1
|
Sun Y, Dai X, Yang J, Chen Y, Feng J, Shi X, Li X, Liu X. Deficiency of hepatokine orosomucoid1 aggravates NAFLD progression in mice. Biochim Biophys Acta Mol Basis Dis 2025:167654. [PMID: 39756714 DOI: 10.1016/j.bbadis.2024.167654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Orosomucoid (ORM) is an important hepatokine that regulates metabolism. Previous report showed that isoform ORM2 but not ORM1 could downregulate lipogenic genes and ameliorate hepatic steatosis in obese mice, thereby categorizing ORM2 as a promising candidate for therapeutic intervention in nonalcoholic fatty liver disease (NAFLD). However, our previous studies found that mice lacking ORM1 gradually developed an obese phenotype with severe hepatic steatosis at the age of 24 weeks. Consequently, it remains imperative to further investigate the precise role of ORM1 in the context of NAFLD. The current study aims to assess the function and therapeutic prospects of ORM1 in NAFLD models induced by a high-fat diet (HFD) or a methionine- and choline-deficient diet (MCD), employing a series of loss- and gain-of-function experiments. The results showed that liver ORM levels elevated in fat NAFLD models but decreased in lean NAFLD models. Orm1-deficient mice fed either on HFD or MCD had significantly higher NAFLD activity score with more severe steatosis and ballooning, showing an aggravated NAFLD progression. However, liver-specific Orm1 overexpression in mice could not alleviate NAFLD when fed on HFD or MCD. These results suggest that systemic endogenous ORM1 is indispensable in protecting against the development of NAFLD; however, it may not serve as an effective localized therapeutic target for managing the disease.
Collapse
Affiliation(s)
- Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - XianMin Dai
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - JinRun Yang
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Yi Chen
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - JiaYi Feng
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - XiaoFei Shi
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Xiang Li
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China.
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Barriola S, Delgado-García LM, Cartas-Cejudo P, Iñigo-Marco I, Fernández-Irigoyen J, Santamaría E, López-Mascaraque L. Orosomucoid-1 Arises as a Shared Altered Protein in Two Models of Multiple Sclerosis. Neuroscience 2023; 535:203-217. [PMID: 37949310 DOI: 10.1016/j.neuroscience.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune and neurodegenerative disorder that affects the central nervous system (CNS). It is characterized by a heterogeneous disease course involving demyelination and inflammation. In this study, we utilized two distinct animal models, cuprizone (CPZ)-induced demyelination and experimental autoimmune encephalomyelitis (EAE), to replicate various aspects of the disease. We aimed to investigate the differential CNS responses by examining the proteomic profiles of EAE mice during the peak disease (15 days post-induction) and cuprizone-fed mice during the acute phase (38 days). Specifically, we focused on two different regions of the CNS: the dorsal cortex (Cx) and the entire spinal cord (SC). Our findings revealed varied glial, synaptic, dendritic, mitochondrial, and inflammatory responses within these regions for each model. Notably, we identified a single protein, Orosomucoid-1 (Orm1), also known as Alpha-1-acid glycoprotein 1 (AGP1), that consistently exhibited alterations in both models and regions. This study provides insights into the similarities and differences in the responses of these regions in two distinct demyelinating models.
Collapse
Affiliation(s)
- Sonsoles Barriola
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Ph.D. Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Lina María Delgado-García
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo UNIFESP, São Paulo 04039032, Brazil
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Ignacio Iñigo-Marco
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain.
| |
Collapse
|
3
|
Wang C, Peng L, Wang Y, Xue Y, Chen T, Ji Y, Li Y, Zhao Y, Yu S. Integrative Analysis of Single-Cell and Bulk Sequencing Data Depicting the Expression and Function of P2ry12 in Microglia Post Ischemia–Reperfusion Injury. Int J Mol Sci 2023; 24:ijms24076772. [PMID: 37047745 PMCID: PMC10095011 DOI: 10.3390/ijms24076772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
P2ry12 is a microglial marker gene. Recently, increasing evidence has demonstrated that its expression levels can vary in response to different CNS disorders and can affect microglial functions, such as polarization, plasticity, and migration. However, the expression and function of P2ry12 in microglia during ischemia–reperfusion injury (IRI) remain unclear. Here, we developed a computational method to obtain microglia-specific P2ry12 genes (MSPGs) using sequencing data associated with IRI. We evaluated the change in comprehensive expression levels of MSPGs during IRI and compared it to the expression of P2ry12 to determine similarity. Subsequently, the MSPGs were used to explore the P2ry12 functions in microglia through bioinformatics. Moreover, several animal experiments were also conducted to confirm the reliability of the results. The expression of P2ry12 was observed to decrease gradually within 24 h post injury. In response, microglia with reduced P2ry12 expression showed an increase in the expression of one receptor-encoding gene (Flt1) and three ligand-encoding genes (Nampt, Igf1, and Cxcl2). Furthermore, double-labeling immunofluorescence staining revealed that inhibition of P2ry12 blocked microglial migration towards vessels during IRI. Overall, we employ a combined computational and experimental approach to successfully explore P2ry12 expression and function in microglia during IRI.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Peng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ying Xue
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tianyi Chen
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanyan Ji
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yishan Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shanshan Yu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Hu W, Li P, Zeng N, Tan S. DIA-based technology explores hub pathways and biomarkers of neurological recovery in ischemic stroke after rehabilitation. Front Neurol 2023; 14:1079977. [PMID: 36959823 PMCID: PMC10027712 DOI: 10.3389/fneur.2023.1079977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
Objective Ischemic stroke (IS) is a common disease that causes severe and long-term neurological disability in people worldwide. Although rehabilitation is indispensable to promote neurological recovery in ischemic stroke, it is limited to providing a timely and efficient reference for developing and adjusting treatment strategies because neurological assessment after stroke treatment is mostly performed using scales and imaging. Therefore, there is an urgent need to find biomarkers that can help us evaluate and optimize the treatment plan. Methods We used data-independent acquisition (DIA) technology to screen differentially expressed proteins (DEPs) before and after ischemic stroke rehabilitation treatment, and then performed Gene Ontology (GO) and pathway enrichment analysis of DEPs using bioinformatics tools such as KEGG pathway and Reactome. In addition, the protein-protein interaction (PPI) network and modularity analysis of DEPs were integrated to identify the hub proteins (genes) and hub signaling pathways for neurological recovery in ischemic stroke. PRM-targeted proteomics was also used to validate some of the screened proteins of interest. Results Analyzing the serum protein expression profiles before and after rehabilitation, we identified 22 DEPs that were upregulated and downregulated each. Through GO and pathway enrichment analysis and subsequent PPI network analysis constructed using STRING data and subsequent Cytoscape MCODE analysis, we identified that complement-related pathways, lipoprotein-related functions and effects, thrombosis and hemostasis, coronavirus disease (COVID-19), and inflammatory and immune pathways are the major pathways involved in the improvement of neurological function after stroke rehabilitation. Conclusion Complement-related pathways, lipoprotein-related functions and effects, thrombosis and hemostasis, coronavirus disease (COVID-19), and inflammation and immunity pathways are not only key pathways in the pathogenesis of ischemic stroke but also the main pathways of action of rehabilitation therapy. In addition, IGHA1, LRG1, IGHV3-64D, and CP are upregulated in patients with ischemic stroke and downregulated after rehabilitation, which may be used as biomarkers to monitor neurological impairment and recovery after stroke.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, China
| | - Ping Li
- Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, China
| | - Nianju Zeng
- Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, China
- *Correspondence: Nianju Zeng
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Sheng Tan
| |
Collapse
|
5
|
Zhu Y, Huang D, Zhao Z, Lu C. Bioinformatic analysis identifies potential key genes of epilepsy. PLoS One 2021; 16:e0254326. [PMID: 34555062 PMCID: PMC8459949 DOI: 10.1371/journal.pone.0254326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Epilepsy is one of the most common brain disorders worldwide. It is usually hard to be identified properly, and a third of patients are drug-resistant. Genes related to the progression and prognosis of epilepsy are particularly needed to be identified. Methods In our study, we downloaded the Gene Expression Omnibus (GEO) microarray expression profiling dataset GSE143272. Differentially expressed genes (DEGs) with a fold change (FC) >1.2 and a P-value <0.05 were identified by GEO2R and grouped in male, female and overlapping DEGs. Functional enrichment analysis and Protein-Protein Interaction (PPI) network analysis were performed. Results In total, 183 DEGs overlapped (77 ups and 106 downs), 302 DEGs (185 ups and 117 downs) in the male dataset, and 750 DEGs (464 ups and 286 downs) in the female dataset were obtained from the GSE143272 dataset. These DEGs were markedly enriched under various Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. 16 following hub genes were identified based on PPI network analysis: ADCY7, C3AR1, DEGS1, CXCL1 in male-specific DEGs, TOLLIP, ORM1, ELANE, QPCT in female-specific DEGs and FCAR, CD3G, CLEC12A, MOSPD2, CD3D, ALDH3B1, GPR97, PLAUR in overlapping DEGs. Conclusion This discovery-driven study may be useful to provide a novel insight into the diagnosis and treatment of epilepsy. However, more experiments are needed in the future to study the functional roles of these genes in epilepsy.
Collapse
Affiliation(s)
- Yike Zhu
- Department of Respiratory Medicine, Hainan General Hospital, Haikou, China
| | - Dan Huang
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Zhongyan Zhao
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Chuansen Lu
- Department of Neurology, Hainan General Hospital, Haikou, China
- * E-mail:
| |
Collapse
|
6
|
Zhao N, Xu X, Jiang Y, Gao J, Wang F, Xu X, Wen Z, Xie Y, Li J, Li R, Lv Q, Liu Q, Dai Q, Liu X, Xu G. Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation. J Neuroinflammation 2019; 16:168. [PMID: 31426811 PMCID: PMC6699078 DOI: 10.1186/s12974-019-1556-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Functions of astrocytes in the rehabilitation after ischemic stroke, especially their impacts on inflammatory processes, remain controversial. This study uncovered two phenotypes of astrocytes, of which one was helpful, and the other harmful to anoxic neurons after brain ischemia. Methods We tested the levels of inflammatory factors including TNF-a, IL-6, IL-10, iNOS, IL-1beta, and CXCL10 in primary astrocytes at 0 h, 6 h, 12 h, 24 h, and 48 h after OGD, grouped the hypoxia astrocytes into iNOS-positive (iNOS(+)) and iNOS-negative (iNOS(−)) by magnetic bead sorting, and then co-cultured the two groups of cells with OGD-treated neurons for 24 h. We further verified the polarization of astrocytes in vivo by detecting the co-localization of iNOS, GFAP, and Iba-1 on MCAO brain sections. Lentivirus overexpressing LCN2 and LCN2 knockout mice (#024630. JAX, USA) were used to explore the role of LCN2 in the functional polarization of astrocytes. 7.0-T MRI scanning and the modified Neurological Severity Score (mNSS) were used to evaluate the neurological outcomes of the mice. Results After oxygen-glucose deprivation (OGD), iNOS mRNA expression increased to the peak at 6 h in primary astrocytes, but keep baseline expression in LCN2-knockout astrocytes. In mice with transient middle cerebral artery occlusion (tMCAO), LCN2 was proved necessary for astrocyte classical activation. In LCN2 knockout mice with MCAO, no classically activated astrocytes were detected, and smaller infarct volumes and better neurological functions were observed. Conclusions The results indicated a novel pattern of astrocyte activation after ischemic stroke and lipocalin-2 (LCN2) plays a key role in polarizing and activating astrocytes.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xiaomeng Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.,Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Roud, Shanghai, 20025, China
| | - Yongjun Jiang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Jie Gao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Fang Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xiaohui Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Zhuoyu Wen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Juanji Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Rongrong Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qiushi Lv
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qiliang Dai
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
7
|
Song T, Zhu Y, Zhang P, Zhao M, Zhao D, Ding S, Zhu S, Li J. Integrated Proteomics and Metabolomic Analyses of Plasma Injury Biomarkers in a Serious Brain Trauma Model in Rats. Int J Mol Sci 2019; 20:ijms20040922. [PMID: 30791599 PMCID: PMC6412711 DOI: 10.3390/ijms20040922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Diffuse axonal injury (DAI) is a prevalent and serious brain injury with significant morbidity and disability. However, the underlying pathogenesis of DAI remains largely unclear, and there are still no objective laboratory-based tests available for clinicians to make an early diagnosis of DAI. An integrated analysis of metabolomic data and proteomic data may be useful to identify all of the molecular mechanisms of DAI and novel potential biomarkers. Therefore, we established a rat model of DAI, and applied an integrated UPLC-Q-TOF/MS-based metabolomics and isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to obtain unbiased profiling data. Differential analysis identified 34 metabolites and 43 proteins in rat plasma of the injury group. Two metabolites (acetone and 4-Hydroxybenzaldehyde) and two proteins (Alpha-1-antiproteinase and Alpha-1-acid glycoprotein) were identified as potential biomarkers for DAI, and all may play important roles in the pathogenesis of DAI. Our study demonstrated the feasibility of integrated metabolomics and proteomics method to uncover the underlying molecular mechanisms of DAI, and may help provide clinicians with some novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tao Song
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China.
| | - Ying Zhu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China.
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Dezhang Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing 401331, China.
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Astrup LB, Skovgaard K, Rasmussen RS, Iburg TM, Agerholm JS, Aalbæk B, Jensen HE, Nielsen OL, Johansen FF, Heegaard PMH, Leifsson PS. Staphylococcus aureus infected embolic stroke upregulates Orm1 and Cxcl2 in a rat model of septic stroke pathology. Neurol Res 2019; 41:399-412. [DOI: 10.1080/01616412.2019.1573455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lærke Boye Astrup
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Kerstin Skovgaard
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Rune Skovgaard Rasmussen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine Moesgaard Iburg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jørgen Steen Agerholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bent Aalbæk
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ole Lerberg Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Flemming Fryd Johansen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Mikael Helweg Heegaard
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Páll Skúli Leifsson
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
9
|
Shao X, Bao W, Hong X, Jiang H, Yu Z. Identification and functional analysis of differentially expressed genes associated with cerebral ischemia/reperfusion injury through bioinformatics methods. Mol Med Rep 2018; 18:1513-1523. [PMID: 29901134 PMCID: PMC6072188 DOI: 10.3892/mmr.2018.9135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/18/2018] [Indexed: 12/27/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury results in detrimental complications. However, little is known about the underlying molecular mechanisms involved in the reperfusion stage. The aim of the present study was to identify a gene expression profile associated with cerebral ischemia/reperfusion injury. The GSE23160 dataset, which comprised data from sham control samples and post-I/R injury brain tissues that were obtained using a middle cerebral artery occlusion (MCAO) model at 2, 8 and 24 h post-reperfusion, was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) in the MCAO samples compared with controls were screened using the GEO2R web tool. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for DEGs was performed using the online tool DAVID. Furthermore, a protein-protein interaction (PPI) network was constructed using the STRING database and Cytoscape software. In total, 32 DEGs at 2 h post-reperfusion, 39 DEGs at 8 h post-reperfusion and 91 DEGs at 24 h post-reperfusion were identified, while 15 DEGs were common among all three groups. GO analysis revealed that the DEGs at all three time-points were enriched in ‘chemotaxis’ and ‘inflammatory response’ terms, while KEGG pathway analysis demonstrated that DEGs were significantly enriched in the ‘chemokine signaling pathway’. Furthermore, following PPI network construction, Cxcl1 was identified as the only hub gene that was common among all three time-points. In conclusion, the present study has demonstrated a global view of the potential molecular differences following cerebral I/R injury and may contribute to an improved understanding of the reperfusion stage, which may ultimately aid in the development of future clinical strategies.
Collapse
Affiliation(s)
- Xiaoli Shao
- Department of Neurology, Chun'an First People's Hospital, Zhejiang People's Hospital Chun'an Branch, Hangzhou, Zhejiang 311700, P.R. China
| | - Wangxiao Bao
- Department of Neurology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoqin Hong
- Department of Neurology, Chun'an First People's Hospital, Zhejiang People's Hospital Chun'an Branch, Hangzhou, Zhejiang 311700, P.R. China
| | - Huihua Jiang
- Department of Neurology, Chun'an First People's Hospital, Zhejiang People's Hospital Chun'an Branch, Hangzhou, Zhejiang 311700, P.R. China
| | - Zhi Yu
- Department of Neurology, Chun'an First People's Hospital, Zhejiang People's Hospital Chun'an Branch, Hangzhou, Zhejiang 311700, P.R. China
| |
Collapse
|
10
|
Wan JJ, Qin Z, Liu X. ORM Elevation in Response to Cognitive Impairment Is an Accompanying Phenomenon. CNS Neurosci Ther 2018; 22:723-4. [PMID: 27390178 DOI: 10.1111/cns.12586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jing-Jing Wan
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Qin
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Zhang DD, Jin C, Zhang YT, Gan XD, Zou MJ, Wang YY, Fu WL, Xu T, Xing WW, Xia WR, Xu DG. A novel IL-1RA-PEP fusion protein alleviates blood-brain barrier disruption after ischemia-reperfusion in male rats. J Neuroinflammation 2018; 15:16. [PMID: 29334965 PMCID: PMC5769540 DOI: 10.1186/s12974-018-1058-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Current options to treat clinical relapse in inflammatory central nervous system (CNS) conditions such as cerebral ischemia-reperfusion injury are limited, and agents that are more effective are required. Disruption of the blood-brain barrier is an early feature of lesion formation that correlates with clinical exacerbation and facilitates the entry of inflammatory medium and inflammatory cells. Interleukin-1 receptor antagonist (IL-1RA) is a naturally occurring anti-inflammatory antagonist of the interleukin-1 (IL-1) family. The broad-spectrum anti-inflammatory effects of IL-1RA have been investigated against various forms of neuroinflammation. However, the effect of IL-1RA on blood-brain barrier disruption following ischemia-reperfusion has not been reported. METHODS In this study, we investigated the effects of IL-1RA and a novel protein (IL-1RA-PEP) that was fused to IL-1RA with a cell penetrating peptide, on blood-brain barrier integrity, in male rats subjected to transient middle cerebral artery occlusion. RESULTS After intravenous administration, IL-1RA-PEP (50 mg/kg) penetrated cerebral tissues more effectively than IL-1RA. Moreover, it preserved blood-brain barrier integrity, attenuated changes in expression and localization of tight junction proteins and matrix metalloproteinases, and enhanced angiogenesis in ischemic brain tissue. Further study suggested that the effects of IL-1RA-PEP on preserving blood-brain barrier integrity might be closely correlated with the p65/NF-κB pathway, as evidenced by the effects of the inhibitor JSH-23. CONCLUSIONS Collectively, our results demonstrated that IL-1RA-PEP could effectively penetrate the brain of rats with middle cerebral artery occlusion and ameliorate blood-brain barrier disruption. This finding might represent its novel therapeutic potential in the treatment of the cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dong-Dong Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Chen Jin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Ya-Tao Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Xiang-Dong Gan
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Min-Ji Zou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Yuan-Yuan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Wen-Liang Fu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Tao Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Wei-Wei Xing
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Wen-Ron Xia
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Dong-Gang Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China. .,Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| |
Collapse
|
12
|
MicroRNA-1906, a Novel Regulator of Toll-Like Receptor 4, Ameliorates Ischemic Injury after Experimental Stroke in Mice. J Neurosci 2017; 37:10498-10515. [PMID: 28924010 DOI: 10.1523/jneurosci.1139-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 02/03/2023] Open
Abstract
Toll-like receptor 4 (TLR4) is a proinflammatory cascade initiator in poststroke inflammation. In this study, miR-1906, a novel regulator of TLR4, was identified via in silico analysis and microRNA profiling in male adult mice and its expression was then quantitated in the ischemic hemisphere. We found miR-1906 to be significantly brain enriched in the ischemic hemisphere and even more drastically enriched in the peri-infarct regions. Furthermore, in vitro experiments demonstrated that, during oxygen-glucose deprivation, miR-1906 expression was increased in glial cells but decreased in neurons. Surprisingly, despite the augmentation of intracellular abundance, miR-1906 expression in extracellular vesicles was decreased in astrocyte cell culture supernatants, suggesting reduced sources of miR-1906 from glia to neurons. When exogenous miR-1906 was administered, decreased TLR4 protein expression was observed both in vitro and in vivo Using Cy3 labeling, exogenous miR-1906 uptake by astrocytes, microglia, and neurons was visualized directly in vivo Reduced infarct volumes and improved functional outcomes were observed in middle cerebral artery occlusion mice receiving miR-1906. However, the protective effects of miR-1906 disappeared with the genetic knock-out of TLR4, suggesting that TLR4 is a major target of miR-1906 through which the microRNA exerts its therapeutic effects.SIGNIFICANCE STATEMENT The current study identified miR-1906 as a novel specific regulator of Toll-like receptor 4 (TLR4) and depicted its distinct expression patterns in different cerebral regions and cell types during ischemic attack. Therefore, the therapeutic supplementation of miR-1906 can be beneficial in the modulation of poststroke inflammation. Using Cy3 labeling, exogenous miR-1906 expression was visualized and shown to enter astrocytes, microglia, and neurons successfully in vivo Supplemental therapeutic miR-1906 resulted in reduced TLR4 expression and improved outcomes after middle cerebral artery occlusion in a mouse model, but its neuroprotective function was TLR4 dependent, suggesting that TLR4 is a major target of miR-1906.
Collapse
|
13
|
Wang W, Li M, Wang Y, Wang Z, Zhang W, Guan F, Chen Q, Wang J. GSK-3β as a target for protection against transient cerebral ischemia. Int J Med Sci 2017; 14:333-339. [PMID: 28553165 PMCID: PMC5436475 DOI: 10.7150/ijms.17514] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022] Open
Abstract
Stroke remains the leading cause of death and disability worldwide. This fact highlights the need to search for potential drug targets that can reduce stroke-related brain damage. We showed recently that a glycogen synthase kinase-3β (GSK-3β) inhibitor attenuates tissue plasminogen activator-induced hemorrhagic transformation after permanent focal cerebral ischemia. Here, we examined whether GSK-3β inhibition mitigates early ischemia-reperfusion stroke injury and investigated its potential mechanism of action. We used the rat middle cerebral artery occlusion (MCAO) model to mimic transient cerebral ischemia. At 3.5 h after MCAO, cerebral blood flow was restored, and rats were administered DMSO (vehicle, 1% in saline) or GSK-3β inhibitor TWS119 (30 mg/kg) by intraperitoneal injection. Animals were sacrificed 24 h after MCAO. TWS119 treatment reduced neurologic deficits, brain edema, infarct volume, and blood-brain barrier permeability compared with those in the vehicle group. TWS119 treatment also increased the protein expression of β-catenin and zonula occludens-1 but decreased β-catenin phosphorylation while suppressing the expression of GSK-3β. These results indicate that GSK-3β inhibition protects the blood-brain barrier and attenuates early ischemia-reperfusion stroke injury. This protection may be related to early activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Yuefei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Zhongyu Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
14
|
van den Berg CB, Duvekot JJ, Güzel C, Hansson SR, de Leeuw TG, Steegers EAP, Versendaal J, Luider TM, Stoop MP. Elevated levels of protein AMBP in cerebrospinal fluid of women with preeclampsia compared to normotensive pregnant women. Proteomics Clin Appl 2016; 11. [PMID: 27615121 DOI: 10.1002/prca.201600082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/03/2016] [Accepted: 09/08/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE To investigate the cerebrospinal fluid (CSF) proteome of patients with preeclampsia (PE) and normotensive pregnant women, in order to provide a better understanding of brain involvement in PE. EXPERIMENTAL DESIGN Ninety-eight CSF samples (43 women with PE and 55 normotensive controls) were analyzed by LC-MS/MS proteome profiling. CSF was obtained during the spinal puncture before caesarean delivery. RESULTS Eight proteins were higher abundant and 17 proteins were lower abundant in patients with PE. The most significantly differentially abundant protein was protein AMBP (alpha-1-microglobulin/bikunin precursor). This finding was validated by performing an ELISA experiment (p = 0.002). CONCLUSIONS AND CLINICAL RELEVANCE The current study showed a clear difference between the protein profiles of CSF from patients with PE and normotensive pregnant women. Protein AMBP is a precursor of a heme-binding protein that counteracts the damaging effects of free hemoglobin, which may be related to the presence of free hemoglobin in CSF. Protein levels showed correlations with clinical symptoms during pregnancy and postpartum. To our knowledge, this is the first LC-MS/MS proteome profiling study on a unique set of CSF samples from (severe) preeclamptic patients and normotensive pregnant women.
Collapse
Affiliation(s)
- Caroline B van den Berg
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Johannes J Duvekot
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Coşkun Güzel
- Department of Neurology, Neuro-Oncology, Clinical and Cancer Proteomics Laboratory, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas G de Leeuw
- Department of Anaesthesiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Johannes Versendaal
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Neuro-Oncology, Clinical and Cancer Proteomics Laboratory, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marcel P Stoop
- Department of Neurology, Neuro-Oncology, Clinical and Cancer Proteomics Laboratory, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Sun Y, Yang Y, Qin Z, Cai J, Guo X, Tang Y, Wan J, Su DF, Liu X. The Acute-Phase Protein Orosomucoid Regulates Food Intake and Energy Homeostasis via Leptin Receptor Signaling Pathway. Diabetes 2016; 65:1630-41. [PMID: 27207522 DOI: 10.2337/db15-1193] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/11/2016] [Indexed: 11/13/2022]
Abstract
The acute-phase protein orosomucoid (ORM) exhibits a variety of activities in vitro and in vivo, notably modulation of immunity and transportation of drugs. We found in this study that mice lacking ORM1 displayed aberrant energy homeostasis characterized by increased body weight and fat mass. Further investigation found that ORM, predominantly ORM1, is significantly elevated in sera, liver, and adipose tissues from the mice with high-fat diet (HFD)-induced obesity and db/db mice that develop obesity spontaneously due to mutation in the leptin receptor (LepR). Intravenous or intraperitoneal administration of exogenous ORM decreased food intake in C57BL/6, HFD, and leptin-deficient ob/ob mice, which was absent in db/db mice and was significantly reduced in mice with arcuate nucleus (ARC) LepR knockdown, whereas enforced expression of ORM1 in ARC significantly decreased food intake, body weight, and serum insulin level. Furthermore, we found that ORM is able to bind directly to LepR and activate the receptor-mediated JAK2-STAT3 signaling in hypothalamus tissue and GT1-7 cells, which was derived from hypothalamic tumor. These data indicated that ORM could function through LepR to regulate food intake and energy homeostasis in response to nutrition status. Modulating the expression of ORM is a novel strategy for the management of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Yang Sun
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yili Yang
- Laboratory of Translational Medicine, Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Zhen Qin
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jinya Cai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiuming Guo
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jingjing Wan
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Integrated Analysis of Expression Profile Based on Differentially Expressed Genes in Middle Cerebral Artery Occlusion Animal Models. Int J Mol Sci 2016; 17:ijms17050776. [PMID: 27213359 PMCID: PMC4881595 DOI: 10.3390/ijms17050776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
Stroke is one of the most common causes of death, only second to heart disease. Molecular investigations about stroke are in acute shortage nowadays. This study is intended to explore a gene expression profile after brain ischemia reperfusion. Meta-analysis, differential expression analysis, and integrated analysis were employed on an eight microarray series. We explored the functions and pathways of target genes in gene ontology (GO) enrichment analysis and constructed a protein-protein interaction network. Meta-analysis identified 360 differentially expressed genes (DEGs) for Mus musculus and 255 for Rattus norvegicus. Differential expression analysis identified 44 DEGs for Mus musculus and 21 for Rattus norvegicus. Timp1 and Lcn2 were overexpressed in both species. The cytokine-cytokine receptor interaction and chemokine signaling pathway were highly enriched for the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. We have exhibited a global view of the potential molecular differences between middle cerebral artery occlusion (MCAO) animal model and sham for Mus musculus or Rattus norvegicus, including the biological process and enriched pathways in DEGs. This research helps contribute to a clearer understanding of the inflammation process and accurate identification of ischemic infarction stages, which might be transformed into a therapeutic approach.
Collapse
|
17
|
Min JW, Hu JJ, He M, Sanchez RM, Huang WX, Liu YQ, Bsoul NB, Han S, Yin J, Liu WH, He XH, Peng BW. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 2015; 99:38-50. [PMID: 26187393 DOI: 10.1016/j.neuropharm.2015.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 01/25/2023]
Abstract
Previous studies have demonstrated that the early suppression of HIF-1α after hypoxia-ischemia (HI) injury provides neuroprotection. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside), an HIF-1α inhibitor, is a c-glycosylated flavone that has been identified in medicinal plants. Therefore, we hypothesized that treatment with vitexin would protect against HI brain injury. Newborn rat pups were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2 at 37 °C). Vitexin (30, 45 or 60 mg/kg) was administered intraperitoneally at 5 min or 3 h after HI. Vitexin, administered 5 min after HI, was neuroprotective as seen by decreased infarct volume evaluated at 48 h post-HI. This neuroprotection was removed when vitexin was administered 3 h after HI. Neuronal cell death, blood-brain barrier (BBB) integrity, brain edema, HIF-1α and VEGF protein levels were evaluated using a combination of Nissl staining, IgG staining, brain water content, immunohistochemistry and Western blot at 24 and 48 h after HI. The long-term effects of vitexin were evaluated by brain atrophy measurement, Nissl staining and neurobehavioral tests. Vitexin (45 mg/kg) ameliorated brain edema, BBB disruption and neuronal cell death; Upregulation of HIF-1α by dimethyloxalylglycine (DMOG) increased the BBB permeability and brain edema compared to HI alone. Vitexin attenuated the increase in HIF-1α and VEGF. Vitexin also had long-term effects of protecting against the loss of ipsilateral brain and improveing neurobehavioral outcomes. In conclusion, our data indicate early HIF-1α inhibition with vitexin provides both acute and long-term neuroprotection in the developing brain after neonatal HI injury.
Collapse
Affiliation(s)
- Jia-Wei Min
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jiang-Jian Hu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Miao He
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Russell M Sanchez
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Neuroscience Institute, Scott & White Hospital, & Central Texas Veterans Health Care System, Temple, TX, USA
| | - Wen-Xian Huang
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yu-Qiang Liu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Najeeb Bassam Bsoul
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Guo Q, Zhong M, Xu H, Mao X, Zhang Y, Lin N. A Systems Biology Perspective on the Molecular Mechanisms Underlying the Therapeutic Effects of Buyang Huanwu Decoction on Ischemic Stroke. Rejuvenation Res 2015; 18:313-25. [PMID: 25687091 DOI: 10.1089/rej.2014.1635] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ischemic stroke is the leading cause of adult disability worldwide. The outcome is worse in older patients, especially in terms of disability. Buyang Huanwu decoction (BHD), a famous traditional Chinese medicine formula, has been used extensively in the treatment of ischemic stroke for centuries. However, its pharmacological mechanisms have not been fully elucidated. In this study, 82 putative targets for 411 composite compounds contained in BHD were predicted on the basis of our previously developed target prediction system. On the basis of large-scale molecular docking, more than 80% compound-putative target pairs had medium to strong binding efficiency. The pharmacological networks of BHD were built according to relationships among herbs, putative targets, and known therapeutic targets for ischemic stroke, and 121 major nodes were identified by calculating three topological features-degree, node betweenness, and closeness. Importantly, the pathway enrichment analysis identified several signaling pathways involved with major putative targets of BHD, such as the calcium signaling pathway, vascular smooth muscle contraction, and nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway, which have not hitherto been reported. These data are expected to help find new therapeutic effects of BHD and optimize clinical use of this formula. Collectively, our study developed a comprehensive systems approach integrating drug target prediction and network and functional analyses to reveal the relationships of the herbs in BHD with their putative targets, and for the first time with ischemic stroke-related pathway systems. This is a pilot study based on bioinformatics analysis; thus, further experimental studies are required to validate our findings.
Collapse
Affiliation(s)
- Qiuyan Guo
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Micun Zhong
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Mao
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|