1
|
Kuti D, Winkler Z, Horváth K, Juhász B, Szilvásy-Szabó A, Fekete C, Ferenczi S, Kovács KJ. The metabolic stress response: Adaptation to acute-, repeated- and chronic challenges in mice. iScience 2022; 25:104693. [PMID: 35880047 PMCID: PMC9307515 DOI: 10.1016/j.isci.2022.104693] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 01/08/2023] Open
Abstract
There is a strong relationship between stress and metabolism. Because acute traumatic- and chronic stress events are often accompanied with metabolic pathophysiology, it is important to understand the details of the metabolic stress response. In this study we directly compared metabolic effects of acute stress with chronic repeated- and chronic unpredictable stress in mouse models. All types of adversities increased energy expenditure, chronic stress exposure decreased body weight gain, locomotor activity and differentially affected fuel utilization. During chronic exposure to variable stressors, carbohydrates were the predominant fuels, whereas fatty acids were catabolized in acutely and repeatedly restrained animals. Chronic exposure to variable stressors in unpredictable manner provoked anxiety. Our data highlight differences in metabolic responses to acute- repeated- and chronic stressors, which might affect coping behavior and underlie stress-induced metabolic and psychopathologies. All forms of stress exposure increase energy expenditure and resting metabolic rate Increased energy expenditure is fueled in challenge-specific manner Acute restraint increases, chronic stress decreases locomotor activity Chronic variable stress, but not repeated restraint provokes anxiety/depression
Collapse
Affiliation(s)
- Dániel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary
| | - Zsuzsanna Winkler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Balázs Juhász
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, 1083 Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, 1083 Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary
| |
Collapse
|
2
|
Kokras N, Hodes GE, Bangasser DA, Dalla C. Sex differences in the hypothalamic-pituitary-adrenal axis: An obstacle to antidepressant drug development? Br J Pharmacol 2019; 176:4090-4106. [PMID: 31093959 PMCID: PMC6877794 DOI: 10.1111/bph.14710] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysfunction has long been implicated in the pathophysiology of depression, and HPA axis-based compounds have served as potential new therapeutic targets, but with no success. This review details sex differences from animal and human studies in the function of HPA axis elements (glucocorticoids, corticotropin releasing factor, and vasopressin) and related compounds tested as candidate antidepressants. We propose that sex differences contribute to the failure of novel HPA axis-based drugs in clinical trials. Compounds studied preclinically in males were tested in clinical trials that recruited more, if not exclusively, women, and did not control, but rather adjusted, for potential sex differences. Indeed, clinical trials of antidepressants are usually not stratified by sex or other important factors, although preclinical and epidemiological data support such stratification. In conclusion, we suggest that clinical testing of HPA axis-related compounds creates an opportunity for targeted, personalized antidepressant treatments based on sex. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of PharmacologyNational and Kapodistrian University of AthensAthensGreece
- First Department of Psychiatry, Eginition HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Georgia E. Hodes
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginia
| | | | - Christina Dalla
- Department of PharmacologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
3
|
Zubedat S, Havkin E, Maoz I, Aga-Mizrachi S, Avital A. A probabilistic model of startle response reveals opposite effects of acute versus chronic Methylphenidate treatment. J Neurosci Methods 2019; 327:108389. [PMID: 31415846 DOI: 10.1016/j.jneumeth.2019.108389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/30/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The startle response is considered as the major physio-behavioral indication of anxiety in health and disease conditions. However, due to different protocols of stimulation and measurement, the magnitude as well as the appearance of the startle response is inconsistent. NEW METHOD We postulate that the startle probability and not merely the amplitude may bare information that will form a consistent physiological measure of anxiety. RESULTS To examine the proof-of-concept of our suggested probability model, we evaluated the effects of acute (single) versus chronic (14 days) MPH administration on both startle amplitude and probability. We found that both acute and chronic MPH administration has yielded similar effects on startle amplitude. However, acute MPH increased the startle's probability while chronic MPH decreased it. Next, we evaluated the effects of acute versus chronic stress on the startle's parameters and found a complementary effect. Explicitly, acute stress increased the startle's probability while chronic stress increased the startle amplitude. In contrast, enriched environment had no significant effects. Finally, to further validate the probability measure, we show that Midazolam had significant anxiolytic effects. In the second part, we investigated the acoustic startle response parameters (e.g. background noise and pulse duration), to better understand the interplay between these parameters and the startle amplitude versus probability. CONCLUSIONS We show that the probabilistic element of the startle response does not only point to deeper physiologic relationships but may also serve as "hidden variables" congruent but not entirely identical to the commonly researched amplitude of the startle response.
Collapse
Affiliation(s)
- Salman Zubedat
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Evgeny Havkin
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inon Maoz
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shlomit Aga-Mizrachi
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avi Avital
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
4
|
Schatz KC, Kyne RF, Parmeter SL, Paul MJ. Investigation of social, affective, and locomotor behavior of adolescent Brattleboro rats reveals a link between vasopressin's actions on arousal and social behavior. Horm Behav 2018; 106:1-9. [PMID: 30184461 DOI: 10.1016/j.yhbeh.2018.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Arginine vasopressin (AVP) has recently been implicated in juvenile and adolescent social development. How AVP influences social development, however, is not understood. Adolescent homozygous Brattleboro rats (Hom), which lack AVP due to a mutation in the Avp gene, exhibit fewer active social behaviors (e.g., social play) but more passive social behaviors (e.g., huddling) than their wild type and heterozygous (Het) littermates, raising the possibility that AVP impacts social development through an arousal mechanism. Here, we test whether the atypical social phenotype of adolescent Hom rats is associated with altered behavioral arousal, social approach, or affective behaviors and whether Brattleboro mothers impact these behavioral phenotypes. Male and female Het and Hom adolescents born to Het or Hom mothers were tested in social interaction, open field, novelty-seeking, social approach, and marble burying tests. As reported previously, Hom rats played less and emitted fewer 50 kHz ultrasonic vocalizations while huddling more than their Het littermates. No genotype differences were detected in novelty seeking or social approach, nor were consistent differences found between offspring from Het and Hom mothers. However, Hom rats were less active in the open field and buried fewer marbles than Het rats indicating a hypoaroused, low anxiety phenotype. Open field activity correlated with levels of social play indicating that the effects of the Brattleboro mutation on arousal and social behavior are linked. These data demonstrate that chronic AVP deficiency impacts behavioral arousal during adolescence and support the hypothesis that AVP influences adolescent social development, in part, through its regulation of arousal.
Collapse
Affiliation(s)
- Kelcie C Schatz
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260, USA.
| | - Robert F Kyne
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY 14260, USA.
| | | | - Matthew J Paul
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260, USA; Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY 14260, USA; Evolution, Ecology, and Behavior Program, University at Buffalo, SUNY, Buffalo, NY 14260, USA.
| |
Collapse
|
5
|
Arnett MG, Muglia LM, Laryea G, Muglia LJ. Genetic Approaches to Hypothalamic-Pituitary-Adrenal Axis Regulation. Neuropsychopharmacology 2016; 41:245-60. [PMID: 26189452 PMCID: PMC4677126 DOI: 10.1038/npp.2015.215] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023]
Abstract
The normal function of the hypothalamic-pituitary-adrenal (HPA) axis, and resultant glucocorticoid (GC) secretion, is essential for human health. Disruption of GC regulation is associated with pathologic, psychological, and physiological disease states such as depression, post-traumatic stress disorder, hypertension, diabetes, and osteopenia, among others. As such, understanding the mechanisms by which HPA output is tightly regulated in its responses to environmental stressors and circadian cues has been an active area of investigation for decades. Over the last 20 years, however, advances in gene targeting and genome modification in rodent models have allowed the detailed dissection of roles for key molecular mediators and brain regions responsible for this control in vivo to emerge. Here, we summarize work done to elucidate the function of critical neuropeptide systems, GC-signaling targets, and inflammation-associated pathways in HPA axis regulation and behavior, and highlight areas for future investigation.
Collapse
Affiliation(s)
- Melinda G Arnett
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, 3333 Burnet Avenue, MLC 7009, Attention Melinda Arnett, Cincinnati, OH 45229, USA, Tel: +1 513 803 8040, Fax: +1 513 803 5009, E-mail:
| | - Lisa M Muglia
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA
| | - Gloria Laryea
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA,Neuroscience Graduate Program Vanderbilt University, Nashville, TN, USA
| | - Louis J Muglia
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
6
|
Zelena D, Pintér O, Balázsfi DG, Langnaese K, Richter K, Landgraf R, Makara GB, Engelmann M. Vasopressin signaling at brain level controls stress hormone release: the vasopressin-deficient Brattleboro rat as a model. Amino Acids 2015; 47:2245-53. [PMID: 26100541 DOI: 10.1007/s00726-015-2026-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
The nonapeptide arginine vasopressin (AVP) has long been suggested to play an important role as a secretagogue for triggering the activity of the endocrine stress response. Most recent studies employed mutant mice for analyzing the importance of AVP for endocrine regulation under stress. However, it is difficult to compare and draw overall conclusions from all these studies as mixing the genetic material from different mouse strains has consequences on the individual's stress response. Moreover, mice are not ideal subjects for several experimental procedures. Therefore, to get more insight, we used a rather old mutant rat model: the AVP-deficient Brattleboro rat. The present short review is aimed at providing the most interesting results of these studies within the last 8 years that allowed gaining new insights in the potential signal function of AVP in stress and endocrine regulation.
Collapse
Affiliation(s)
- Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ottó Pintér
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diána Gabriella Balázsfi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary. .,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary.
| | - Kristina Langnaese
- AG Neuroendokrinologie & Verhalten, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Leipziger Str. 44/Haus 1, 39120, Magdeburg, Germany
| | - Karin Richter
- AG Neuroendokrinologie & Verhalten, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Leipziger Str. 44/Haus 1, 39120, Magdeburg, Germany
| | | | - Gábor B Makara
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mario Engelmann
- AG Neuroendokrinologie & Verhalten, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Leipziger Str. 44/Haus 1, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
7
|
Polyák A, Ferenczi S, Dénes A, Winkler Z, Kriszt R, Pintér-Kübler B, Kovács KJ. The fractalkine/Cx3CR1 system is implicated in the development of metabolic visceral adipose tissue inflammation in obesity. Brain Behav Immun 2014; 38:25-35. [PMID: 24456845 DOI: 10.1016/j.bbi.2014.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/23/2013] [Accepted: 01/14/2014] [Indexed: 01/05/2023] Open
Abstract
Diet-induced obesity and related peripheral and central inflammation are major risk factors for metabolic, neurological and psychiatric diseases. The chemokine fractalkine (Cx3CL1) and its receptor Cx3CR1 play a pivotal role in recruitment, infiltration and proinflammatory polarization of leukocytes and micoglial cells, however, the role of fractalkine signaling in the development of metabolic inflammation is not fully resolved. To address this issue, fractalkine receptor deficient (Cx3CR1 gfp/gfp) mice were exposed to normal or fat-enriched diet (FatED) for 10weeks and physiological-, metabolic- and immune parameters were compared to those animals in which the fractalkine signaling is maintained by the presence of one functioning allele (Cx3CR1 +/gfp). Mice with intact fractalkine signaling develop obesity characterized by increased epididymal white fat depots and mild glucose intolerance, recruit leukocytes into the visceral adipose tissue and display increased expression of subset of pro- and anti-inflammatory cytokines when exposed to fat-enriched diet. By contrast, Cx3CR1-deficient (gfp/gfp) mice gain significantly less weight on fat-enriched diet and have smaller amount of white adipose tissue (WAT) in the visceral compartment than heterozygote controls. Furthermore, Cx3CR1 gfp/gfp mice fed a fat-enriched diet do not develop glucose intolerance, recruit proportionally less number of gfp-positive cells and express significantly less MCP-1, IL-1α and TNFα in the WAT than control animals with fat-enriched diet induced obesity. Furthermore, heterozygote obese, but not fractalkine receptor deficient mice express high levels of anti-inflammatory IL-10 and arginase1 markers in the visceral fat. The effect of fat-enriched diet on cytokine expression pattern was specific for the WAT, as we did not detect significant elevation of interleukin-1, tumor necrosis factor-alpha and monocyte chemotacting protein (MCP-1) expression in the liver or in the hypothalamus in either genotype. These results highlight the importance of fractalkine signaling in recruitment and polarization of adipose tissue immune cells and identify fractalkine as a target to fight obesity-induced inflammatory complications.
Collapse
Affiliation(s)
- Agnes Polyák
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Adám Dénes
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Winkler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Rókus Kriszt
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bernadett Pintér-Kübler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
8
|
García-Iglesias BB, Mendoza-Garrido ME, Gutiérrez-Ospina G, Rangel-Barajas C, Noyola-Díaz M, Terrón JA. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: involvement of 5-HT₇ receptors. Neuropharmacology 2013; 71:216-27. [PMID: 23542440 PMCID: PMC3838668 DOI: 10.1016/j.neuropharm.2013.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/04/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023]
Abstract
Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT₇ receptor antagonist); 2) 5-HT₇ receptor-like immunoreactivity (5-HT₇-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT₇-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT₇-LI and protein in the PVN, but increased 5-HT₇-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex of CTRL animals, it strongly increased in the adrenal cortex of CRS animals. No TPH protein was detected in AG from both animal groups. Results suggest that CRS promotes endocrine disruption involving decreased ACTH and sensitized CORT responses to acute restraint. This phenomenon may be associated with increased function and expression of 5-HT₇ receptors as well as 5-HT turnover in AG.
Collapse
Affiliation(s)
- Brenda B. García-Iglesias
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado Postal 14-740, Zacatenco 07000, Mexico City, México
| | | | - Gabriel Gutiérrez-Ospina
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
| | - Claudia Rangel-Barajas
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, Mexico City, México
| | - Martha Noyola-Díaz
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado Postal 14-740, Zacatenco 07000, Mexico City, México
| | - José A. Terrón
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado Postal 14-740, Zacatenco 07000, Mexico City, México
| |
Collapse
|
9
|
Goncharova ND. Stress responsiveness of the hypothalamic-pituitary-adrenal axis: age-related features of the vasopressinergic regulation. Front Endocrinol (Lausanne) 2013; 4:26. [PMID: 23486926 PMCID: PMC3594837 DOI: 10.3389/fendo.2013.00026] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 02/22/2013] [Indexed: 12/22/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a key role in adaptation to environmental stresses. Parvicellular neurons of the hypothalamic paraventricular nucleus secrete corticotrophin releasing hormone (CRH) and arginine vasopressin (AVP) into pituitary portal system; CRH and AVP stimulate adrenocorticotropic hormone (ACTH) release through specific G-protein-coupled membrane receptors on pituitary corticotrophs, CRHR1 for CRH and V1b for AVP; the adrenal gland cortex secretes glucocorticoids in response to ACTH. The glucocorticoids activate specific receptors in brain and peripheral tissues thereby triggering the necessary metabolic, immune, neuromodulatory, and behavioral changes to resist stress. While importance of CRH, as a key hypothalamic factor of HPA axis regulation in basal and stress conditions in most species, is generally recognized, role of AVP remains to be clarified. This review focuses on the role of AVP in the regulation of stress responsiveness of the HPA axis with emphasis on the effects of aging on vasopressinergic regulation of HPA axis stress responsiveness. Under most of the known stressors, AVP is necessary for acute ACTH secretion but in a context-specific manner. The current data on the AVP role in regulation of HPA responsiveness to chronic stress in adulthood are rather contradictory. The importance of the vasopressinergic regulation of the HPA stress responsiveness is greatest during fetal development, in neonatal period, and in the lactating adult. Aging associated with increased variability in several parameters of HPA function including basal state, responsiveness to stressors, and special testing. Reports on the possible role of the AVP/V1b receptor system in the increase of HPA axis hyperactivity with aging are contradictory and requires further research. Many contradictory results may be due to age and species differences in the HPA function of rodents and primates.
Collapse
Affiliation(s)
- Nadezhda D. Goncharova
- Research Institute of Medical Primatology of Russian Academy of Medical SciencesSochi, Russia
- Sochi State UniversitySochi, Russia
| |
Collapse
|
10
|
Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b Receptors: From Molecules to Physiological Systems. Physiol Rev 2012; 92:1813-64. [DOI: 10.1152/physrev.00035.2011] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The neurohypophysial hormone arginine vasopressin (AVP) is essential for a wide range of physiological functions, including water reabsorption, cardiovascular homeostasis, hormone secretion, and social behavior. These and other actions of AVP are mediated by at least three distinct receptor subtypes: V1a, V1b, and V2. Although the antidiuretic action of AVP and V2 receptor in renal distal tubules and collecting ducts is relatively well understood, recent years have seen an increasing understanding of the physiological roles of V1a and V1b receptors. The V1a receptor is originally found in the vascular smooth muscle and the V1b receptor in the anterior pituitary. Deletion of V1a or V1b receptor genes in mice revealed that the contributions of these receptors extend far beyond cardiovascular or hormone-secreting functions. Together with extensively developed pharmacological tools, genetically altered rodent models have advanced the understanding of a variety of AVP systems. Our report reviews the findings in this important field by covering a wide range of research, from the molecular physiology of V1a and V1b receptors to studies on whole animals, including gene knockout/knockdown studies.
Collapse
Affiliation(s)
- Taka-aki Koshimizu
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Nobuaki Egashira
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Masami Hiroyama
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Hiroshi Nonoguchi
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Akito Tanoue
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| |
Collapse
|
11
|
Makara GB, Varga J, Barna I, Pintér O, Klausz B, Zelena D. The vasopressin-deficient Brattleboro rat: lessons for the hypothalamo-pituitary-adrenal axis regulation. Cell Mol Neurobiol 2012; 32:759-66. [PMID: 22527858 DOI: 10.1007/s10571-012-9842-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/27/2012] [Indexed: 01/16/2023]
Abstract
Adaptation to stress is indispensable to life and the hypothalamo-pituitary-adrenocortical axis is one of the major components of the adaptation. The hypothalamic component consists of corticotropin-releasing hormone and arginine vasopressin, with a questionable contribution of the latter. Vasopressin was more important in the regulation of the adrenocorticotropin secretion in the perinatal vasopressin-deficient Brattleboro rats than in adulthood, where its role depended on the nature of the stressor encountered. In adults, the vasopressin deficiency did not influence the development of chronic stress response. In the neonatal rats, the role of vasopressin was supported by the inhibitory action of a V1b antagonist and vasopressin antiserum. As the corticosterone response to stress did not follow the adrenocorticotropin levels, we assume the presence of an adrenocorticotropin independent adrenal gland regulation in the neonates. We have shown that the apparent dissociation of the corticosterone and adrenocorticotropin responses is not due to the different time course of the two hormone responses, to different level of the corticosterone binding globulin or to changes in the adrenal gland sensitivity. In vitro experiments point to the contribution of beta-adrenoceptors in the process. It was also confirmed by in vivo tests using the vasopressin-deficient Brattleboro pup as a model organism, where corticosterone levels may rise without adrenocorticotropin level changes. Another important question is the role of adrenocorticotropin beyond the corticosterone secretion regulation, which could be supposed, e.g., in cardiovascular events, immunological processes, and metabolism. We can conclude that Brattleboro rats gave us much information about the stress-axis regulation far beyond the role of vasopressin itself.
Collapse
Affiliation(s)
- Gábor B Makara
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
12
|
Jorge-Mora T, Misa-Agustiño MJ, Rodríguez-González JA, Jorge-Barreiro FJ, Ares-Pena FJ, López-Martín E. The effects of single and repeated exposure to 2.45 GHz radiofrequency fields on c-Fos protein expression in the paraventricular nucleus of rat hypothalamus. Neurochem Res 2011; 36:2322-32. [PMID: 21818659 DOI: 10.1007/s11064-011-0557-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 11/26/2022]
Abstract
This study investigated the effects of microwave radiation on the PVN of the hypothalamus, extracted from rat brains. Expression of c-Fos was used to study the pattern of cellular activation in rats exposed once or repeatedly (ten times in 2 weeks) to 2.45 GHz radiation in a GTEM cell. The power intensities used were 3 and 12 W and the Finite Difference Time Domain calculation was used to determine the specific absorption rate (SAR). High SAR triggered an increase of the c-Fos marker 90 min or 24 h after radiation, and low SAR resulted in c-Fos counts higher than in control rats after 24 h. Repeated irradiation at 3 W increased cellular activation of PVN by more than 100% compared to animals subjected to acute irradiation and to repeated non-radiated repeated session control animals. The results suggest that PVN is sensitive to 2.45 GHz microwave radiation at non-thermal SAR levels.
Collapse
Affiliation(s)
- T Jorge-Mora
- Departamento de Ciencias Morfológicas, Facultad de Medicina, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Fokidis HB, Deviche P. Plasma corticosterone of city and desert Curve-billed Thrashers, Toxostoma curvirostre, in response to stress-related peptide administration. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:32-8. [DOI: 10.1016/j.cbpa.2011.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 11/17/2022]
|
14
|
Abstract
The distribution, pharmacology and function of the arginine vasopressin (Avp) 1b receptor subtype (Avpr1b) has proved more challenging to investigate compared to other members of the Avp receptor family. Avp is increasingly recognised as an important modulator of the hypothalamic-pituitary-adrenal (HPA) axis, an action mediated by the Avpr1b present on anterior pituitary corticotrophs. The Avpr1b is also expressed in some peripheral tissues including pancreas and adrenal, and in the hippocampus (HIP), paraventricular nucleus and olfactory bulb of the rodent brain where its function is unknown. The central distribution of Avpr1bs is far more restricted than that of the Avpr1a, the main Avp receptor subtype found in the brain. Whether Avpr1b expression in rodent tissues is dependent on differences in the length of microsatellite dinucleotide repeats present in the 5' promoter region of the Avpr1b gene remains to be determined. One difficulty of functional studies on the Avpr1b, especially its involvement in the HPA axis response to stress, which prompted the generation of Avpr1b knockout (KO) mouse models, was the shortage of commercially available Avpr1b ligands, particularly antagonists. Research on mice lacking functional Avpr1bs has highlighted behavioural deficits in social memory and aggression. The Avpr1b KO also appears to be an excellent model to study the contribution of the Avpr1b in the HPA axis response to acute and perhaps some chronic (repeated) stressors where corticotrophin-releasing hormone and other genes involved in the HPA axis response to stress do not appear to compensate for the loss of the Avpr1b.
Collapse
Affiliation(s)
- Ja Roper
- Henry Wellcome LINE, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | | | | | | |
Collapse
|
15
|
Scherer IJ, Holmes PV, Harris RBS. The importance of corticosterone in mediating restraint-induced weight loss in rats. Physiol Behav 2010; 102:225-33. [PMID: 21092743 DOI: 10.1016/j.physbeh.2010.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 11/28/2022]
Abstract
I. J. Scherer, P. V. Holmes, R. B.S. Harris. The importance of corticosterone in mediating restraint-induced weight loss in rats. PHYSIOL BEHAV 00 (0) 000-000, 2010. Rats restrained for 3 h/day for 3d ays (RR) lose weight and do not return to the weight of non-restrained controls once restraint has ended. This study tested the importance of restraint-induced corticosterone release in mediating the change in body weight by injecting ADX rats with 2.0mg corticosterone/kg before each restraint to replicate the restraint-induced surge in circulating corticosterone. Restrained adrenalectomized (ADX) rats injected with corticosterone had the same initial weight loss as intact restrained rats, whereas corticosterone injection in non-restrained ADX rats and restraint of ADX rats injected with saline each produced only half as much initial weight loss. Sustained weight loss, measured for 14 days after the end of RR, was the same for restrained intact rats and restrained ADX rats injected with corticosterone whereas restrained ADX rats injected with saline achieved the same weight gain as their controls. Corticosterone injections had no effect on weight gain of non-restrained intact rats. In situ hybridization showed that corticotropin releasing factor (CRF) mRNA expression in the paraventricular nucleus of the hypothalamus (PVN) was increased by the same degree in ADX rats and restrained intact rats and was not modified by corticosterone injections. There was no significant effect of restraint, ADX or corticosterone injection on PVN arginine vasopressin (AVP) mRNA expression. These data indicate that a surge in corticosterone causes sustained weight loss in ADX rats through a mechanism that can be compensated for in intact rats and is independent of changes in PVN CRF or AVP mRNA expression.
Collapse
Affiliation(s)
- Isabell J Scherer
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, United States
| | | | | |
Collapse
|
16
|
Roper JA, Craighead M, O'Carroll AM, Lolait SJ. Attenuated stress response to acute restraint and forced swimming stress in arginine vasopressin 1b receptor subtype (Avpr1b) receptor knockout mice and wild-type mice treated with a novel Avpr1b receptor antagonist. J Neuroendocrinol 2010; 22:1173-80. [PMID: 20846299 PMCID: PMC2999820 DOI: 10.1111/j.1365-2826.2010.02070.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors.
Collapse
Affiliation(s)
- J A Roper
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
17
|
Varga J, Domokos A, Barna I, Jankord R, Bagdy G, Zelena D. Lack of vasopressin does not prevent the behavioural and endocrine changes induced by chronic unpredictable stress. Brain Res Bull 2010; 84:45-52. [PMID: 20946941 DOI: 10.1016/j.brainresbull.2010.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 09/02/2010] [Accepted: 09/10/2010] [Indexed: 11/26/2022]
Abstract
Vasopressin (VP) plays an important role in hypothalamo-pituitary-adrenal (HPA) axis regulation and in stress-related disorders. Our previous studies confirmed the role of VP in acute situations, where VP-deficient Brattleboro rats had less depression-like behaviour compared to animals that express VP. In this study, we test the hypothesis that VP-deficient rats are more resistant to the development of chronic HPA axis hyperactivity and depression-like symptoms after chronic unpredictable stress (CUS). Male VP-deficient Brattleboro rats were compared to their heterozygous littermates (controls). CUS consisted of different mild stimuli for 5 weeks. Elevated plus maze and forced swim test were used for behavioural characterization, while organs and blood for HPA axis parameters were collected at the end of the experiment. In controls, CUS resulted in the development of chronic stress state characterized by typical somatic (body weight reduction, thymus involution) and endocrine changes (resting plasma ACTH and corticosterone elevation and POMC mRNA elevation in anterior lobe of the pituitary). Floating time in the forced swim test was enhanced together with reduced open arm entries on elevated plus maze and a reduction in daily food intake. Unexpectedly, the lack of VP did not alter the effect of CUS on the somatic and behavioural measures, but only prevented CUS-induced corticosterone changes. In conclusion, lifelong VP-deficiency has a positive effect on corticosterone elevation following CUS but does not affect the behavioural consequences of CUS. It is likely that the interplay of several related factors, rather than an alteration in a single neuropeptide, modulates behaviour and disease pathogenesis.
Collapse
Affiliation(s)
- János Varga
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Szigony, Hungary
| | | | | | | | | | | |
Collapse
|
18
|
Reduced Walker 256 carcinosarcoma growth in vasopressin-deficient Brattleboro rats. Tumour Biol 2010; 31:569-73. [DOI: 10.1007/s13277-010-0070-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022] Open
|
19
|
Age-dependent role of vasopressin in susceptibility of gastric mucosa to indomethacin-induced injury. ACTA ACUST UNITED AC 2010; 161:15-21. [DOI: 10.1016/j.regpep.2009.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 12/02/2009] [Accepted: 12/30/2009] [Indexed: 11/23/2022]
|
20
|
Gray M, Bingham B, Viau V. A comparison of two repeated restraint stress paradigms on hypothalamic-pituitary-adrenal axis habituation, gonadal status and central neuropeptide expression in adult male rats. J Neuroendocrinol 2010; 22:92-101. [PMID: 20002965 DOI: 10.1111/j.1365-2826.2009.01941.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The available evidence continues to illustrate an inhibitory influence of male gonadal activity on the hypothalamic-pituitary-adrenal (HPA) axis under acute stress. However, far less is known about how these systems interact during repeated stress. Because HPA output consistently declines across studies examining repeated restraint, the potential mechanisms mediating this habituation are often inferred as being equivalent, even though these studies use a spectrum of restraint durations and exposures. To test this generalisation, as well as to emphasise a potential influence of the male gonadal axis on the process of HPA habituation, we compared the effects of two commonly used paradigms of repeated restraint in the rodent: ten daily episodes of 0.5 h of restraint and five daily episodes of 3 h of restraint. Both paradigms produced comparable declines in adrenocorticotrophic hormone and corticosterone between the first and last day of testing. However, marked differences in testosterone levels, as well as corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) expression, occurred between the two stress groups. Plasma testosterone levels remained relatively higher in animals exposed to 0.5 h of restraint compared to 3 h of restraint, whereas forebrain gonadotrophin-releasing hormone (GnRH) cell counts increased in both groups. AVP mRNA was increased after 3 h, but not after 0.5 h of repeated restraint, in the medial parvicellular paraventricular nucleus and in the posterior bed nucleus of the stria terminalis (BST), and increased with 0.5 h of repeated restraint in the medial amygdala. CRH mRNA was increased after 3 h, but not after 0.5 h of repeated restraint, in the central amygdala and anterior BST. The data obtained illustrate that, despite comparable declines in HPA responses, the pathways recruited for stress adaptation appear to be distinct between restraint groups. Given the extreme sensitivity of limbic AVP to testosterone, and conversely CRH to circulating glucocorticoids, whether differences in endocrine profiles might explain these neuropeptide differences remains to be seen. Nonetheless, the present study provides several new entry points for testing gonadal influences on stress-specific HPA habituation.
Collapse
Affiliation(s)
- M Gray
- Neuroscience Program, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
21
|
Zelena D, Langnaese K, Domokos A, Pintér O, Landgraf R, Makara GB, Engelmann M. Vasopressin administration into the paraventricular nucleus normalizes plasma oxytocin and corticosterone levels in Brattleboro rats. Endocrinology 2009; 150:2791-8. [PMID: 19246538 DOI: 10.1210/en.2008-1007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adult male rats of the Brattleboro strain were used to investigate the impact of the congenital absence of vasopressin on plasma adrenocorticotropin, corticosterone, and oxytocin concentrations as well as the release pattern of oxytocin within the hypothalamic paraventricular nucleus (PVN), in response to a 10-min forced swimming session. Measurement of adrenocorticotropin in plasma samples collected via chronically implanted jugular venous catheters revealed virtually identical stress responses for vasopressin-lacking Brattleboro (KO) and intact control animals. In contrast, plasma corticosterone and oxytocin levels were found to be significantly elevated 105 min after onset of the stressor in KO animals only. Microdialysis samples collected from the extracellular fluid of the PVN showed significantly higher levels of oxytocin both under basal conditions and in response to stressor exposure in KO vs. intact control animals accompanied by elevated oxytocin mRNA levels in the PVN of KO rats. These findings suggest that the increased oxytocin levels in the PVN caused by the congenital absence of vasopressin may contribute to normal adrenocorticotropin stress responses in KO animals. However, whereas the stressor-induced elevation of plasma oxytocin in KO rats may be responsible for their maintained corticosterone levels, oxytocin seems unable to fully compensate for the lack of vasopressin. This hypothesis was tested by retrodialyzing synthetic vasopressin into the PVN area concomitantly with blood sampling in KO animals. Indeed, this treatment normalized plasma oxytocin and corticosterone levels 105 min after forced swimming. Thus, endogenous vasopressin released within the PVN is likely to act as a paracrine signal to facilitate the return of plasma oxytocin and corticosterone to basal levels after acute stressor exposure.
Collapse
Affiliation(s)
- Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
22
|
Aguilera G, Subburaju S, Young S, Chen J. The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. PROGRESS IN BRAIN RESEARCH 2009; 170:29-39. [PMID: 18655869 DOI: 10.1016/s0079-6123(08)00403-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vasopressin (VP) secreted from parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) stimulates pituitary adrenocorticotropic hormone (ACTH) secretion, through interaction with receptors of the V1b subtype (V1bR) in the pituitary corticotroph, mainly by potentiating the stimulatory effects of corticotrophin-releasing hormone (CRH). Chronic stress paradigms associated with corticotroph hyperresponsiveness lead to preferential expression of hypothalamic VP over CRH and upregulation of pituitary V1bR, suggesting that VP has a primary role during adaptation of the hypothalamic pituitary adrenal (HPA) axis to long-term stimulation. However, studies using pharmacological or genetic ablation of V1bR have shown that VP is required for full ACTH responses to some stressors, but not for the sensitization of ACTH responses to a novel stress observed during chronic stress. Studies using minipump infusion of a peptide V1 antagonist in long-term adrenalectomized rats have revealed that VP mediates proliferative responses in the pituitary. Nevertheless, only a minor proportion of cells undergoing mitogenesis co-express markers for differentiated corticotrophs or precursors, suggesting that new corticotrophs are recruited from yet undifferentiated cells. The overall evidence supports a limited role of VP regulating acute ACTH responses to some acute stressors and points to cell proliferation and pituitary remodelling as alternative roles for the marked increases in parvocellular vasopressinergic activity during prolonged activation of the HPA axis.
Collapse
Affiliation(s)
- Greti Aguilera
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
23
|
Chen J, Young S, Subburaju S, Sheppard J, Kiss A, Atkinson H, Wood S, Lightman S, Serradeil-Le Gal C, Aguilera G. Vasopressin does not mediate hypersensitivity of the hypothalamic pituitary adrenal axis during chronic stress. Ann N Y Acad Sci 2009; 1148:349-59. [PMID: 19120128 DOI: 10.1196/annals.1410.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hypothesis that vasopressin (VP) becomes the main mediator of pituitary corticotroph responsiveness during chronic hypothalamic pituitary adrenal (HPA) axis activation was tested by examining the effect of pharmacologic VP receptor blockade on the adrenocorticotropic hormone (ACTH) and corticosterone responses of 14-day repeatedly restrained rats. In spite of the increased vasopressinergic activity, repeatedly restrained rats showed lower ACTH and corticosterone responses to 10 min white noise compared with handled controls. These responses were unchanged by injection of the nonpeptide-selective V1b receptor antagonist SSR149415 i.v., 1 h before noise application. In contrast to noise stress, plasma ACTH responses to i.p. hypertonic saline injection were enhanced in the repeatedly restrained rats compared with handled controls, but responses were also unaffected by SSR149415 administered orally, daily 1 h before restraint. Since SSR149415 effectiveness was low, we used minipump infusion of the peptide V1 receptor antagonist, dGly[Phaa1,D-tyr(et), Lys, Arg]VP (V1-Ant) for 14 days, which effectively blocked ACTH responses to exogenous VP. Chronic V1-Ant infusion reduced plasma ACTH responses to i.p. hypertonic saline in handled controls but not in repeatedly restrained rats. These data suggest that the increased vasopressinergic activity characteristic of chronic stress plays roles other than mediating the hypersensitivity of the HPA axis to a novel stress.
Collapse
Affiliation(s)
- Jun Chen
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zelena D, Mergl Z, Makara GB. Postnatal development in vasopressin deficient Brattleboro rats with special attention to the hypothalamo-pituitary-adrenal axis function: the role of maternal genotype. Int J Dev Neurosci 2008; 27:175-83. [PMID: 19059472 DOI: 10.1016/j.ijdevneu.2008.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/31/2008] [Accepted: 11/12/2008] [Indexed: 12/26/2022] Open
Abstract
Anomalies in hormonal and neurotransmitter status during perinatal period can lead to lifespan alterations in the central nervous system. Vasopressin is present early in the brain and has various mitogenic, metabolic and physiological actions, e.g. in water homeostasis or in the regulation of the hypothalamo-pituitary-adrenal (HPA) axis. Therefore we examine the possible role of vasopressin in perinatal development with special attention to the influence of maternal genotype and to the HPA axis regulation. We compared homozygous vasopressin deficient (di/di) Brattleboro rats to their heterozygous (di/+) littermates both from di/+ and di/di mother. Higher locomotion due to reduced adaptation was present at preweaning. During the first 10 days of life the di/di pups from di/di mother were the smallest, while in the later perinatal period the genotype of the pups became the more important determinant of the somatic development, namely the di/di pups from both mothers had reduced weight gain. Generally the lack of vasopressin in the pups fastened the somatic development (pinna detachment, eye and ear opening, incisor eruption) however the neurobehavioral development (palmar grasp reflex, righting reflex, negative geotaxis, etc.) was not influenced profoundly by either the mother's or the pup's genotype. The lack of vasopressin in pups abolished the 24 h maternal separation induced adrenocorticotrop hormone (ACTH) elevation while the accompanying corticosterone rises were even higher. The vasopressin deficiency of the mother reduced the resting ACTH and all corticosterone levels in all pups. So we can conclude that the lack of vasopressin speeds up the development, probably there is a greater drive for self-sufficiency in these animals. The mother's vasopressin deficiency reduced the HPA axis reactivity of the pups. The role of vasopressin in the HPA axis regulation is important during the perinatal period independently from the mother's genotype. The large discrepancy between ACTH and corticosterone regulation requires further studies.
Collapse
Affiliation(s)
- Dóra Zelena
- Hungarian Academy of Sciences, Institute of Experimental Medicine, Budapest, Hungary.
| | | | | |
Collapse
|
25
|
Imaging dopamine release with Positron Emission Tomography (PET) and 11C-raclopride in freely moving animals. Neuroimage 2008; 41:1051-66. [DOI: 10.1016/j.neuroimage.2008.02.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/16/2008] [Accepted: 02/29/2008] [Indexed: 11/19/2022] Open
|
26
|
Stewart LQ, Roper JA, Young WS, O'Carroll AM, Lolait SJ. Pituitary-adrenal response to acute and repeated mild restraint, forced swim and change in environment stress in arginine vasopressin receptor 1b knockout mice. J Neuroendocrinol 2008; 20:597-605. [PMID: 18363802 DOI: 10.1111/j.1365-2826.2008.01704.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arginine vasopressin and corticotrophin-releasing hormone synthesised and released from the hypothalamic paraventricular nucleus are the prime mediators of the hypothalamic-pituitary-adrenal (HPA) axis response to stress. These neurohormones act synergistically to stimulate adrenocorticotophin (ACTH) secretion from the anterior pituitary, culminating in an increase in circulating glucocorticoids. Arginine vasopressin mediates this action at the arginine vasopressin 1b receptor (Avpr1b) located on pituitary corticotrophs. Arginine vasopressin is regarded as a minor ACTH secretagogue in rodents but evidence suggests that it has a role in mediating the neuroendocrine response to some acute and chronic stressors. To investigate the role of the Avpr1b in the HPA axis response to an acute and chronic (repeated) stress, we measured the plasma ACTH and corticosterone concentrations in three stress paradigms in both Avpr1b knockout and wild-type mice. Single acute exposure to restraint, forced swim and change in environment stressors elevated both plasma ACTH and corticosterone concentrations in wild-type animals. Conversely, the ACTH response to the acute stressors was significantly attenuated in Avpr1b knockout mice compared to their wild-type counterparts. Plasma corticosterone concentrations were reduced in Avpr1b knockout mice in response to change in environment but not to mild restraint or forced swim stress. Irrespective of genotype, there was no difference in the plasma ACTH or corticosterone concentrations in response to acute and repeated stressors. The data show that a functional Avpr1b is required for an intact pituitary ACTH response to the acute and chronic stressors used in this study. Furthermore, the normal corticosterone response to repeated exposure to change in environment stress also requires the Avpr1b to drive HPA axis responsiveness.
Collapse
Affiliation(s)
- L Q Stewart
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
27
|
Stewart LQ, Roper JA, Young WS, O'Carroll AM, Lolait SJ. The role of the arginine vasopressin Avp1b receptor in the acute neuroendocrine action of antidepressants. Psychoneuroendocrinology 2008; 33:405-15. [PMID: 18243568 DOI: 10.1016/j.psyneuen.2007.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/18/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
In times of stress the hypothalamic-pituitary-adrenal (HPA) axis is activated and releases two neurohormones, corticotropin-releasing hormone (Crh) and arginine vasopressin (Avp), to synergistically stimulate the secretion of adrenocorticotropin hormone (ACTH) from the anterior pituitary, culminating in a rise in circulating glucocorticoids. Avp mediates its actions at the Avp V1b receptor (Avpr1b) present on pituitary corticotropes. Dysregulation of the stress response is associated with the pathophysiology of depression and a major treatment involves increasing the availability of monamines at the synaptic cleft. Acute administration of selective serotonin reuptake inhibitors (SSRI) and tricyclic antidepressants (TCA) has previously been shown to activate the HPA axis. The present study was undertaken to evaluate the involvement of the Avpr1b in the HPA axis response to acute SC administration of an SSRI (fluoxetine 10mg/kg) and a TCA (desipramine 10mg/kg). We measured plasma ACTH and corticosterone (CORT) levels and neuropeptide mRNA expression in the hypothalamic paraventricular nucleus (PVN) of Avpr1b knockout (KO) mice and wild-type controls. Fluoxetine and desipramine administration significantly attenuated plasma ACTH and CORT levels in male and female Avpr1b KO mice when compared to their wild-type counterparts. Avp, oxytocin (Oxt) and Crh mRNA expression in the PVN did not change in fluoxetine-treated male Avpr1b KO or wild-type mice. In contrast, fluoxetine treatment increased PVN Avp mRNA levels in female Avpr1b wild type but not KO animals. PVN Oxt mRNA levels increased in fluoxetine-treated female mice of both genotypes. The data suggests that the Avpr1b is required to drive the HPA axis response to acute antidepressant treatment and provides further evidence of a sexual dichotomy in the regulation of PVN Avp/Oxt gene expression following antidepressant administration.
Collapse
|
28
|
Tóth ZE, Zelena D, Mergl Z, Kirilly E, Várnai P, Mezey E, Makara GB, Palkovits M. Chronic repeated restraint stress increases prolactin-releasing peptide/tyrosine-hydroxylase ratio with gender-related differences in the rat brain. J Neurochem 2008; 104:653-66. [PMID: 18199117 DOI: 10.1111/j.1471-4159.2007.05069.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, we investigated the effect of chronic repeated restraint (RR) on prolactin-releasing peptide (PrRP) expression. In the brainstem, where PrRP colocalize with norepinephrine in neurons of the A1 and A2 catecholaminergic cell groups, the expression of tyrosine hydroxylase (TH) has also been examined. In the brainstem, but not in the hypothalamus, the basal PrRP expression in female rats was higher than that in the males that was abolished by ovariectomy. RR evoked an elevation of PrRP expression in all areas investigated, with smaller reaction in the brainstems of females. There was no gender-related difference in the RR-evoked TH expression. Elevation of PrRP was relatively higher than elevation of TH, causing a shift in PrRP/TH ratio in the brainstem after RR. Estrogen alpha receptors were found in the PrRP neurons of the A1 and A2 cell groups, but not in the hypothalamus. Bilateral lesions of the hypothalamic paraventricular nucleus did not prevent RR-evoked changes. Elevated PrRP production parallel with increased PrRP/TH ratio in A1/A2 neurons indicate that: (i) there is a clear difference in the regulation of TH and PrRP expression after RR, and (ii) among other factors this may also contribute to the changed sensitivity of the hypothalamo-pituitary-adrenal axis during chronic stress.
Collapse
Affiliation(s)
- Zsuzsanna E Tóth
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Frank E, Landgraf R. The vasopressin system--from antidiuresis to psychopathology. Eur J Pharmacol 2008; 583:226-42. [PMID: 18275951 DOI: 10.1016/j.ejphar.2007.11.063] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 01/04/2023]
Abstract
Vasopressin is a neuropeptide with multiple functions. In addition to its predominantly antidiuretic action after peripheral secretion from the posterior pituitary, it seems to fulfill--together with its receptor subtype--all requirements for a neuropeptide system critically involved in higher brain functions, including cognitive abilities and emotionality. Following somatodendritic and axonal release in distinct brain areas, vasopressin acts as a neuromodulator and neurotransmitter in multiple and varying modes of interneuronal communication. Accordingly, changes in vasopressin expression and release patterns may have wide-spread consequences. As shown in mice, rats, voles, and humans, central vasopressin release along a continuum may be beneficial to the individual, serving to adjust physiology and behavior in stressful scenarios, possibly at the potential expense of increasing susceptibility to disease. Indeed, if over-expressed and over-released, it may contribute to hyper-anxiety and depression-like behaviors. A vasopressin deficit, in turn, may cause signs of both diabetes insipidus and total hypo-anxiety. The identification of genetic polymorphisms underlying these phenomena does not only explain individual variation in social memory and emotionality, but also help to characterize potential targets for therapeutic interventions. The capability of both responding to stressful stimuli and mediating genetic polymorphisms makes the vasopressin system a key mediator for converging (i.e., environmentally and genetically driven) behavioral regulation.
Collapse
Affiliation(s)
- Elisabeth Frank
- Department of Behavioral Neuroendocrinology, Max Planck Institute of Psychiatry, Kraepelinstr. 2, 80804 Munich, Germany
| | | |
Collapse
|
30
|
Guzmán EA, Langowski JL, De Guzman A, Konrad Muller H, Walker AM, Owen LB. S179D prolactin diminishes the effects of UV light on epidermal gamma delta T cells. Mol Cell Endocrinol 2008; 280:6-12. [PMID: 17945411 PMCID: PMC2211631 DOI: 10.1016/j.mce.2007.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 08/14/2007] [Accepted: 09/05/2007] [Indexed: 11/22/2022]
Abstract
Epidermal gamma delta T cells (gammadeltaT) and Langerhans cells (LC) are immune cells altered by exposure to ultraviolet radiation (UVB), a powerful stressor resulting in immune suppression. Prolactin (PRL) has been characterized as an immunomodulator, particularly during stress. In this study, we have asked whether separate administration of the 2 major forms of prolactin, unmodified and phosphorylated, to groups of 15 mice (3 experiments, each with 5 mice per treatment group) affected the number and morphology of these epidermal immune cells under control conditions, and following UV-irradiation. Under control conditions, both PRLs reduced the number of gammadeltaT, but a molecular mimic of phosphorylated PRL (S179D PRL) was more effective, resulting in a 30% reduction. In the irradiated group, however, S179D PRL was protective against a UV-induced reduction in gammadeltaT number and change in morphology (halved the reduction and normalized the morphology). In addition, S179D PRL, but not unmodified (U-PRL), maintained a normal LC:gammadeltaT ratio and sustained the dendritic morphology of LC after UV exposure. These findings suggest that S179D PRL may have an overall protective effect, countering UV-induced cellular alterations in the epidermis.
Collapse
Affiliation(s)
- Esther A. Guzmán
- The University of Texas, Houston, Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - John L. Langowski
- The University of Texas, Houston, Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Ariel De Guzman
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| | - H. Konrad Muller
- Discipline of Pathology, University of Tasmania, Hobart 7000, Australia
| | - Ameae M. Walker
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
- *Corresponding author: Ameae M. Walker, Division of Biomedical Sciences, University of California, Riverside, California 92521. Tel: 951-827-5942; Fax 951-827-5504; E mail:
| | - Laurie B. Owen
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| |
Collapse
|
31
|
Subburaju S, Aguilera G. Vasopressin mediates mitogenic responses to adrenalectomy in the rat anterior pituitary. Endocrinology 2007; 148:3102-10. [PMID: 17412807 DOI: 10.1210/en.2007-0103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To determine whether increased vasopressinergic activity during chronic stress or adrenalectomy mediates trophic changes in the corticotroph, we examined the effect of peripheral V1 receptor blockade in rats, using the antagonist, dGly[Phaa1,D-tyr(et), Lys, Arg]vasopressin (VP), on the number of pituitary cells taking up bromodeoxyuridine (BrdU) and cells containing immunoreactive ACTH (irACTH). Adrenalectomy significantly increased the number of BrdU- and ACTH-labeled cells at 3 and 6 d, and a much larger increase was observed at 28 d. Minipump infusion of V1 antagonist for 28 d, at doses blocking the increases in ACTH and corticosterone induced by exogenous VP, prevented the increases in BrdU incorporation, but not irACTH cells observed 28 d after adrenalectomy. Unexpectedly, colocalization of BrdU with ACTH-positive cells was minor (about three cells per pituitary section), and this was unaffected by adrenalectomy or V1 antagonist infusion. In contrast, adrenalectomy for 6 or 14 d failed to increase BrdU incorporation or irACTH cells in V1b receptor knockout mice while inducing the expected increase in wild-type mice. The data show that VP is required for pituitary mitogenesis after adrenalectomy but, at least in rats, not for increasing the number of corticotrophs. The lack of colocalization of ACTH in mitotic cells suggests that recruitment of corticotrophs during adrenalectomy occurs from undifferentiated cells.
Collapse
Affiliation(s)
- Sivan Subburaju
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Building 10 Room 10N262, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
32
|
Lolait SJ, Stewart LQ, Roper JA, Harrison G, Jessop DS, Young WS, O'Carroll AM. Attenuated stress response to acute lipopolysaccharide challenge and ethanol administration in vasopressin V1b receptor knockout mice. J Neuroendocrinol 2007; 19:543-51. [PMID: 17561882 PMCID: PMC1892245 DOI: 10.1111/j.1365-2826.2007.01560.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The arginine vasopressin (Avp) 1b receptor (Avpr1b) present on anterior pituitary corticotrophs is involved in the stimulation of adrenocorticotrophic hormone (ACTH) secretion, especially during times of stress. Corticotrophin-releasing hormone (CRH) is considered the major ACTH secretagogue during acute stress whereas Avp appears to be the more dominant mediator of the hypothalamic-pituitary-adrenal (HPA) axis response during chronic stress situations. To investigate the role of the Avpr1b in the HPA axis response to acute stress, we measured ACTH and corticosterone (CORT) plasma levels in Avpr1b knockout (KO) mice and wild-type controls in response to bacterial lipopolysaccharide (LPS) challenge and ethanol (EtOH) administration. Mice deficient in Avpr1b had markedly compromised plasma ACTH and CORT responses to acute (30 min) LPS, but normal ACTH and CORT response to more extended exposure (4 h) to the immune system activator. The plasma ACTH and CORT levels stimulated by intoxicating, sedative doses of EtOH (3.2 and 4 g/kg) were significantly decreased in the Avpr1b KO mice compared to wild-type littermates. Significantly higher EtOH-induced plasma ACTH and CORT secretion was measured in female than in male Avpr1b wild-type mice. There were no differences in the blood alcohol levels following acute EtOH administration in Avpr1b KO or wild-type mice of either gender. Our results clearly suggest that Avpr1b plays a significant role in the HPA axis response to acute immune stress and EtOH intoxication.
Collapse
Affiliation(s)
- S J Lolait
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
It is well known that environmental factors, such as early life events, perinatal damage, and urbanicity, which interact with multiple genes, induces persistent sensitization to stress possibly through an imbalance in interactions between dopaminergic and glutamatergic systems. This stress sensitization may be critical in the development or relapse of schizophrenia. The neural correlates of a negative mood might be impaired, resulting in stress sensitization and difficulties in social adjustment (Dr. Habel). Urbanicity is associated with later schizophrenia. Metabolic stress induces stress sensitization via dysregulation of dopaminergic and/or noradrenergic systems in activated HVA and cortical response (Dr. Marcelis). The glutamatergic regulation activates HPA axis in stress response (Dr. Zelena). Ameloblast activity in human molar's enamel slowed by exposure to stress, and the segment of enamel rods is smaller, making a particular dark line. Stress sensitization may be induced at the age of 10.5 to 11.5 years resulting from severe emotional stress at the age of 10.5 to 11.5 years (Dr. Yui). It has been reported that volume reductions in the amygdala, hippocampus, superior temporal gyrus, and anterior parietal cortex common to both patient groups may represent the vulnerability to schizophrenia, while volume loss of the prefrontal cortex, posterior parietal cortex, cingulate, insula, and fusiform cortex preferentially observed in schizophrenia may be critical for overt manifestation of psychosis (Dr. Suzuki).
Collapse
Affiliation(s)
- Kunio Yuii
- Research Institute of Asperger Disorder, Ahiya University Graduate School of Education. Rokurokuso-Machi 13-22, Ashiya, 659-8511 Hyogo, Japan
| | | | | |
Collapse
|
34
|
Aguilera G, Kiss A, Liu Y, Kamitakahara A. Negative regulation of corticotropin releasing factor expression and limitation of stress response. Stress 2007; 10:153-61. [PMID: 17514584 DOI: 10.1080/10253890701391192] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Corticotropin releasing factor (CRF) coordinates behavioral, autonomic and hormonal responses to stress. Activation of the hypothalamic pituitary adrenal (HPA) axis with stimulation of CRF and vasopressin (VP) release from hypothalamic parvocellular neurons, and consequent secretion of ACTH from the anterior pituitary and glucocorticoid from the adrenal cortex, is the major endocrine response to stress. Current evidence indicates that the main regulator of ACTH secretion in acute and chronic conditions is CRF, in spite of the fact that the selective increases in expression of parvocellular VP and pituitary VP V1b receptors observed during prolonged activation of the HPA axis have suggested that VP becomes the predominant regulator. Following CRF release, activation of CRF transcription is required to restore mRNA and peptide levels, but termination of the response is essential to prevent pathology associated with chronic elevation of CRF and glucocorticoid production. While glucocorticoid feedback plays an important role in regulating CRF expression, the relative importance of direct transcriptional repression of the CRF gene by glucocorticoids in the overall feedback mechanism is not clear. In addition to glucocorticoids, intracellular feedback mechanisms in the CRF neuron, involving induction of repressor forms of cAMP response element modulator (CREM) limit CRF transcriptional responses by competing with the positive regulator, phospho-CREB. Rapid repression of CRF transcription following stress-induced activation is likely to contribute to limiting the stress response and to preventing disorders associated with excessive CRF production.
Collapse
Affiliation(s)
- Greti Aguilera
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-1103, USA.
| | | | | | | |
Collapse
|
35
|
Lolait SJ, Stewart LQ, Jessop DS, Young WS, O'Carroll AM. The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology 2007; 148:849-56. [PMID: 17122081 PMCID: PMC2040022 DOI: 10.1210/en.2006-1309] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of arginine vasopressin (Avp) as an ACTH secretagogue is mediated by the Avp 1b receptor (Avpr1b) found on anterior pituitary corticotropes. Avp also potentiates the actions of CRH (Crh) and appears to be an important mediator of the hypothalamic-pituitary-adrenal axis response to chronic stress. To investigate the role of Avp in the hypothalamic-pituitary-adrenal axis response to stress, we measured plasma ACTH and corticosterone (CORT) levels in Avpr1b knockout (KO) mice and wild-type controls in response to two acute (restraint and insulin administration) and one form of chronic (daily restraint for 14 d) stress. No significant difference was found in the basal plasma levels of ACTH and CORT between the two genotypes. Acute restraint (30 min) increased plasma ACTH and CORT to a similar level in both the Avpr1b mutant and wild-type mice. In contrast, plasma ACTH and CORT levels induced by hypoglycemia were significantly decreased in the Avpr1b KO mice when compared with wild-type littermates. There was no difference in the ACTH response to acute and chronic restraint in wild-type mice. In the Avpr1b KO group subjected to 14 sessions of daily restraint, plasma ACTH was decreased when compared with wild-type mice. On the other hand, the CORT elevations induced by restraint did not adapt in the Avpr1b KO or wild-type mice. The data suggest that the Avpr1b is required for the normal pituitary and adrenal response to some acute stressful stimuli and is necessary only for a normal ACTH response during chronic stress.
Collapse
Affiliation(s)
- Stephen J Lolait
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom.
| | | | | | | | | |
Collapse
|
36
|
van Eijl S, van Oorschot R, Olivier B, Nijkamp FP, Bloksma N. Stress and hypothermia in mice in a nose-only cigarette smoke exposure system. Inhal Toxicol 2006; 18:911-8. [PMID: 16864409 DOI: 10.1080/08958370600822672] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In nose-only exposure systems, animals need to be restrained inside a tube, which leads to stress. Stress is known to cause hyperthermia in rodents. Chronically repeated episodes of hyperthermia could be detrimental to animal health and influence results of nose-only exposure studies. Therefore we investigated whether hyperthermia occurred in male C57BL/6J mice that were restrained for increasing lengths of time, using nosepieces held at room temperature, preheated at 37 degrees C, or thermostat controlled at different temperatures, with and without exposure to different concentrations of cigarette smoke. Body temperature, body weight, plasma corticosterone levels, and adrenal weights were recorded. Restraint using nosepieces at room temperature caused a time-dependent decrease in body temperature, which could be reversed by preheating the nosepieces to 37 degrees C. Cigarette smoke dose-dependently caused an additional decrease, which was counteracted by controlling nosepiece temperature at 38 degrees C. During 3 mo of exposure using heated nosepieces, Delta body temperature remained constant. Body weight gain did not differ between smoke-exposed and room air-breathing animals exposed using either heated or room-temperature nosepieces, but both groups gained significantly less weight, while adrenal weights were significantly and similarly increased, when compared to unrestrained littermates. Plasma corticosterone levels did not differ between the three groups. In conclusion, during restraint in nose-only exposure tubes with room temperature metal nosepieces, mice suffer a pronounced hypothermia. Preventing this by heating the nosepieces does not reduce the stress experienced by the animals.
Collapse
Affiliation(s)
- S van Eijl
- Pharmacology and Pathophysiology Group, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Kamoi K, Tanaka M, Ikarashi T, Miyakoshi M. Effect of the 2004 mid niigata prefecture earthquake on patients with endocrine disorders. Endocr J 2006; 53:511-21. [PMID: 16829705 DOI: 10.1507/endocrj.k06-022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A major earthquake (Richter scale magnitude 6.8) struck the Chuetsu district of Niigata Prefecture, Japan, a rural area with mountain villages, on October 23, 2004. Strong aftershocks (Grade 5-6 on the Japanese intensity scale, JIS) continued for 2 months. We analyzed the earthquake's impact on 229 patients with various endocrine disorders [6 central diabetes insipidus (CDI), 16 adrenal insufficiency (AI) including 5 panhypopituitarism, 10 ACTH isolated deficiency and 1 Addison's disease, 145 Graves' disease and 62 Hashimoto's disease]. The status of patients with CDI or AI was not adversely affected by the earthquake. Twenty-eight (19%) patients with Graves' disease developed more severe hyperthyroidism; the incidence of developing more severe hyperthyroidism increased with greater degrees of hyperthyroidism. Three (5%) patients with Hashimoto's disease developed increased TSH concentrations. Most patients stayed in their own houses following the first shock. The median PTSD total score for all patients was low. However, the PTSD total score in patients with CDI or Hashimoto's disease was significantly higher than in other patients, while the subscore of mental status in patients with AI was significantly much lower than in other patients. In patients with Hashimoto's disease, patients whose hypothyroidism worsened had higher total and environmental effects score than patients whose hypothyroidism remained stable. Comparing patients whose hyperthyroidism became more severe to those in whom it remained stable, as well as on multiple logistic regression analysis, serum TRAb was found to be a risk factor for developing more severe hyperthyroidism. In conclusion, our findings indicate that Graves' disease patients need to maintain their euthyroid state with a low serum TRAb titer to prevent the development of further thyroid dysfunction after an earthquake, and that all patients should continue to take their medication, since it is likely that their lives will be interrupted by environmental effects owing to earthquake-shock, especially patients with CDI or Hashimoto's disease. Due to the risk of medical facility closure during a disaster, all patients should always have a note or copy of their medical records, including medical history and medications used, to avoid relying on patients remembering their drug names and doses. Furthermore, appropriate information should be provided by all means possible, including the mass media, to affected individuals, particularly those with AI, to decrease the occurrence of adverse consequences.
Collapse
Affiliation(s)
- Kyuzi Kamoi
- The Diabetes and Endocrine & Metabolism Disease Center, Nagaoka Red Cross Hospital, Nagaoka, Niigata, Japan
| | | | | | | |
Collapse
|
38
|
Zelena D, Filaretova L, Mergl Z, Barna I, Tóth ZE, Makara GB. Hypothalamic paraventricular nucleus, but not vasopressin, participates in chronic hyperactivity of the HPA axis in diabetic rats. Am J Physiol Endocrinol Metab 2006; 290:E243-50. [PMID: 16144820 DOI: 10.1152/ajpendo.00118.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM), as chronic stress activates the hypothalamo-pituitary-adrenocortical axis. We examined whether arginine vasopressin (AVP) and the hypothalamic paraventricular nucleus (PVN) participate in DM-induced chronic stress symptoms. AVP-deficient Brattleboro or PVN-lesioned Wistar rats were used with heterozygous or sham-operated controls. The rats were studied 2 wk after a single injection of streptozotocin. The appearance of DM (enhanced water consumption and blood glucose elevation) and the chronic stress-like somatic changes (body weight decrease, thymus involution, adrenal gland hypertrophy) were not influenced by the lack of AVP. By contrast, PVN lesion significantly attenuated DM-induced thymus involution and adrenal gland hypertrophy as well as the increase in water consumption. The corticotropin-releasing hormone mRNA in PVN was diminished by DM and elevated by the lack of AVP without interaction. DM elevated the proopiomelanocortin (POMC) mRNA in the anterior lobe of the pituitary. The lack of AVP had no effect, whereas lesioning the PVN significantly diminished the elevation. The elevated basal corticosterone plasma levels detectable in DM were influenced neither by the lack of AVP nor by lesioning the PVN. Thus the lack of AVP had no influence on DM-induced chronic stress symptoms, but lesioning the PVN attenuated part of them. However, the lack of elevation in POMC mRNA after PVN lesion, together with the maintained corticosterone elevation, suggests that direct adrenal gland activation occurs in untreated DM.
Collapse
Affiliation(s)
- Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Szigony 43, Hungary.
| | | | | | | | | | | |
Collapse
|
39
|
Williamson M, Bingham B, Viau V. Central organization of androgen-sensitive pathways to the hypothalamic-pituitary-adrenal axis: implications for individual differences in responses to homeostatic threat and predisposition to disease. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1239-48. [PMID: 16214282 DOI: 10.1016/j.pnpbp.2005.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 11/28/2022]
Abstract
Despite clear evidence of the potency by which sex steroids operate on the hypothalamic-pituitary-adrenal (HPA) axis and genuine sex differences in disorders related to HPA dysfunction, the biological significance of this remains largely ignored. Stress-induced increases in circulating glucocorticoid levels serve to meet the metabolic demands of homeostatic threat head-on. Thus, the nature of the stress-adrenal axis is to protect the organism. As one develops, matures, and ages, still newer and competing physiological and environmental demands are encountered. These changing constraints are also met by shifts in sex steroid release, placing this class of steroids beyond the traditional realm of reproductive function. Here we focus on the dose-related and glucocorticoid-interactive nature by which testosterone operates on stress-induced HPA activation. This provides an overview on how to exploit these characteristics towards developing an anatomical framework of testosterone's actions in the brain, and expands upon the idea that centrally projecting arginine vasopressin circuits in the brain act to register and couple testosterone's effects on neuroendocrine and behavioural responses to stress. More generally, the work presented here underscores how a dual adrenal and gonadal systems approach assist in unmasking the bases by which individuals resist or succumb to stress.
Collapse
Affiliation(s)
- Martin Williamson
- Department of Cellular and Physiological Sciences, Division of Anatomy and Cell Biology, The University of British Columbia, 2177 Wesbrook Mall, Vancouver, Canada V6T 1Z3
| | | | | |
Collapse
|
40
|
Zelena D, Mergl Z, Makara GB. The role of vasopressin in diabetes mellitus-induced hypothalamo-pituitary-adrenal axis activation: studies in Brattleboro rats. Brain Res Bull 2005; 69:48-56. [PMID: 16464684 DOI: 10.1016/j.brainresbull.2005.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 10/18/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
Chronic diabetes mellitus (DM) induces hyperactivity of the hypothalamo-pituitary-adrenal axis (HPA). Our present study addresses the role of vasopressin (AVP) in maintaining adrenocortical responsiveness during DM. AVP-deficient mutant Brattleboro rats were used with heterozygous controls and the V2 agonist, desmopressin was infused to replace peripheral AVP. To induce DM the rats were injected by streptozotocin (STZ, 60 mg/ml/kg i.v.) and studied 2 weeks later. The acute stress stimulus was 60 min restraint. The signs of DM (the increase in water consumption and in blood glucose levels) were discovered in all rats. The diuretic effect of the lack of AVP was additional to the DM-induced osmotic diuresis. DM induced significant, chronic stress-like somatic changes on which AVP-deficiency had no effect and although desmopressin infusion normalized the water consumption and the body weight gain in AVP-deficient rats, it had no effect on DM-induced changes. The acute stress-induced plasma ACTH elevation was smaller in AVP-deficient or DM rats but these effects were not additive. Desmopressin did not normalize the decreased ACTH-elevation of AVP-deficient animals. The resting morning plasma corticosterone level was elevated both in DM and AVP-deficient rats without interaction. The restraint-induced corticosterone rise was influenced neither by the lack of AVP nor by DM and the basal and stress-induced prolactin levels were smaller in DM rats without any effect of AVP-deficiency. In conclusion, our data suggest that AVP does not play a crucial role in HPA axis regulation during DM-induced chronic stress. In contrast, the role of AVP seems to be more important during acute stress, however, it is restricted to the ACTH regulation. According to the water consumption data diabetes insipidus seems to be an additional risk factor for DM.
Collapse
Affiliation(s)
- Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Szigony 43, Hungary.
| | | | | |
Collapse
|
41
|
Guzmán EA, Chen YH, Langowski JL, De Guzman A, Lo HL, Walter B, Muller HK, Walker AM, Owen LB. Abrogation of delayed type hypersensitivity response to Candida albicans produced by a molecular mimic of phosphorylated prolactin. J Neuroimmunol 2005; 170:31-40. [PMID: 16169603 DOI: 10.1016/j.jneuroim.2005.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Accepted: 08/15/2005] [Indexed: 11/25/2022]
Abstract
The effects of two major forms of prolactin (PRL) were examined on delayed type hypersensitivity (DTH) responses to Candida albicans. Unmodified PRL (U-PRL) had no effect on the DTH response, whereas a molecular mimic of phosphorylated PRL (S179D PRL) significantly inhibited immune responses to this robust antigen. This effect of S179D PRL was not accompanied by gross alterations in splenic T cell numbers, CD4/CD8 ratios, or T and B cell activation markers, but did produce a decrease in splenocyte apoptosis. Using gld animals, Fas ligand (FasL) was implicated in the suppressive effects of S179D PRL. Circulating IgG1 and IgG2 antibody levels were increased in response to treatment with both forms of PRL, but the effects of S179D PRL were most pronounced. Cytokine changes in the popliteal lymph nodes specific to S179D PRL treatment showed an inhibition of pro-inflammatory cytokines. In conclusion, mice treated with a molecular mimic of phosphorylated prolactin showed a profound inhibition of DTH responses to Candida correlating with an absence of GM-CSF, IL-4, and IL-13 production and a marked reduction in IL-12p70 synthesis.
Collapse
Affiliation(s)
- E A Guzmán
- The University of Texas-Houston, Graduate School of Biomedical Sciences, Houston Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zelena D, Mergl Z, Makara GB. Glutamate agonists activate the hypothalamic-pituitary-adrenal axis through hypothalamic paraventricular nucleus but not through vasopressinerg neurons. Brain Res 2005; 1031:185-93. [PMID: 15649443 DOI: 10.1016/j.brainres.2004.10.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2004] [Indexed: 11/25/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a crucial role in the stress processes. The nucleus paraventricularis hypothalami (PVN) with corticotropin-releasing hormone (CRH)-containing and arginine vasopressin (AVP)-containing neurons is the main hypothalamic component of the HPA. The glutamate, a well-known excitatory neurotransmitter, can activate the HPA inducing adrenocorticotropin hormone (ACTH) elevation. The aim of our study was to examine the involvement of PVN and especially AVP in glutamate-induced HPA activation using agonists of the N-methyl-d-aspartate (NMDA) and kainate receptors. Two approaches were used: in male Wistar rats the PVN was lesioned, and AVP-deficient homozygous Brattleboro rats were also studied. Blood samples were taken through indwelling cannula and ACTH, and corticosterone (CS) levels were measured by radioimmunoassay. The i.v. administered NMDA (5 mg/kg) or kainate (2.5 mg/kg) elevated the ACTH and CS levels already at 5 min in control (sham-operated Wistar or heterozygous Brattleboro) rats. The PVN lesion had no influence on basal ACTH and CS secretion but blocked the NMDA- or kainate-induced ACTH and CS elevations. The lack of AVP in the Brattleboro animals had no significant influence on the basal or glutamate-agonists-induced ACTH and CS elevations. Our results suggest that NMDA and kainate may activate the HPA axis at central (PVN) level and not at the level of pituitary or adrenal gland and that AVP has minor role in glutamate-HPA axis interaction. The time course of the ACTH secretion was different with NMDA or kainate. If we compared the two curves, the results were not coherent with the general view that NMDA activation requires previous kainate activation. Although it has to be mentioned that the conclusion which can be drawn is limited, the bioavailability of the compounds could be different as well.
Collapse
Affiliation(s)
- Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, PO Box 67, Hungary.
| | | | | |
Collapse
|
43
|
Thompson EL, Murphy KG, Todd JF, Martin NM, Small CJ, Ghatei MA, Bloom SR. Chronic administration of NMU into the paraventricular nucleus stimulates the HPA axis but does not influence food intake or body weight. Biochem Biophys Res Commun 2004; 323:65-71. [PMID: 15351702 DOI: 10.1016/j.bbrc.2004.08.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Indexed: 11/19/2022]
Abstract
Hypothalamic neuromedin U (NMU) appears to have a role in the regulation of appetite and the hypothalamo-pituitary-adrenal (HPA) axis. Acute administration of NMU into the paraventricular nuclei (iPVN) increases plasma adrenocorticotrophic hormone and corticosterone, and inhibits food intake in fasted rats. No studies have as yet investigated the chronic effects of centrally administered NMU. We investigated the effect of twice-daily iPVN injections of 0.3 nmol NMU for 7 days on food intake, body weight, the HPA axis, and behavior in freely fed rats. Chronic iPVN NMU was not associated with a decrease in food intake or body weight. Chronic iPVN NMU produced a typical behavioral response on day 1 and day 4 of the study, and resulted in the elevation of plasma corticosterone present 18 h after the final injection. These results suggest NMU may have a role in the regulation of the HPA axis and behavior.
Collapse
Affiliation(s)
- Emily L Thompson
- Division of Metabolic Medicine, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, London W12 ONN, UK
| | | | | | | | | | | | | |
Collapse
|