activity (IC50 =3.33 nM), while compound 5-chloro-N'-(1-(4-fluorobenzyl)-2-oxoindolin-3-ylidene)-2-hydroxybenzohydrazide (13 j) was the most potent selective FAAH inhibitor (IC50 =37 nM). Compound 5-chloro-N'-(6-chloro-2-oxoindolin-3-ylidene)-2-hydroxybenzohydrazide (13 c) showed dual FAAH-MAGL inhibitory activity with an IC50 of 31 and 29 nM respectively. Enzyme kinetics studies revealed that the isatin-based carbohydrazones are reversible inhibitors for both FAAH and MAGL. Further, blood-brain permeability assay confirmed that the lead compounds (13 b, 13 c, 13 g, 13 m and 13 q) are suitable as CNS candidates. Molecular dynamics simulation studies revealed the putative binding modes and key interactions of lead inhibitors within the enzyme active sites. The lead dual FAAH-MAGL inhibitor 13 c showed significant antioxidant activity and neuroprotection in the cell-based cytotoxicity assay. In summary, the study yielded three potent FAAH/MAGL inhibitor compounds (13 b, 13 c and 13 j) with acceptable pharmacokinetic profile and thus can be considered as promising candidates for treating neurological and mood disorders.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
12
|
Koshti B, Kshtriya V, Singh R, Walia S, Bhatia D, Joshi KB, Gour N. Unusual Aggregates Formed by the Self-Assembly of Proline, Hydroxyproline, and Lysine. ACS Chem Neurosci 2021; 12:3237-3249. [PMID: 34406754 DOI: 10.1021/acschemneuro.1c00427] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a plethora of significant research that illustrates toxic self-assemblies formed by the aggregation of single amino acids, such as phenylalanine, tyrosine, tryptophan, cysteine, and methionine, and their implication on the etiology of inborn errors of metabolisms (IEMs), such as phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria, and hypermethioninemia, respectively. Hence, studying the aggregation behavior of single amino acids is very crucial from the chemical neuroscience perspective to understanding the common etiology between single amino acid metabolite disorders and amyloid diseases like Alzheimer's and Parkinson's. Herein we report the aggregation properties of nonaromatic single amino acids l-proline (Pro), l-hydroxyproline (Hyp), and l-lysine hydrochloride (Lys). The morphologies of the self-assembled structures formed by Pro, Hyp, and Lys were extensively studied by various microscopic techniques, and controlled morphological transitions were observed under varied concentrations and aging times. The mechanism of structure formation was deciphered by concentration-dependent 1H NMR analysis, which revealed the crucial role of hydrogen bonding and hydrophobic interactions in the structure formation of Pro, Hyp, and Lys. MTT assays on neural (SHSY5Y) cell lines revealed that aggregates formed by Pro, Hyp, and Lys reduced cell viability in a dose-dependent manner. These results may have important implications in the understanding of the patho-physiology of disorders such as hyperprolinemia, hyperhydroxyprolinemia, and hyperlysinemia since all these IEMs are associated with severe neurodegenerative symptoms, including intellectual disability, seizures, and psychiatric problems. Our future studies will endeavor to study these biomolecular assemblies in greater detail by immuno-histochemical analysis and advanced biophysical assays.
Collapse
Affiliation(s)
- Bharti Koshti
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Vivekshinh Kshtriya
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Shanka Walia
- Biological Engineering Discipline, Indian Institute of Technology, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, Palaj, Gujarat 382355, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Nidhi Gour
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| |
Collapse
|
13
|
Ma EH, Rathnayake AU, Lee JK, Lee SM, Byun HG. Characterization of β-secretase inhibitory extracts from sea cucumber (Stichopus japonicus) hydrolysis with their cellular level mechanism in SH-SY5Y cells. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Hearst S, Bednářová A, Draughn B, Johnson K, Mills D, Thomas C, Scales J, Keenan ET, Welcher JV, Krishnan N. Expression of Drosophila Matrix Metalloproteinases in Cultured Cell Lines Alters Neural and Glial Cell Morphology. Front Cell Dev Biol 2021; 9:610887. [PMID: 34055768 PMCID: PMC8155609 DOI: 10.3389/fcell.2021.610887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc- and calcium- dependent endopeptidases that play pivotal roles in many biological processes. The expression of several MMPs in the central nervous system (CNS) have been shown to change in response to injury and various neurological/neurodegenerative disorders. While extracellular MMPs degrade the extracellular matrix (ECM) and regulate cell surface receptor signaling, the intracellular functions of MMPs or their roles in CNS disorders is unclear. Around 23 different MMPs are found in the human genome with overlapping function, making analysis of the intracellular role of human MMPs a daunting task. However, the fruit fly Drosophila melanogaster genome encodes only two MMPs: dMMP1 and dMMP2. To better understand the intracellular role of MMPs in the CNS, we expressed Green Fluorescent Protein (GFP)- tagged dMMPs in SH-SY5Y neuroblastoma cells and C6 glioblastoma cell lines. Lipofection of GFP-dMMPs in SH-SY5Y cells enhanced nuclear rupture and reduced cell viability (coupled with increased apoptosis) as compared to GFP alone. In non-liposomal transfection experiments, dMMP1 localizes to both the cytoplasm and the nucleus whereas dMMP2 had predominantly cytoplasmic localization in both neural and glial cell lines. Cytoplasmic localization demonstrated co-localization of dMMPs with cytoskeleton proteins which suggests a possible role of dMMPs in cell morphology. This was further supported by transient dMMP expression experiments that showed that dMMPs significantly increased neurite formation and length in neuronal cell lines. Inhibition of endogenous MMPs decreased neurite formation, length and βIII Tubulin protein levels in differentiated SH-SY5Y cells. Further, transient expression experiments showed similar changes in glial cell morphology, wherein dMMP expression increased glial process formation and process length. Interestingly, C6 cells expressing dMMPs had a glia-like appearance, suggesting MMPs may be involved in intracellular glial differentiation. Inhibition or suppression of endogenous MMPs in C6 cells increased process formation, increased process length, modulated GFAP protein expression, and induced distinct glial-like phenotypes. Taken together, our results strongly support the intracellular role that dMMPs can play in apoptosis, cytoskeleton remodeling, and cell differentiation. Our studies further reinforce the use of Drosophila MMPs to dissect out the precise mechanisms whereby they exert their intracellular roles in CNS disorders.
Collapse
Affiliation(s)
- Scoty Hearst
- Department of Biology, Tougaloo College, Tougaloo, MS, United States.,Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Andrea Bednářová
- Department of Biochemistry and Physiology, Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Benjamin Draughn
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Kennadi Johnson
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Desiree Mills
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Cendonia Thomas
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Jendaya Scales
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Eadie T Keenan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Jewellian V Welcher
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
15
|
Choubey PK, Tripathi A, Tripathi MK, Seth A, Shrivastava SK. Design, synthesis, and evaluation of N-benzylpyrrolidine and 1,3,4-oxadiazole as multitargeted hybrids for the treatment of Alzheimer's disease. Bioorg Chem 2021; 111:104922. [PMID: 33945941 DOI: 10.1016/j.bioorg.2021.104922] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
Novel N-Benzylpyrrolidine hybrids were designed, synthesized, and tested against multiple in-vitro and in-vivo parameters. Among all the synthesized molecules, 8f and 12f showed extensive inhibition against beta-secretase-1 (hBACE-1), human acetylcholinesterase (hAChE) & human butyrylcholinesterase (hBuChE). These molecules are also endowed with significant AChE-peripheral anionic site (PAS) binding capability, blood-brain barrier permeability, potential disassembly of Aβ aggregates along with neuroprotection ability on SHSY-5Y cell lines. Results of the Y-Maze and Morris water maze test concluded that compounds 8f and 12f ameliorated cognitive dysfunction induced by scopolamine and Aβ. The ex-vivo activity was executed on rat's brain homogenate indicating a reduction in AChE level and oxidative stress. The pharmacokinetic investigation ascertained considerable oral absorption profile of the lead 12f. The results of the in silico docking studies and molecular dynamics simulations demonstrated stable interactions of compounds 8f and 12f with the target residues of hAChE, hBuChE and hBACE-1.
Collapse
Affiliation(s)
- Priyanka Kumari Choubey
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avanish Tripathi
- Institute of Pharmaceutical Research, GLA University, Matura 281406, India
| | - Manish Kumar Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ankit Seth
- Aryakul College of Pharmacy & Research, Sitapur 2613303, India
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
16
|
Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinson's disease. Biosci Rep 2021; 40:225257. [PMID: 32537633 PMCID: PMC7317588 DOI: 10.1042/bsr20191796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
The present study aimed to identify the gene expression changes conferred by capsaicin in the cell model of 6-OHDA-induced Parkinson's disease, to disclose the molecular mechanism of action of capsaicin. We used capsaicin-treated and paraffin-embedded wax blocks containing substantia nigra tissue from 6-OHDA-induced Parkinson's disease rats to analyze transcriptional changes using Affymetrix GeneChip Whole Transcript Expression Arrays. A total of 108 genes were differentially expressed in response to capsaicin treatment, and seven of these genes were selected for further analysis: Olr724, COX1, Gsta2, Rab5a, Potef, Actg1, and Acadsb, of which Actg1 (actin gamma 1) was down-regulated and Gsta2 (Glutathione S-transferase alpha 2) was up-regulated. We successfully overexpressed Actg1 and Gsta2 in vitro. CCK-8 detection and flow cytometry demonstrated that overexpression of Actg1 and Gsta2 increased apoptosis in the 6-OHDA-induced Parkinson's disease cell model. The imbalance between Actg1 and Gsta2 may be one of the mechanisms of cell damage in Parkinson's disease (PD). Capsaicin can protect the cells and reduce the apoptosis rate by regulating Actg1 and Gsta2.
Collapse
|
17
|
Khan AN, Gadhave K, Furkan M, Kumar P, Siddiqi MK, Giri R, Khan RH. Anti-tuberculotic thionamide antibiotics show antioxidative and neuronal cytoprotective nature by inhibiting amyloid formation in human insulin and amyloid β-42. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Chromone derivatives bearing pyridinium moiety as multi-target-directed ligands against Alzheimer's disease. Bioorg Chem 2021; 110:104750. [PMID: 33691251 DOI: 10.1016/j.bioorg.2021.104750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/16/2021] [Accepted: 02/13/2021] [Indexed: 01/04/2023]
Abstract
A new serise of 7-hydroxy-chromone derivatives bearing pyridine moiety were synthesized, and evaluated as multifunctional agents against Alzheimer's disease (AD). Most of the compounds were good AChE inhibitors (IC50 = 9.8-0.71 µM) and showed remarkable BuChE inhibition activity (IC50 = 1.9-0.006 µM) compared with donepezil as the standard drug (IC50 = 0.023 and 3.4 µM). Compounds 14 and 10 showed the best inhibitory activity toward AChE (IC50 = 0.71 µM) and BuChE (IC50 = 0.006 µM), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 14 and 10 could bind effectively to the peripheral anionic binding site (PAS) of the AChE and BuChE through mixed-type inhibition. In addition, the most potent compounds showed acceptable neuroprotective activity on H2O2- and Aβ-induced .neurotoxicity in PC12 cells, more than standard drugs. The compounds could block effectively self- and AChE-induced Aβ aggregation. All the results suggest that compounds 14 and 10 could be considered as promising multi-target-directed ligands against AD.
Collapse
|
19
|
Datki Z, Acs E, Balazs E, Sovany T, Csoka I, Zsuga K, Kalman J, Galik-Olah Z. Exogenic production of bioactive filamentous biopolymer by monogonant rotifers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111666. [PMID: 33396176 DOI: 10.1016/j.ecoenv.2020.111666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The chemical ecology of rotifers has been little studied. A yet unknown property is presented within some monogonant rotifers, namely the ability to produce an exogenic filamentous biopolymer, named 'Rotimer'. This rotifer-specific viscoelastic fiber was observed in six different freshwater monogonants (Euchlanis dilatata, Lecane bulla, Lepadella patella, Itura aurita, Colurella adriatica and Trichocerca iernis) in exception of four species. Induction of Rotimer secretion can only be achieved by mechanically irritating rotifer ciliate with administering different types (yeast cell skeleton, denatured BSA, epoxy, Carmine or urea crystals and micro-cellulose) and sizes (approx. from 2.5 to 50 µm diameter) of inert particles, as inductors or visualization by adhering particles. The thickness of this Rotimer is 33 ± 3 nm, detected by scanning electron microscope. This material has two structural formations (fiber or gluelike) in nano dimension. The existence of the novel adherent natural product becomes visible by forming a 'Rotimer-Inductor Conglomerate' (RIC) web structure within a few minutes. The RIC-producing capacity of animals, depends on viability, is significantly modified according to physiological- (depletion), drug- (toxin or stimulator) and environmental (temperature, salt content and pH) effects. The E. dilatata-produced RIC is affected by protein disruptors but is resistant to several chemical influences and its Rotimer component has an overwhelming cell (algae, yeast and human neuroblastoma) motility inhibitory effect, associated with low toxicity. This biopolymer-secretion-capacity is protective of rotifers against human-type beta-amyloid aggregates.
Collapse
Affiliation(s)
- Zsolt Datki
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Vasas Szent Peter u. 1-3, H-6724 Szeged, Hungary.
| | - Eva Acs
- Danube Research Institute, MTA Centre for Ecological Research, Karolina ut 29-31, H-1113 Budapest, Hungary; National University of Public Service, Faculty of Water Sciences, 6500 Baja, Bajcsy-Zsilinszky utca 12-14., Hungary
| | - Evelin Balazs
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Vasas Szent Peter u. 1-3, H-6724 Szeged, Hungary
| | - Tamas Sovany
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacology, University of Szeged, Eotvos u. 6, H-6720 Szeged, Hungary
| | - Ildiko Csoka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacology, University of Szeged, Eotvos u. 6, H-6720 Szeged, Hungary
| | | | - Janos Kalman
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Vasas Szent Peter u. 1-3, H-6724 Szeged, Hungary
| | - Zita Galik-Olah
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Vasas Szent Peter u. 1-3, H-6724 Szeged, Hungary
| |
Collapse
|
20
|
Jalili-Baleh L, Nadri H, Forootanfar H, Küçükkılınç TT, Ayazgök B, Sharifzadeh M, Rahimifard M, Baeeri M, Abdollahi M, Foroumadi A, Khoobi M. Chromone-lipoic acid conjugate: Neuroprotective agent having acceptable butyrylcholinesterase inhibition, antioxidant and copper-chelation activities. ACTA ACUST UNITED AC 2021; 29:23-38. [PMID: 33420969 DOI: 10.1007/s40199-020-00378-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Alzheimer's disease (AD) is a multifaceted neurodegenerative disease. To target simultaneously multiple pathological processes involved in AD, natural-origin compounds with unique characteristics are promising scaffolds to develop novel multi-target compounds in the treatment of different neurodegenerative disease, especially AD. In this study, novel chromone-lipoic acid hybrids were prepared to find a new multifunctional lead structure for the treatment of AD. METHODS Chromone-lipoic acid hybrids were prepared through click reaction and their neuroprotection and anticholinesterase activity were fully evaluated. The anti-amyloid aggregation, antioxidant and metal-chelation activities of the best compound were also investigated by standard methods to find a new multi-functional agent against AD. RESULTS The primary biological screening demonstrated that all compounds had significant neuroprotection activity against H2O2-induced cell damage in PC12 cells. Compound 19 as the most potent butyrylcholinesterase (BuChE) inhibitor (IC50 = 7.55 μM) having significant neuroprotection activity as level as reference drug was selected for further biological evaluations. Docking and kinetic studies revealed non-competitive mixed-type inhibition of BuChE by compound 19. It could significantly reduce formation of the intracellular reactive oxygen species (ROS) and showed excellent reducing power (85.57 mM Fe+2), comparable with quercetin and lipoic acid. It could also moderately inhibit Aβ aggregation and selectively chelate with copper ions in 2:1 M ratio. CONCLUSION Compound 19 could be considered as a hopeful multifunctional agent for the further development gainst AD owing to the acceptable neuroprotective and anti-BuChE activity, moderate anti-Aβ aggregation activity, outstanding antioxidant activity as well as selective copper chelation ability. A new chromone-lipoic acid hybrid was synthesized as anti-Alzheimer agent with BuChE inhibitory activity, anti-Aβ aggregation, metal-chelation and antioxidant properties.
Collapse
Affiliation(s)
- Leili Jalili-Baleh
- Biomaterials Group, Pharmaceutical Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hamid Nadri
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Beyza Ayazgök
- Faculty of Pharmacy, Department of Biochemistry, Hacettepe University, Ankara, Turkey
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Toxicology and poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Foroumadi
- Biomaterials Group, Pharmaceutical Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mehdi Khoobi
- Biomaterials Group, Pharmaceutical Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
21
|
Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. J Inorg Biochem 2020; 213:111271. [PMID: 33069945 DOI: 10.1016/j.jinorgbio.2020.111271] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/04/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022]
Abstract
Targeted tissue drug delivery is a challenge in contemporary nanotechnologically driven therapeutic approaches, with the interplay interactions between nanohost and encapsulated drug shaping the ultimate properties of transport, release and efficacy of the drug at its destination. Prompted by the need to pursue the synthesis of such hybrid systems, a family of modified magnetic core-shell mesoporous silica nano-formulations was synthesized with encapsulated quercetin, a natural flavonoid with proven bioactivity. The new nanocarriers were produced via the sol-gel process, using tetraethoxysilane as a precursor and bearing a magnetic core of surface-modified monodispersed magnetite colloidal superparamagnetic nanoparticles, subsequently surface-modified with polyethylene glycol 3000 (PEG3k). The arising nano-formulations were evaluated for their textural and structural properties, exhibiting enhanced solubility and stability in physiological media, as evidenced by the loading capacity, entrapment efficiency results and in vitro release studies of their load. Guided by the increased bioavailability of quercetin in its encapsulated form, further evaluation of the biological activity of the magnetic as well as non-magnetic core-shell nanoparticles, pertaining to their anti-amyloid and antioxidant potential, revealed interference with the aggregation of β-amyloid peptide (Aβ) in Alzheimer's disease, reduction of Aβ cellular toxicity and minimization of Aβ-induced Reactive Oxygen Species (ROS) generation. The data indicate that the biological properties of released quercetin are maintained in the presence of the host nanocarriers. Collectively, the findings suggest that the emerging hybrid nano-formulations can function as efficient nanocarriers of hydrophobic natural flavonoids in the development of multifunctional nanomaterials toward therapeutic applications.
Collapse
|
22
|
Neurodegeneration-related beta-amyloid as autocatabolism-attenuator in a micro-in vivo system. IBRO Rep 2020; 9:319-323. [PMID: 33336107 PMCID: PMC7733039 DOI: 10.1016/j.ibror.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/02/2020] [Indexed: 11/24/2022] Open
Abstract
Bdelloids are adaptive models for studying aggregate-metabolism interactions. Starvation causes reversible organ shrinkage in bdelloids. The organ shrinkage is in connection with autocatabolic processes. Beta-amyloid attenuates the starvation-induced germovitellaria shrinkage. Human-type amyloid-aggregates are metabolism-regulators in two bdelloid species.
Investigation of human neurodegeneration-related aggregates of beta-amyloid 1–42 (Aβ42) on bdelloid rotifers is a novel interdisciplinary approach in life sciences. We reapplied an organ size-based in vivo monitoring system, exploring the autocatabolism-related alterations evoked by Aβ42, in a glucose-supplemented starvation model. The experientially easy-to-follow size reduction of the bilateral reproductive organ (germovitellaria) in fasted rotifers was rescued by Aβ42, serving as a nutrient source- and peptide sequence-specific attenuator of the organ shrinkage phase and enhancer of the regenerative one including egg reproduction. Recovery of the germovitellaria was significant in comparison with the greatly shrunken form. In contrast to the well-known neurotoxic Aβ42 (except the bdelloids) with specific regulatory roles, the artificially designed scrambled version (random order of amino acids) was inefficient in autocatabolism attenuation, behaving as negative control. This native Aβ42-related modulation of the ‘functionally reversible organ shrinkage’ can be a potential experiential and supramolecular marker of autocatabolism in vivo.
Collapse
Key Words
- AO, acridine orange
- AVOs, acidic vesicular organelles
- Acridine orange (PubChem CID: 62344)
- Autocatabolism
- Aβ, beta-amyloid
- Bdelloid rotifer
- Beta-amyloid
- BisANS (PubChem CID: 16213473)
- BisANS, 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid dipotassium salt
- ConA, Concanamycin A
- Concanamycin A (PubChem CID: 6438151)
- D0, Day 0
- D20, Day 20
- D25, Day 25
- FROS, functionally reversible organ shrinkage
- FROSi, FROS index
- Invertebrate
- Metabolism
- NFI%, percentage of normalized fluorescence intensity
- NaOH (PubChem CID: 14798)
- Neutral red (PubChem CID: 11105)
- Organ shrinkage
- PI, propidium-iodide
- Propidium-iodide (PubChem CID: 104981)
- S-Aβ42, scrambled isoform of Aβ
- SEM, standard error of the mean
Collapse
|
23
|
Doti N, Monti A, Bruckmann C, Calvanese L, Smaldone G, Caporale A, Falcigno L, D'Auria G, Blasi F, Ruvo M, Vitagliano L. Identification and characterization of cytotoxic amyloid-like regions in human Pbx-regulating protein-1. Int J Biol Macromol 2020; 163:618-629. [PMID: 32634512 DOI: 10.1016/j.ijbiomac.2020.06.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
The ability of many proteins to fold into well-defined structures has been traditionally considered a prerequisite for fulfilling their functions. Protein folding is also regarded as a valuable loophole to escape uncontrolled and harmful aggregations. Here we show that the PBX-regulating protein-1 (PREP1), an important homeodomain transcription factor involved in cell growth and differentiation during embryogenesis, is endowed with an uncommon thermostability. Indeed, circular dichroism analyses indicate that it retains most of its secondary structure at very high temperatures. These findings have important implications for PREP1 functions since it is a stabilizing factor of its partner PBX1. Predictive analyses suggest that the observed PREP1 thermostability could be related to the presence of aggregation-prone regions. Interestingly, synthetic peptides corresponding to these regions exhibit a remarkable propensity to form toxic β-rich amyloid-like aggregates in physiological conditions. On this basis, we suggest that PREP1 stability is an effective way to prevent or limit the formation of harmful aggregates. Notably, one of these PREP1 fragments (residues 117-132) is able to reversibly switch from α-helical to β-rich states depending on the environmental conditions. The chameleon conformational behavior of this peptide makes it an ideal system to study this intriguing and widespread structural transition.
Collapse
Affiliation(s)
- Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology, Milan, Italy
| | - Luisa Calvanese
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | | | - Andrea Caporale
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Lucia Falcigno
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Gabriella D'Auria
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology, Milan, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
24
|
Tailoring Uptake Efficacy of HSV-1 gD Derived Carrier Peptides. Biomolecules 2020; 10:biom10050721. [PMID: 32384673 PMCID: PMC7277387 DOI: 10.3390/biom10050721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Regions of the Herpes simplex virus-1 (HSV-1) glycoprotein D (gD) were chosen to design carrier peptides based on the known tertiary structure of the virus entry receptor complexes. These complexes consist of the following: HSV-1 gD–nectin-1 and HSV-1 gD–herpesvirus entry mediator (HVEM). Three sets of peptides were synthesised with sequences covering the (i) N-terminal HVEM- and nectin-1 binding region -5–42, (ii) the 181–216 medium region containing nectin-1 binding sequences and (iii) the C-terminal nectin-1 binding region 214–255. The carrier candidates were prepared with acetylated and 5(6)-carboxyfluorescein labelled N-termini. The peptides were chemically characterised and their conformational features in solution were also determined. In vitro internalisation profile and intracellular localisation were evaluated on SH-SY5Y neuroblastoma cells. Peptide originated from the C-terminal region 224–247 of the HSV-1 gD showed remarkable internalisation compared to the other peptides with low to moderate entry. Electronic circular dichroism secondary structure studies of the peptides revealed that the most effectively internalised peptides exhibit high helical propensity at increasing TFE concentrations. We proved that oligopeptides derived from the nectin-1 binding region are promising candidates—with possibility of Lys237Arg and/or Trp241Phe substitutions—for side-reaction free conjugation of bioactive compounds—drugs or gene therapy agents—as cargos.
Collapse
|
25
|
Yang Z, Song Q, Cao Z, Yu G, Liu Z, Tan Z, Deng Y. Design, synthesis and evaluation of flurbiprofen-clioquinol hybrids as multitarget-directed ligands against Alzheimer’s disease. Bioorg Med Chem 2020; 28:115374. [DOI: 10.1016/j.bmc.2020.115374] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
|
26
|
Cifelli JL, Berg KR, Yang J. Benzothiazole amphiphiles promote RasGRF1-associated dendritic spine formation in human stem cell-derived neurons. FEBS Open Bio 2020; 10:386-395. [PMID: 31943943 PMCID: PMC7050256 DOI: 10.1002/2211-5463.12788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Synaptic dysfunction has been implicated as an early cause of cognitive decline in neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD). Methods to slow down or reverse the loss of functional synapses, therefore, represent a promising avenue to explore for treating NDDs. We have previously reported the development of a class of benzothiazole amphiphiles (BAMs) that exhibited the capability to improve memory and learning both in wild-type mice and in an AD rodent model, putatively through promoting RasGRF1-associated formation of dendritic spines in hippocampal neurons. While these results represent a good first step in exploring a new approach to treating NDDs, the capability of these compounds to increase spine density has not been previously examined in a human neuronal model. Here, we found that neurons derived from differentiated human induced pluripotent stem cells exhibited both an increase in RasGRF1 expression and a phenotypic increase in the density of postsynaptic density protein 95-positive puncta (which we use to provide an estimate of dendritic spine density) in BAM-treated vs. control neurons. These results demonstrate that the previously observed spinogenic effects of BAMs in rodent neurons can be recapitulated in a human neuronal model, which further supports the potential utility of BAM agents for treating human diseases associated with spine deficits such as AD or other NDDs.
Collapse
Affiliation(s)
| | - Kyle R. Berg
- Department of Chemistry and BiochemistryUC San DiegoLa JollaCAUSA
| | - Jerry Yang
- Department of Chemistry and BiochemistryUC San DiegoLa JollaCAUSA
| |
Collapse
|
27
|
Sharma P, Tripathi A, Tripathi PN, Singh SS, Singh SP, Shrivastava SK. Novel Molecular Hybrids of N-Benzylpiperidine and 1,3,4-Oxadiazole as Multitargeted Therapeutics to Treat Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4361-4384. [PMID: 31491074 DOI: 10.1021/acschemneuro.9b00430] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Multitargeted hybrids of N-benzylpiperidine and substituted 5-phenyl-1,3,4-oxadiazoles were designed, synthesized, and evaluated against Alzheimer's disease (AD). Tested compounds exhibited moderate to excellent inhibition against human acetylcholinesterase (hAChE), butyrylcholinesterase (hBChE), and beta-secretase-1 (hBACE-1). The potential leads 6g and 10f exhibited balanced inhibitory profiles against all the targets, with a substantial displacement of propidium iodide from the peripheral anionic site of hAChE. Hybrids 6g and 10f also elicited favorable permeation across the blood-brain barrier and were devoid of neurotoxic liability toward SH-SY5Y neuroblastoma cells. Both leads remarkably disassembled Aβ aggregation in thioflavin T-based self- and AChE-induced experiments. Compounds 6g and 10f ameliorated scopolamine-induced cognitive dysfunctions in the Y-maze test. The ex vivo studies of rat brain homogenates established the reduced AChE levels and antioxidant activity of both compounds. Compound 6g also elicited noteworthy improvement in Aβ-induced cognitive dysfunctions in the Morris water maze test with downregulation in the expression of Aβ and BACE-1 proteins corroborated by Western blot and immunohistochemical analysis. The pharmacokinetic study showed excellent oral absorption characteristics of compound 6g. The in silico molecular docking and dynamics simulation studies of lead compounds affirmed their consensual binding interactions with PAS-AChE and aspartate dyad of BACE-1.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Avanish Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| |
Collapse
|
28
|
Choubdar N, Golshani M, Jalili-Baleh L, Nadri H, Küçükkilinç TT, Ayazgök B, Moradi A, Moghadam FH, Abdolahi Z, Ameri A, Salehian F, Foroumadi A, Khoobi M. New classes of carbazoles as potential multi-functional anti-Alzheimer's agents. Bioorg Chem 2019; 91:103164. [PMID: 31398601 DOI: 10.1016/j.bioorg.2019.103164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022]
Abstract
Multi-Target approach is particularly promising way to drug discovery against Alzheimer's disease. In the present study, we synthesized a series of compounds comprising the carbazole backbone linked to the benzyl piperazine, benzyl piperidine, pyridine, quinoline, or isoquinoline moiety through an aliphatic linker and evaluated as cholinesterase inhibitors. The synthesized compounds showed IC50 values of 0.11-36.5 µM and 0.02-98.6 µM against acetyl- and butyrylcholinesterase (AChE and BuChE), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 3s could bind effectively to the peripheral anionic binding site (PAS) and anionic site of the enzyme with mixed-type inhibition. Compound 3s was the most potent compound against AChE and BuChE and showed acceptable inhibition potency for self- and AChE-induced Aβ1-42 aggregation. Moreover, compound 3s could significantly protect PC12 cells against H2O2-induced toxicity. The results suggested that the compounds 3s could be considered as a promising multi-functional agent for further drug discovery development against Alzheimer's disease.
Collapse
Affiliation(s)
- Niloufar Choubdar
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Golshani
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Leili Jalili-Baleh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Beyza Ayazgök
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farshad Homayouni Moghadam
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Zahra Abdolahi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Salehian
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Alireza Foroumadi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mehdi Khoobi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
29
|
Mollazadeh M, Mohammadi-Khanaposhtani M, Zonouzi A, Nadri H, Najafi Z, Larijani B, Mahdavi M. New benzyl pyridinium derivatives bearing 2,4-dioxochroman moiety as potent agents for treatment of Alzheimer’s disease: Design, synthesis, biological evaluation, and docking study. Bioorg Chem 2019; 87:506-515. [DOI: 10.1016/j.bioorg.2019.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
|
30
|
Abdshahzadeh H, Golshani M, Nadri H, Saberi Kia I, Abdolahi Z, Forootanfar H, Ameri A, Tüylü Küçükkılınç T, Ayazgok B, Jalili-Baleh L, Sadat Ebrahimi SE, Moghimi S, Haririan I, Khoobi M, Foroumadi A. 3-Aryl Coumarin Derivatives Bearing Aminoalkoxy Moiety as Multi-Target-Directed Ligands against Alzheimer's Disease. Chem Biodivers 2019; 16:e1800436. [PMID: 30957958 DOI: 10.1002/cbdv.201800436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
Two series of novel coumarin derivatives, substituted at 3 and 7 positions with aminoalkoxy groups, are synthesized, characterized, and screened. The effect of amine substituents and the length of cross-linker are investigated in acetyl- and butyrylcholinesterase (AChE and BuChE) inhibition. Target compounds show moderate to potent inhibitory activities against AChE and BuChE. 3-(3,4-Dichlorophenyl)-7-[4-(diethylamino)butoxy]-2H-chromen-2-one (4y) is identified as the most potent compound against AChE (IC50 =0.27 μm). Kinetic and molecular modeling studies affirmed that compound 4y works in a mixed-type way and interacts simultaneously with the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. In addition, compound 4y blocks β-amyloid (Aβ) self-aggregation with a ratio of 44.11 % at 100 μm and significantly protects PC12 cells from H2 O2 -damage in a dose-dependent manner.
Collapse
Affiliation(s)
- Helia Abdshahzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Mostafa Golshani
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Hamid Nadri
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, 37240171-035, Iran
| | - Iraj Saberi Kia
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Zahra Abdolahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, 37240171-035, Iran
| | - Hamid Forootanfar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman, University of Medical Sciences, Kerman, 7616913555, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Tuba Tüylü Küçükkılınç
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, 06100, Ankara, Turkey
| | - Beyza Ayazgok
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, 06100, Ankara, Turkey
| | - Leili Jalili-Baleh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Seyed Esmaeil Sadat Ebrahimi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Setareh Moghimi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Ismaeil Haririan
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.,Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Mehdi Khoobi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 14176, Iran.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| |
Collapse
|
31
|
Sagnou M, Mavroidi B, Shegani A, Paravatou-Petsotas M, Raptopoulou C, Psycharis V, Pirmettis I, Papadopoulos MS, Pelecanou M. Remarkable Brain Penetration of Cyclopentadienyl M(CO)3+ (M = 99mTc, Re) Derivatives of Benzothiazole and Benzimidazole Paves the Way for Their Application as Diagnostic, with Single-Photon-Emission Computed Tomography (SPECT), and Therapeutic Agents for Alzheimer’s Disease. J Med Chem 2019; 62:2638-2650. [DOI: 10.1021/acs.jmedchem.8b01949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Kazmi S, Mujeeb AA, Owais M. Cyclic undecapeptide Cyclosporin A mediated inhibition of amyloid synthesis: Implications in alleviation of amyloid induced neurotoxicity. Sci Rep 2018; 8:17283. [PMID: 30470780 PMCID: PMC6251898 DOI: 10.1038/s41598-018-35645-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/12/2018] [Indexed: 11/24/2022] Open
Abstract
Amyloids are highly organized fibril aggregates arise from inappropriately folded form of the protein or polypeptide precursors under both physiological as well as simulated ambience. Amyloid synthesis is a multistep process that involves formation of several metastable intermediates. Among various intermediate species, the as-formed soluble oligomers are extremely toxic to the neuronal cells. In the present study, we evaluated cyclosporine A (CsA), an undecapeptide, for its potential to prevent aggregation of model protein ovalbumin (OVA). In an attempt to elucidate involved operative mechanism, the preliminary studies delineate that CsA affects both primary nucleation as well as other secondary pathways involved in OVA fibrillation process. By its specific interaction with amyloid intermediates, the cyclic peptide CsA seems to regulate the lag phase of the fibrillation process in concentration dependent manner. The present study further suggests that exposure to CsA during lag phase ensues in reversal of OVA fibrillation process. On the contrary, mature OVA fibril remained impervious to the CsA treatment. The cyclic undecapeptide CsA was also found to successfully alleviate amyloid induced toxicity in neuroblastoma cells.
Collapse
Affiliation(s)
- Shadab Kazmi
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Anzar Abdul Mujeeb
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
33
|
Melchor MH, Susana FG, Francisco GS, Hiram I B, Norma RF, Jorge A LR, Perla Y LC, Gustavo BI. Fullerenemalonates inhibit amyloid beta aggregation, in vitro and in silico evaluation. RSC Adv 2018; 8:39667-39677. [PMID: 35558050 PMCID: PMC9090717 DOI: 10.1039/c8ra07643j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/13/2018] [Indexed: 11/23/2022] Open
Abstract
The onset of Alzheimer's disease (AD) is associated with the presence of neurofibrillary pathology such as amyloid β (Aβ) plaques. Different therapeutic strategies have focused on the inhibition of Aβ aggregate formation; these pathological structures lead to neuronal disorder and cognitive impairment. Fullerene C60 has demonstrated the ability to interact and prevent Aβ fibril development; however, its low solubility and toxicity to cells remain significant problems. In this study, we synthesized, characterized and compared diethyl fullerenemalonates and the corresponding sodium salts, adducts of C60 bearing 1 to 3 diethyl malonyl and disodium malonyl substituents to evaluate the potential inhibitory effect on the aggregation of Aβ42 and their biocompatibility. The dose-dependent inhibitory effect of fullerenes on Aβ42 aggregation was studied using a thioflavin T fluorescent assay, and the IC50 value demonstrated a low range of fullerene concentration for inhibition, as confirmed by electron microscopy. The exposure of neuroblastoma to fullerenemalonates showed low toxicity, primarily in the presence of the sodium salt-adducts. An isomeric mixture of bisadducts, trisadducts and a C 3-symetrical trisadduct demonstrated the highest efficacy among the tests. In silico calculations were performed to complement the experimental data, obtaining a deeper understanding of the Aβ inhibitory mechanism; indicating that C 3-symetrical trisadduct interacts mainly with 1D to 16K residues of Aβ42 peptide. These data suggest that fullerenemalonates require specific substituents designed as sodium salt molecules to inhibit Aβ fibrillization and perform with low toxicity. These are promising molecules for developing future therapies involving Aβ aggregates in diseases such as AD and other types of dementia.
Collapse
Affiliation(s)
- Martínez-Herrera Melchor
- CONACYT, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
| | - Figueroa-Gerstenmaier Susana
- Department of Chemical, Electronic & Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato Loma del Bosque No.103, Lomas del Campestre León 37150 Guanajuato Mexico
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt D-64287 Darmstadt Germany
| | - García-Sierra Francisco
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Mexico City 07360 Mexico
| | - Beltrán Hiram I
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
| | - Rivera-Fernández Norma
- Department of Microbiology and Parasitology, School of Medicine, National Autonomous University of Mexico Ciudad de México 04510 Mexico
| | | | - López-Camacho Perla Y
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
| | - Basurto-Islas Gustavo
- Department of Chemical, Electronic & Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato Loma del Bosque No.103, Lomas del Campestre León 37150 Guanajuato Mexico
| |
Collapse
|
34
|
Salehi N, Mirjalili BBF, Nadri H, Abdolahi Z, Forootanfar H, Samzadeh-Kermani A, Küçükkılınç TT, Ayazgok B, Emami S, Haririan I, Sharifzadeh M, Foroumadi A, Khoobi M. Synthesis and biological evaluation of new N-benzylpyridinium-based benzoheterocycles as potential anti-Alzheimer's agents. Bioorg Chem 2018; 83:559-568. [PMID: 30471578 DOI: 10.1016/j.bioorg.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/25/2018] [Accepted: 11/10/2018] [Indexed: 01/04/2023]
Abstract
A novel series of benzylpyridinium-based benzoheterocycles (benzimidazole, benzoxazole or benzothiazole) were designed as potent acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The title compounds 4a-q were conveniently synthesized via condensation reaction of 1,2-phenylenediamine, 2-aminophenol or 2-aminothiophenol with pyridin-4-carbalehyde, followed by N-benzylation using various benzyl halides. The results of in vitro biological assays revealed that most of them, especially 4c and 4g, had potent anticholinesterase activity comparable or more potent than reference drug, donepezil. The kinetic study demonstrated that the representative compound 4c inhibits AChE in competitive manner. According to the ligand-enzyme docking simulation, compound 4c occupied the active site at the vicinity of catalytic triad. The compounds 4c and 4g were found to be inhibitors of Aβ self-aggregation as well as AChE-induced Aβ aggregation. Meanwhile, these compounds could significantly protect PC12 cells against H2O2-induced injury and showed no toxicity against HepG2 cells. As multi-targeted structures, compounds 4c and 4g could be considered as promising candidate for further lead developments to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Naeimeh Salehi
- Department of Chemistry, College of Science, Yazd University, Yazd, P.O. Box 89195-741, Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University, Yazd, P.O. Box 89195-741, Iran.
| | - Hamid Nadri
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Abdolahi
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Beyza Ayazgok
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Departmnt of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Jalili-Baleh L, Nadri H, Forootanfar H, Samzadeh-Kermani A, Küçükkılınç TT, Ayazgok B, Rahimifard M, Baeeri M, Doostmohammadi M, Firoozpour L, Bukhari SNA, Abdollahi M, Ganjali MR, Emami S, Khoobi M, Foroumadi A. Novel 3-phenylcoumarin–lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer's disease. Bioorg Chem 2018; 79:223-234. [DOI: 10.1016/j.bioorg.2018.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
36
|
Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer's disease based on coumarin and lipoic acid scaffolds. Eur J Med Chem 2018; 152:600-614. [DOI: 10.1016/j.ejmech.2018.04.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/21/2018] [Accepted: 04/28/2018] [Indexed: 12/24/2022]
|
37
|
Datki Z, Olah Z, Hortobagyi T, Macsai L, Zsuga K, Fulop L, Bozso Z, Galik B, Acs E, Foldi A, Szarvas A, Kalman J. Exceptional in vivo catabolism of neurodegeneration-related aggregates. Acta Neuropathol Commun 2018; 6:6. [PMID: 29378654 PMCID: PMC5789616 DOI: 10.1186/s40478-018-0507-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 01/20/2023] Open
Abstract
Neurodegenerative diseases are linked to a systemic enzyme resistance of toxic aggregated molecules and their pathological consequences. This paper presents a unique phenomenon that Philodina acuticornis, a bdelloid rotifer, is able to catabolize different types of neurotoxic peptide and protein aggregates (such as beta-amyloids /Aβ/, alpha-synuclein, and prion) without suffering any damage. P. acuticornis is capable of using these aggregates as an exclusive energy source (i.e., as 'food', identified in the digestive system and body) in a hermetically isolated microdrop environment, increasing their survival. As regards Aβ1-42, five other bdelloid rotifer species were also found to be able to perform this phenomenon. Based on our experiments, the Aβ1-42-treated bdelloid rotifers demonstrate significantly increased survival (e.g. mean lifespan = 51 ± 2.71 days) compared to their untreated controls (e.g. mean lifespan = 14 ± 2.29 days), with similar improvements in a variety of phenotypic characteristics. To our knowledge, no other animal species have so far been reported to have a similar capability. For all other microscopic species tested, including monogonant rotifers and non-rotifers, the treatment with Aβ1-42 aggregates proved to be either toxic or simply ineffective. This paper describes and proves the existence of an unprecedented in vivo catabolic capability of neurotoxic aggregates by bdelloid rotifers, with special focus on P. acuticornis. Our results may provide the basis for a new preclinical perspective on therapeutic research in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Zsolt Datki
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Kalvaria sgt. 57, Szeged, H-6725, Hungary.
| | - Zita Olah
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Kalvaria sgt. 57, Szeged, H-6725, Hungary
| | - Tibor Hortobagyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neuropathology, Institute of Pathology, University of Debrecen, P.O. Box 24, Debrecen, H-4012, Hungary
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology & Neuroscience, King's College London, Box PO70, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Lilla Macsai
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Kalvaria sgt. 57, Szeged, H-6725, Hungary
| | | | - Livia Fulop
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Zsolt Bozso
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Bence Galik
- Bioinformatics & Scientific Computing, Vienna Biocentre Core Facilities, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Eva Acs
- Danube Research Institute, MTA Centre for Ecological Research, Karolina ut 29-31, Budapest, H-1113, Hungary
- Sustainable Ecosystems Group, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3, Tihany, H-8237, Hungary
| | - Angela Foldi
- Sustainable Ecosystems Group, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3, Tihany, H-8237, Hungary
| | - Amanda Szarvas
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Kalvaria sgt. 57, Szeged, H-6725, Hungary
| | - Janos Kalman
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Kalvaria sgt. 57, Szeged, H-6725, Hungary
| |
Collapse
|
38
|
Krishtal J, Bragina O, Metsla K, Palumaa P, Tõugu V. In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells. PLoS One 2017; 12:e0186636. [PMID: 29065138 PMCID: PMC5655426 DOI: 10.1371/journal.pone.0186636] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
The progression of Alzheimer’s disease is causatively linked to the accumulation of amyloid-β aggregates in the brain, however, it is not clear how the amyloid aggregates initiate the death of neuronal cells. The in vitro toxic effects of amyloid peptides are most commonly examined using the human neuroblastoma derived SH-SY5Y cell line and here we show that differentiated neuron-like SH-SY5Y cells are more sensitive to amyloid peptides than non-differentiated cells, because the latter lack long neurites. Exogenous soluble amyloid-β 1–42 covered cell bodies and whole neurites in differentiated cells with dense fibrils, causing neurite beading and fragmentation, whereas preformed amyloid-β 1–42 fibrils had no toxic effects. Importantly, spontaneously fibrillizing amyloid-β 1–42 peptide exhibited substantially higher cellular toxicity than amyloid-β 1–40, which did not form fibrils under the experimental conditions. These results support the hypothesis that peptide toxicity is related to the active fibrillization process in the incubation mixture.
Collapse
Affiliation(s)
- Jekaterina Krishtal
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| | - Olga Bragina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristel Metsla
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
39
|
New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer's disease. Eur J Med Chem 2017; 139:280-289. [DOI: 10.1016/j.ejmech.2017.07.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/23/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
40
|
Synthesis and neuroprotective activity of novel 1,2,4-triazine derivatives with ethyl acetate moiety against H 2 O2 and Aβ-induced neurotoxicity. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Batarseh YS, Mohamed LA, Al Rihani SB, Mousa YM, Siddique AB, El Sayed KA, Kaddoumi A. Oleocanthal ameliorates amyloid-β oligomers' toxicity on astrocytes and neuronal cells: In vitro studies. Neuroscience 2017; 352:204-215. [PMID: 28392295 PMCID: PMC5504696 DOI: 10.1016/j.neuroscience.2017.03.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
Abstract
Extra-virgin olive oil (EVOO) has several health promoting effects. Evidence have shown that EVOO attenuates the pathology of amyloid-β (Aβ) and improves cognitive function in experimental animal models, suggesting it's potential to protect and reduce the risk of developing Alzheimer's disease (AD). Available studies have linked this beneficial effect to oleocanthal, one of the active components in EVOO. The effect of oleocanthal against AD pathology has been linked to its ability to attenuate Aβ and tau aggregation in vitro, and enhance Aβ clearance from the brains of wild-type and AD transgenic mice in vivo. However, the ability of oleocanthal to alter the toxic effect of Aβ on brain parenchymal cells is unknown. In the current study, we investigated oleocanthal effect on modulating Aβ oligomers (Aβo) pathological events in neurons and astrocytes. Our findings demonstrated oleocanthal prevented Aβo-induced synaptic proteins, SNAP-25 and PSD-95, down-regulation in neurons, and attenuated Aβo-induced inflammation, glutamine transporter (GLT1) and glucose transporter (GLUT1) down-regulation in astrocytes. Aβo-induced inflammation was characterized by interleukin-6 (IL-6) increase and glial fibrillary acidic protein (GFAP) upregulation that were reduced by oleocanthal. In conclusion, this study provides further evidence to support the protective effect of EVOO-derived phenolic secoiridoid oleocanthal against AD pathology.
Collapse
Affiliation(s)
- Yazan S Batarseh
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Loqman A Mohamed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sweilem B Al Rihani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Youssef M Mousa
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Abu Bakar Siddique
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| |
Collapse
|
42
|
More SV, Choi DK. Atractylenolide-I Protects Human SH-SY5Y Cells from 1-Methyl-4-Phenylpyridinium-Induced Apoptotic Cell Death. Int J Mol Sci 2017; 18:E1012. [PMID: 28481321 PMCID: PMC5454925 DOI: 10.3390/ijms18051012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress and apoptosis are the major mechanisms that induce dopaminergic cell death. Our study investigates the protective effects of atractylenolide-I (ATR-I) on 1-methyl-4-phenylpyridinium (MPP⁺)-induced cytotoxicity in human dopaminergic SH-SY5Y cells, as well as its underlying mechanism. Our experimental data indicates that ATR-I significantly inhibits the loss of cell viability induced by MPP⁺ in SH-SY5Y cells. To further unravel the mechanism, we examined the effect of ATR-I on MPP⁺-induced apoptotic cell death characterized by an increase in the Bax/Bcl-2 mRNA ratio, the release of cytochrome-c, and the activation of caspase-3 leading to elevated levels of cleaved poly(ADP-ribose) polymerase (PARP) resulting in SH-SY5Y cell death. Our results demonstrated that ATR-I decreases the level of pro-apoptotic proteins induced by MPP⁺ and also restored Bax/Bcl-2 mRNA levels, which are critical for inducing apoptosis. In addition, ATR-I demonstrated a significant increase in the protein expression of heme-oxygenase in MPP⁺-treated SH-SY5Y cells. These results suggest that the pharmacological effect of ATR-I may be, at least in part, caused by the reduction in pro-apoptotic signals and also by induction of anti-oxidant protein.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| |
Collapse
|
43
|
Analysis of Epidermal Growth Factor Receptor Related Gene Expression Changes in a Cellular and Animal Model of Parkinson's Disease. Int J Mol Sci 2017; 18:ijms18020430. [PMID: 28212331 PMCID: PMC5343964 DOI: 10.3390/ijms18020430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 02/01/2023] Open
Abstract
We employed transcriptome analysis of epidermal growth factor receptor related gene expression changes in cellular and animal models of Parkinson’s disease (PD). We used a well-known Parkinsonian toxin 1-methyl-4-phenylpyridine (MPP+) to induce neuronal apoptosis in the human neuroblastoma SH-SY5Y cell line. The MPP+-treatment of SH-SY5Y cells was capable of inducing neuro-apoptosis, but it remains unclear what kinds of transcriptional genes are affected by MPP+ toxicity. Therefore the pathways that were significantly perturbed in MPP+ treated human neuroblastoma SH-SY5Y cells were identified based on genome-wide gene expression data at two time points (24 and 48 h). We found that the Epidermal Growth Factor Receptor (EGFR) pathway-related genes showed significantly differential expression at all time points. The EGFR pathway has been linked to diverse cellular events such as proliferation, differentiation, and apoptosis. Further, to evaluate the functional significance of the altered EGFR related gene expression observed in MPP+-treated SH-SY5Y cells, the EGFR related GJB2 (Cx26) gene expression was analyzed in an MPP+-intoxicated animal PD model. Our findings identify that the EGFR signaling pathway and its related genes, such as Cx26, might play a significant role in dopaminergic (DAergic) neuronal cell death during the process of neuro-apoptosis and therefore can be focused on as potential targets for therapeutic intervention.
Collapse
|
44
|
Yang J, Cao X, Zhao Y, Wang L, Liu B, Jia J, Liang H, Chen M. Enhanced pH stability, cell viability and reduced degradation rate of poly(L-lactide)-based composite in vitro: effect of modified magnesium oxide nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:486-503. [DOI: 10.1080/09205063.2017.1279534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jinjun Yang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Xiuxiang Cao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Yun Zhao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Lab for Photoelectric Materials & Devices, Tianjin, China
| | - Liang Wang
- Tianjin Key Lab for Photoelectric Materials & Devices, Tianjin, China
| | - Bei Liu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Junping Jia
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Hui Liang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Minfang Chen
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Lab for Photoelectric Materials & Devices, Tianjin, China
| |
Collapse
|
45
|
Cx43 Mediates Resistance against MPP⁺-Induced Apoptosis in SH-SY5Y Neuroblastoma Cells via Modulating the Mitochondrial Apoptosis Pathway. Int J Mol Sci 2016; 17:ijms17111819. [PMID: 27809287 PMCID: PMC5133820 DOI: 10.3390/ijms17111819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 11/16/2022] Open
Abstract
Neuronal apoptosis in the substantia nigra par compacta (SNpc) appears to play an essential role in the pathogenesis of Parkinson’s disease. However, the mechanisms responsible for the death of dopaminergic neurons are not fully understood yet. To explore the apoptotic mechanisms, we used a well-known parkinsonian toxin, 1-methyl-4-phenylpyridine (MPP+), to induce neuronal apoptosis in the human dopaminergic SH-SY5Y cell line. The most common method of interaction between cells is gap junctional intercellular communication (GJIC) mediated by gap junctions (GJs) formed by transmembrane proteins called connexins (Cx). Modulation of GJIC affects cell viability or growth, implying that GJIC may have an important role in maintaining homeostasis in various organs. Here, we hypothesized that increasing the level of the gap junction protein Cx43 in SH-SY5Y neuroblastoma cells could provide neuroprotection. First, our experiments demonstrated that knocking down Cx43 protein by using Cx43-specific shRNA in SH-SY5Y neuroblastoma cells potentiated MPP+-induced neuronal apoptosis evident from decreased cell viability. In another experiment, we demonstrated that over-expression of Cx43 in the SH-SY5Y cell system decreased MPP+-induced apoptosis based on the MTT assay and reduced the Bax/Bcl-2 ratio and the release of cytochrome C based on Western blot analysis. Taken together, our results suggest that Cx43 could mediate resistance against MPP+-induced apoptosis in SH-SY5Y neuroblastoma cells via modulating the mitochondrial apoptosis pathway.
Collapse
|
46
|
Oh SH, Kim HN, Park HJ, Shin JY, Kim DY, Lee PH. The Cleavage Effect of Mesenchymal Stem Cell and Its Derived Matrix Metalloproteinase-2 on Extracellular α-Synuclein Aggregates in Parkinsonian Models. Stem Cells Transl Med 2016; 6:949-961. [PMID: 28297586 PMCID: PMC5442774 DOI: 10.5966/sctm.2016-0111] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Ample evidence has suggested that extracellular α‐synuclein aggregates would play key roles in the pathogenesis and progression of Parkinsonian disorders (PDs). In the present study, we investigated whether mesenchymal stem cells (MSCs) and their derived soluble factors could exert neuroprotective effects via proteolysis of extracellular α‐synuclein. When preformed α‐synuclein aggregates were incubated with MSC‐conditioned medium, α‐synuclein aggregates were disassembled, and insoluble and oligomeric forms of α‐synuclein were markedly decreased, thus leading to a significant increase in neuronal viability. In an animal study, MSC or MSC‐conditioned medium treatment decreased the expression of α‐synuclein oligomers and the induction of pathogenic α‐synuclein with an attenuation of apoptotic cell death signaling. Furthermore, we identified that matrix metalloproteinase‐2 (MMP‐2), a soluble factor derived from MSCs, played an important role in the degradation of extracellular α‐synuclein. Our data demonstrated that MSCs and their derived MMP‐2 exert neuroprotective properties through proteolysis of aggregated α‐synuclein in PD‐related microenvironments. Stem Cells Translational Medicine2017;6:949–961
Collapse
Affiliation(s)
- Se Hee Oh
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Na Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jin Young Shin
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dong Yeol Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
47
|
Shabani S, Sarkaki A, Ali Mard S, Ahangarpour A, Khorsandi L, Farbood Y. Central and peripheral administrations of levothyroxine improved memory performance and amplified brain electrical activity in the rat model of Alzheimer's disease. Neuropeptides 2016; 59:111-116. [PMID: 27640349 DOI: 10.1016/j.npep.2016.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is associated with cognitive impairments and a decline in the spontaneous neuronal discharge. In the current study, we evaluated the effect of subcutaneous (S.C.) and intrahippocampal (I.H.) administrations of levothyroxine (LT-4) on the passive avoidance and spatial memory, as well as electrophysiological activity in an animal model of AD. One hundred-sixty male Wistar rats were divided into two main groups. The S.C. group included two Sham and four AD (vehicle or L-T4 25, 50 & 100μg/kg); and the I.H. had consisted of two Sham and two AD (vehicle or L-T4 10μg/kg) subgroups. To make an animal model of AD, amyloid beta (Aβ) plus ibotenic acid (Ibo) were injected I.H. Rats were treated with L-T4 and/or normal saline for ten days. Passive avoidance and spatial memory were evaluated in shuttle box and Morris water maze, respectively. Neuronal single unit recording was assessed from hippocampal dentate gyrus (DG). Results showed that the mean latency time (s) increased significantly (p<0.001) in AD animals and decreased significantly in both S.C. and I.H. L-T4 injected AD animals, compared with the AD group (p<0.001). The percentage of total time that animals spent in goal quarter and the step through latency decreased significantly in AD rats (p<0.001) and increased significantly in both S.C. and I.H. L-T4 injected AD animals in comparison with the AD group (p<0.01, p<0.001). Data showed that the average number of spikes/bin significantly decreased in the AD group (p<0.001). The S.C. and I.H. L-T4 injections in AD rats significantly increased the spike rate in comparison to the AD group (p<0.001). In conclusion, both S.C. and I.H. injections of L-T4 alleviated memory deficits and spontaneous neuronal activity in Aβ-induced AD rats. Also, I.H. microinjection of L-T4 had more beneficial effects on memory and neuronal electrophysiological activity in comparison to S.C. administration.
Collapse
Affiliation(s)
- Sahreh Shabani
- Physiology Research Center, Department of Physiology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Physiology Research Center, Department of Physiology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Physiology Research Center, Department of Physiology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Physiology Research Center, Department of Physiology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Physiology Research Center, Department of Physiology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
48
|
Yamin G, Coppola G, Teplow DB. Design, Characterization, and Use of a Novel Amyloid β-Protein Control for Assembly, Neurotoxicity, and Gene Expression Studies. Biochemistry 2016; 55:5049-60. [PMID: 27505174 DOI: 10.1021/acs.biochem.6b00579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A key pathogenic agent in Alzheimer's disease (AD) is the amyloid β-protein (Aβ), which self-assembles into a variety of neurotoxic structures. Establishing structure-activity relationships for these assemblies, which is critical for proper therapeutic target identification and design, requires aggregation and neurotoxicity experiments that are properly controlled with respect to the Aβ peptide itself. "Reverse" Aβ or non-Aβ peptides suffer from the fact that their biophysical properties are too similar or dissimilar, respectively, to those of native Aβ for them to be appropriate controls. For this reason, we used simple protein design principles to create scrambled Aβ peptides predicted to behave distinctly from native Aβ. We showed that our prediction was true by monitoring secondary structure dynamics with thioflavin T fluorescence and circular dichroism spectroscopy, determining oligomer size distributions, and assaying neurotoxic activity. We then demonstrated the utility of the scrambled Aβ peptides by using them to control experiments examining the effects of Aβ monomers, dimers, higher-order oligomers, and fibrils on gene expression in primary rat hippocampal neurons. Significant changes in gene expression were observed for all peptide assemblies, but fibrils induced the largest changes. Weighted gene co-expression network analysis revealed two predominant gene modules related to Aβ treatment. Many genes within these modules were associated with inflammatory signaling pathways.
Collapse
Affiliation(s)
- Ghiam Yamin
- Department of Radiology, University of California San Diego School of Medicine , La Jolla, California 92093, United States.,Department of Neurology, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States.,Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Li H, Rahimi F, Bitan G. Modulation of Amyloid β-Protein (Aβ) Assembly by Homologous C-Terminal Fragments as a Strategy for Inhibiting Aβ Toxicity. ACS Chem Neurosci 2016; 7:845-56. [PMID: 27322435 DOI: 10.1021/acschemneuro.6b00154] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Self-assembly of amyloid β-protein (Aβ) into neurotoxic oligomers and fibrillar aggregates is a key process thought to be the proximal event leading to development of Alzheimer's disease (AD). Therefore, numerous attempts have been made to develop reagents that disrupt this process and prevent the formation of the toxic oligomers and aggregates. An attractive strategy for developing such reagents is to use peptides derived from Aβ based on the assumption that such peptides would bind to full-length Aβ, interfere with binding of additional full-length molecules, and thereby prevent formation of the toxic species. Guided by this rationale, most of the studies in the last two decades have focused on preventing formation of the core cross-β structure of Aβ amyloid fibrils using β-sheet-breaker peptides derived from the central hydrophobic cluster of Aβ. Though this approach is effective in inhibiting fibril formation, it is generally inefficient in preventing Aβ oligomerization. An alternative approach is to use peptides derived from the C-terminus of Aβ, which mediates both oligomerization and fibrillogenesis. This approach has been explored by several groups, including our own, and led to the discovery of several lead peptides with moderate to high inhibitory activity. Interestingly, the mechanisms of these inhibitory effects have been found to be diverse, and only in a small percentage of cases involved interference with β-sheet formation. Here, we review the strategy of using C-terminal fragments of Aβ as modulators of Aβ assembly and discuss the relevant challenges, therapeutic potential, and mechanisms of action of such fragments.
Collapse
Affiliation(s)
- Huiyuan Li
- West Virginia University, Morgantown, West Virginia 26506, United States
| | - Farid Rahimi
- Biomedical
Science and Biochemistry, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Gal Bitan
- Department
of Neurology, David Geffen School of Medicine, Brain Research Institute,
and Molecular Biology Institute, University of California at Los Angeles, Neuroscience Research Building 1, Room 451 635 Charles E. Young Drive
South, Los Angeles, California 90095-7334, United States
| |
Collapse
|
50
|
Cifelli JL, Chung TS, Liu H, Prangkio P, Mayer M, Yang J. Benzothiazole Amphiphiles Ameliorate Amyloid β-Related Cell Toxicity and Oxidative Stress. ACS Chem Neurosci 2016; 7:682-8. [PMID: 27055069 DOI: 10.1021/acschemneuro.6b00085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress from the increase of reactive oxygen species in cells is a common part of the normal aging process and is accelerated in patients with Alzheimer's disease (AD). Herein, we report the evaluation of three benzothiazole amphiphiles (BAMs) that exhibit improved biocompatibility without loss of biological activity against amyloid-β induced cell damage compared to a previously reported hexa(ethylene glycol) derivative of benzothiazole aniline (BTA-EG6). The reduced toxicity of these BAM agents compared to BTA-EG6 corresponded with their reduced propensity to induce membrane lysis. In addition, all of the new BAMs were capable of protecting differentiated SH-SY5Y neuroblastoma cells from toxicity and concomitant oxidative stress induced by AD-related aggregated Aβ (1-42) peptides. Binding and microscopy studies support that these BAM agents target Aβ and inhibit the interactions of catalase with Aβ in cells, which, in turn, can account for an observed inhibition of Aβ-induced increases in hydrogen peroxide in cells treated with these compounds. These results support that this family of benzothiazole amphiphiles may have therapeutic potential for treating cellular damage associated with AD and other Aβ-related neurologic diseases.
Collapse
Affiliation(s)
- Jessica L. Cifelli
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Tim S. Chung
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Haiyan Liu
- Department
of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Panchika Prangkio
- Department
of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Michael Mayer
- Department
of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Jerry Yang
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|