1
|
Pinto R, Magalhães A, Sousa M, Melo L, Lobo A, Barros P, Gomes JR. Bridging the Transient Intraluminal Stroke Preclinical Model to Clinical Practice: From Improved Surgical Procedures to a Workflow of Functional Tests. Front Neurol 2022; 13:846735. [PMID: 35359638 PMCID: PMC8963503 DOI: 10.3389/fneur.2022.846735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Acute ischemic stroke (AIS) remains a leading cause of mortality, despite significant advances in therapy (endovascular thrombectomy). Failure in developing novel effective therapies is associated with unsuccessful translation from preclinical studies to clinical practice, associated to inconsistent and highly variable infarct areas and lack of relevant post-stroke functional evaluation in preclinical research. To outreach these limitations, we optimized the intraluminal transient middle cerebral occlusion, a widely used mouse stroke model, in two key parameters, selection of appropriate occlusion filaments and time of occlusion, which show a significant variation in the literature. We demonstrate that commercially available filaments with short coating length (1–2 mm), together with 45-min occlusion, results in a consistent affected brain region, similar to what is observed in most patients with AIS. Importantly, a dedicated post-stroke care protocol, based on clinical practice applied to patients who had stroke, resulted in lower mortality and improved mice welfare. Finally, a battery of tests covering relevant fine motor skills, sensory functions, and learning/memory behaviors revealed a significant effect of tMCAO brain infarction, which is parallel to patient symptomatology as measured by relevant clinical scales (NIH Stroke Scale, NIHSS and modified Rankin Scale, mRS). Thus, in order to enhance translation to clinical practice, future preclinical stroke research must consider the methodology described in this study, which includes improved reproducible surgical procedure, postoperative care, and the battery of functional tests. This will be a major step s closing the gap from bench to bedside, rendering the development of novel effective therapeutic approaches.
Collapse
Affiliation(s)
- Raquel Pinto
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Magalhães
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Addiction Biology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Mafalda Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Advanced Light Microscopy Unit, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Lúcia Melo
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Andrea Lobo
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Addiction Biology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Pedro Barros
- Neurology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal.,Stroke Unit, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - João R Gomes
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Shavit-Stein E, Mindel E, Gofrit SG, Chapman J, Maggio N. Ischemic stroke in PAR1 KO mice: Decreased brain plasmin and thrombin activity along with decreased infarct volume. PLoS One 2021; 16:e0248431. [PMID: 33720950 PMCID: PMC7959388 DOI: 10.1371/journal.pone.0248431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Background Ischemic stroke is a common and debilitating disease with limited treatment options. Protease activated receptor 1 (PAR1) is a fundamental cell signaling mediator in the central nervous system (CNS). It can be activated by many proteases including thrombin and plasmin, with various down-stream effects, following brain ischemia. Methods A permanent middle cerebral artery occlusion (PMCAo) model was used in PAR1 KO and WT C57BL/6J male mice. Mice were evaluated for neurological deficits (neurological severity score, NSS), infarct volume (Tetrazolium Chloride, TTC), and for plasmin and thrombin activity in brain slices. Results Significantly low levels of plasmin and thrombin activities were found in PAR1 KO compared to WT (1.6±0.4 vs. 3.2±0.6 ng/μl, p<0.05 and 17.2±1.0 vs. 21.2±1.0 mu/ml, p<0.01, respectively) along with a decreased infarct volume (178.9±14.3, 134.4±13.3 mm3, p<0.05). Conclusions PAR1 KO mice have smaller infarcts, with lower thrombin and plasmin activity levels. These findings may suggest that modulation of PAR1 is a potential target for future pharmacological treatment of ischemic stroke.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- * E-mail:
| | - Ekaterina Mindel
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Mindel E, Weiss R, Bushi D, Gera O, Orion D, Chapman J, Shavit-Stein E. Increased brain plasmin levels following experimental ischemic stroke in male mice. J Neurosci Res 2020; 99:966-976. [PMID: 33296953 DOI: 10.1002/jnr.24764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/29/2020] [Accepted: 11/15/2020] [Indexed: 12/19/2022]
Abstract
Many coagulation factor proteases are increased in the brain during ischemic stroke. One of these proteases is plasmin. In this study we established a novel method for direct quantitative measurement of plasmin activity in male mouse brain slices using a sensitive fluorescent substrate in the presence of specific protease inhibitors. In both the ischemic and contralateral hemispheres, plasmin activity increased 3, 6, and 24 hr following stroke in comparison to healthy mice (F(3, 72) = 39.5, p < 0.0001, repeated measures ANOVA) after the induction of permanent middle cerebral artery occlusion (PMCAo). Plasmin activity was higher in the ischemic hemisphere (F(1,36) = 9.1, p = 0.005) and there was a significant interaction between time and ischemic hemisphere (F(3,36) = 4.4, p = 0.009). Plasmin activity was correlated with infarct volume (R2 = 0.5289, p = 0.0009 by Spearman). The specificity of the assay was verified utilizing tissue-type plasminogen activator (tPA)-deficient mice which, as expected, had significantly lower levels of plasmin 24 hr following ischemia compared to wild-type mice (ischemic (0.6 ± 0.23 and 1.94 ± 0.5, respectively), p = 0.049 and contralateral hemispheres (0.13 ± 0.14 and 0.75 ± 0.10, respectively), p = 0.018 by t test). There is a time-dependent increase in plasmin levels and an association of higher levels of plasmin with larger infarct volumes in an experimental stroke model. This suggests caution in the use of recombinant tPA (rtPA) and that plasmin inhibition in the brain may be a therapeutic target in acute ischemic stroke.
Collapse
Affiliation(s)
- Ekaterina Mindel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Weiss
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Doron Bushi
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Comprehensive Stroke Center, Department of Neurology, Sackler Faculty of Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Orna Gera
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Orion
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Comprehensive Stroke Center, Department of Neurology, Sackler Faculty of Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Nowak TS, Mulligan MK. Impact of C57BL/6 substrain on sex-dependent differences in mouse stroke models. Neurochem Int 2018; 127:12-21. [PMID: 30448566 DOI: 10.1016/j.neuint.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023]
Abstract
We have recently found significant variation in stroke vulnerability among substrains of C57BL/6 mice, observing that commonly used N-lineage substrains exhibit larger infarcts than C57BL/6J and related substrains. Parallel variation was also seen with respect to sex differences in stroke vulnerability, in that C57BL/6 mice of the N-lineage exhibited comparable infarct sizes in males and females, whereas infarcts tended to be smaller in females than in males of J-lineage substrains. This adds to the growing list of recognized phenotypic and genetic differences among C57BL/6 substrains. Although no previous studies have explicitly compared substrains with respect to sex differences in stroke vulnerability, unrecognized background mismatch has occurred in some studies involving control and genetically modified mice. The aims of this review are to: present the evidence for associated substrain- and sex-dependent differences in a mouse permanent occlusion stroke model; examine the extent to which the published literature in other models compares with these recent results; and consider the potential impact of unrecognized heterogeneity in substrain background on the interpretation of studies investigating the impact of genetic modifications on sex differences in stroke outcome. Substrain emerges as a critical variable to be documented in any experimental stroke study in mice.
Collapse
Affiliation(s)
- Thaddeus S Nowak
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
5
|
Bertrand L, Dygert L, Toborek M. Induction of Ischemic Stroke and Ischemia-reperfusion in Mice Using the Middle Artery Occlusion Technique and Visualization of Infarct Area. J Vis Exp 2017. [PMID: 28190061 DOI: 10.3791/54805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular disease is highly prevalent in the global population and encompasses several types of conditions, including stroke. To study the impact of stroke on tissue injury and to evaluate the effectiveness of therapeutic interventions, several experimental models in a variety of species were developed. They include complete global cerebral ischemia, incomplete global ischemia, focal cerebral ischemia, and multifocal cerebral ischemia. The model described in this protocol is based on the middle cerebral artery occlusion (MCAO) and is related to the focal ischemia category. This technique produces consistent focal ischemia in a strictly defined region of the hemisphere and is less invasive than other methods. The procedure described is performed on mice, given the availability of several genetic variants and the high number of tests standardized for mice to aid in the behavioral and neurodeficit evaluation.
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami; Miller School of Medicine, University of Miami
| | - Levi Dygert
- Miller School of Medicine, University of Miami
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami; Jerzy Kukuczka Academy of Physical Education;
| |
Collapse
|
6
|
A review on animal models of stroke: An update. Brain Res Bull 2016; 122:35-44. [PMID: 26902651 DOI: 10.1016/j.brainresbull.2016.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 01/11/2023]
Abstract
Stroke is one of the major healthcare challenges prevailing across the globe due to its significant rate of mortality and morbidity. Stroke is multifactorial in nature and involves several cellular and molecular signaling cascades that make the pathogenesis complex and treatment difficult. For a deeper understanding of the diverse pathological mechanisms and molecular & cellular cascades during stroke, animal modeling serves as a reliable and an effective tool. This also helps to develop and critically analyse various neuroprotective strategies for the mitigation of this devastating disease. Animal modeling for stroke has been revolutionized with the development of newer and more relevant models or approaches that mimic the clinical setting of stroke to a greater extent. This review analyses experimental models of stroke (ischemic and hemorrhagic) and their reliability in stroke situation. Besides this, the review also stresses upon the use of various preclinical models to understand the pathophysiological mechanisms that operate during stroke and to elucidate new, safe and effective neuroprotective agents to combat this life threatening healthcare concern.
Collapse
|
7
|
Cai Q, Xu G, Liu J, Wang L, Deng G, Liu J, Chen Z. A modification of intraluminal middle cerebral artery occlusion/reperfusion model for ischemic stroke with laser Doppler flowmetry guidance in mice. Neuropsychiatr Dis Treat 2016; 12:2851-2858. [PMID: 27843320 PMCID: PMC5098775 DOI: 10.2147/ndt.s118531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stroke is one of the common causes of death and disability in the world. The intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) model is a "gold standard" in surgical ischemic stroke models. Here, we optimized the procedure of this model by ligating on external carotid artery (ECA) stump and two ligatures prepared on internal carotid artery, which could improve the success and survival rate in mice. The results show that ECA approach was superior to common carotid artery approach. Meanwhile, we found that the exposure of pterygopalatine artery was not an essential step for MCAO/R model in mice.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| | - Gang Xu
- Department of Neurosurgery, Xiantao First People's Hospital, Xiantao
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| | - Jun Liu
- Department of Emergency, The Central Hospital of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| |
Collapse
|
8
|
Chen Y, Zhu W, Zhang W, Libal N, Murphy SJ, Offner H, Alkayed NJ. A novel mouse model of thromboembolic stroke. J Neurosci Methods 2015; 256:203-11. [PMID: 26386284 DOI: 10.1016/j.jneumeth.2015.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/28/2015] [Accepted: 09/10/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND We previously demonstrated that tissue plasminogen activator (tPA) reduces infarct size after mechanical middle cerebral artery occlusion (MCAO) in wild-type (WT) mice and transgenic mice expressing human leukocyte antigen DR2 (DR2-Tg). Clinically, tPA limits ischemic damage by dissolving the clot blocking blood flow through a cerebral artery. To mimic the clinical situation, we developed a new mouse model of thromboembolic stroke, and tested the efficacy of tPA in WT and DR2-Tg mice. New Method Autologous blood is withdrawn into a PE-8 catheter filled with 2 IU α-thrombin. After exposing the catheter briefly to air, the catheter is reintroduced into the external (ECA) and advanced into the internal carotid artery (ICA) to allow for intravascular injection of thrombin at the MCA bifurcation. To validate the model, we tested the effect of tPA on laser-Doppler perfusion (LDP) over the MCA territory and infarct size in WT and DR2-Tg mice. RESULTS The procedure results in a consistent drop in LDP, and leads to a highly reproducible ischemic lesion. When administered at 15min after thrombosis, tPA restored LDP and resulted in a significant reduction in infarct size at 24h after thrombosis in both WT and DR2-Tg. COMPARISON WITH EXISTING METHODS Our model significantly reduces surgery time, requires a single anesthesia exposure, and produces a consistent and predictable infarction, with low variability and mortality. CONCLUSION We validated the efficacy of tPA in restoring blood flow and reducing infarct in a new model of endovascular thromboembolic stroke in the mouse.
Collapse
Affiliation(s)
- Yingxin Chen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Wenbin Zhu
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Wenri Zhang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Nicole Libal
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie J Murphy
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Neuroimmunology Research, Portland VA Medical Center, Portland, OR, USA
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
9
|
El Amki M, Clavier T, Perzo N, Bernard R, Guichet PO, Castel H. Hypothalamic, thalamic and hippocampal lesions in the mouse MCAO model: Potential involvement of deep cerebral arteries? J Neurosci Methods 2015. [PMID: 26213218 DOI: 10.1016/j.jneumeth.2015.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intraluminal monofilament occlusion of the middle cerebral artery (MCAO) in mice is the most used rodent model to study the pathophysiology of stroke. However, this model often shows brain damage in regions not supplied by the MCA such as the hypothalamus, hippocampus and thalamus. Several studies have suggested some explanations on these localized infarcts. We aim to provide an alternative explanation which could allow each experimenter to better grasp the MCAO model. We propose that the MCA occlusion by the monofilament also occludes deep and small cerebral arteries arising directly from the internal carotid artery, proximally to the origin of MCA. Then, drawbacks and pitfalls of the MCAO model must be appreciated and the almost systematic risk of inducing lesions in some unwanted territories for neuroanatomical reasons, i.e. vascular connections between deep arteries and hypothalamic, thalamic and hippocampal areas in rodents has to be integrated.
Collapse
Affiliation(s)
- Mohamad El Amki
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France.
| | - Thomas Clavier
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France; Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France
| | - Nicolas Perzo
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
| | - René Bernard
- Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| | - Pierre-Olivier Guichet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
| | - Hélène Castel
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
| |
Collapse
|
10
|
Brassai A, Suvanjeiev RG, Bán EG, Lakatos M. Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res Bull 2015; 112:1-6. [DOI: 10.1016/j.brainresbull.2014.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022]
|
11
|
Orosomucoid1: Involved in vascular endothelial growth factor-induced blood-brain barrier leakage after ischemic stroke in mouse. Brain Res Bull 2014; 109:88-98. [PMID: 25264156 DOI: 10.1016/j.brainresbull.2014.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/13/2014] [Accepted: 09/16/2014] [Indexed: 11/23/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a promising candidate for the treatment of ischemic stroke. However, accumulating evidence demonstrated that VEGF could exacerbate blood-brain barrier (BBB) disruption after ischemic stroke. This study was designed to investigate the underlying mechanisms. In the present study, a transient (90 min) middle cerebral artery occlusion (MCAO) model was performed to induce ischemic stroke in mice. VEGF was administered intracerebroventricularly 3h after reperfusion. A gene expression microarray was utilized to investigate the differentially expressed genes among the sham, MCAO, and VEGF groups. A total of 3381 mRNAs were significantly altered by cerebral ischemia when compared with the sham group, and 15 of them were changed in the VEGF group when compared with the MCAO group. Among the 15 genes, orosomucoid (Orm) 1 was most sharply changed, and this gene has previously been reported to maintain the permeability of microvessels and integrity of the BBB. Results of the microarray showed that the expression of Orm1 increased after cerebral ischemia, whereas it decreased in response to VEGF, which was confirmed by real-time quantitative PCR, western blotting, immunohistochemistry, and immunofluorescence. The bioinformatics analysis indicated two NF-κB binding sites on the Orm1 promoter, and a super-shift assay verified that NF-κB could bind the Orm1 promoter. Results of the electrophoretic mobility shift assay (EMSA) revealed that VEGF inhibited the DNA-binding activity of NF-κB/p65. Furthermore, the elevated expression and activation of key members in the canonical NF-κB pathway induced by cerebral ischemia were also inhibited by VEGF treatment. In conclusion, this study demonstrated that decreasing the Orm1 expression via inhibition of the NF-κB pathway could be a possible mechanism involved in the aggravation of BBB disruption after stroke by VEGF.
Collapse
|
12
|
Gao J, Chen C, Chen JX, Wen LM, Yang GL, Duan FP, Huang ZY, Li DF, Yu DR, Yang HJ, Li SJ. Synergism and rules of the new combination drug Yiqijiedu formulae (YQJD) on ischemic stroke based on amino acids (AAs) metabolism. Sci Rep 2014; 4:5149. [PMID: 24889025 PMCID: PMC4042126 DOI: 10.1038/srep05149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
The use of combination drugs is considered to be a promising strategy to control complex diseases such as ischemic stroke. The detection of metabolites has been used as a versatile tool to reveal the potential mechanism of diverse diseases. In this study, the levels of 12 endogenous AAs were simultaneously determined quantitatively in the MCAO rat brain using RRLC-QQQ method. Seven AAs were chosen as the potential biomarkers, and using PLS-DA analysis, the effects of the new combination drug YQJD, which is composed of ginsenosides, berberine, and jasminoidin, on those 7 AAs were evaluated. Four AAs, glutamic acid, homocysteine, methionine, and tryptophan, which changed significantly in the YQJD-treated groups compared to the vehicle groups (P < 0.05), were identified and designated as the AAs to use to further explore the synergism of YQJD. The result of a PCA showed that the combination of these three drugs exhibits the strongest synergistic effect compared to other combination groups and that ginsenosides might play a pivotal role, especially when combined with jasminoidin. We successfully explored the synergetic mechanism of multi-component and provided a new method for evaluating the integrated effects of combination drugs in the treatment of complex diseases.
Collapse
Affiliation(s)
- Jian Gao
- 1] Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 [2] School of Pharmacy, Hebei University, Hebei Baoding 071002 [3]
| | - Chang Chen
- 1] Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 [2]
| | - Jian-Xin Chen
- 1] Beijing University of Chinese Medicine 100029 [2]
| | - Li-Mei Wen
- College of life science and engineering, Southwest Jiaotong University, Sichuan Chengdu 610031
| | | | | | - Zhi-Ying Huang
- School of Pharmacy, China Pharmaceutical University, Jiangsu Nanjing 210009
| | - De-Feng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700
| | - Ding-Rong Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700
| | - Shao-Jing Li
- 1] Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 [2] Beijing University of Chinese Medicine 100029
| |
Collapse
|