1
|
Adeyomoye OI, Adetunji JB, Olaniyan OT, Adetunji CO, Ebenezer OO. Effects of Ficus exasperata on neurotransmission and expression of BDNF, tau, ACHE and BACE in diabetic rats. Metabol Open 2024; 24:100333. [PMID: 39691470 PMCID: PMC11650316 DOI: 10.1016/j.metop.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Diabetes mellitus, a chronic metabolic disorder, has significant global health implications, particularly due to its neurological complications, such as diabetic neuropathy. This condition increases the risk of neurodegenerative diseases by affecting peripheral nerves and cognition. Ficus exasperata, known for its neuroprotective properties, shows promise as a therapeutic option for addressing these complications. This study evaluates the effects of methanol extract of Ficus exasperata (MEFE) on neurotransmission and the expression of Tau, brain-derived neurotrophic factor (BDNF), acetylcholinesterase (ACHE), and Beta-Site Amyloid Precursor Protein Cleaving Enzyme (BACE) in alloxan-induced diabetic Wistar rats. The controlled experimental design involved 20 Wistar rats divided into four groups (n = 5): control, diabetic untreated, diabetes + MEFE (200 mg/kg), and diabetes + insulin (0.3 IU). The methanol extract was prepared using cold maceration, and an aliquot was subjected to gas chromatography-mass spectrometry. Constituents of MEFE were docked with neurologic receptors. Blood glucose levels were measured using the glucose oxidase method, and neurotransmitter levels, antioxidants, oxidative stress markers, and the expression of Tau, BDNF, ACHE, and BACE were assessed using standard procedures and qRT-PCR. Data were analyzed using one-way ANOVA at P < 0.05. Results indicated that MEFE significantly reduced fasting blood glucose levels compared to untreated diabetic rats. In silico docking identified kaur-16-ene, a constituent of MEFE, as having the highest binding affinity for NMDA, TrkB, mAchR and nAchR receptors, indicating its neuroprotective potential. MEFE also enhanced antioxidant enzyme levels (SOD, GPx, catalase) while reducing oxidative stress markers (MDA, 8-OHdG). Gene expression analysis revealed that MEFE modulates the expression of Tau, BDNF, ACHE, and BACE, suggesting its potential to influence neurodegenerative pathways associated with diabetic neuropathy. Ficus exasperata demonstrates significant therapeutic potential in managing diabetic neuropathy and related cognitive impairments by modulating neurotransmission, protein expression, and antioxidant defenses.
Collapse
|
2
|
Dafny N, Elizondo GM, Perez-Vasquez C. Differential Impact of Serotonin Signaling Methylphenidate on Young versus Adult: Insights from Behavioral and Dorsal Raphe Nucleus Neuronal Recordings from Freely Behaving Rats. Int J Mol Sci 2024; 25:8082. [PMID: 39125652 PMCID: PMC11311813 DOI: 10.3390/ijms25158082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Methylphenidate (MPD) remains a cornerstone pharmacological intervention for managing ADHD, yet its increasing usage among ordinary youth and adults outside clinical contexts necessitates a thorough investigation into its developmental effects. This study seeks to simultaneously investigate the behavioral and neuronal changes within the dorsal raphe (DR) nucleus, a center of serotonergic neurons in the mammalian brain, before and after the administration of varying doses of acute and chronic MPD in freely behaving young and adult rats implanted with DR recording electrodes. Wireless neuronal and behavioral recording systems were used over 10 consecutive experimental days. Eight groups were examined: saline, 0.6, 2.5, and 10.0 mg/kg MPD for both young and adult rats. Six daily MPD injections were administered on experimental days 1 to 6, followed by a three-day washout period and MPD re-administration on experimental day 10 (ED10). The analysis of neuronal activity recorded from 504 DR neurons (DRNs) in young rats and 356 DRNs in adult rats reveals significant age-dependent differences in acute and chronic MPD responses. This study emphasizes the importance of aligning electrophysiological evaluations with behavioral outcomes following extended MPD exposure, elucidating the critical role of DRNs and serotonin signaling in modulating MPD responses and delineating age-specific variations in young versus adult rat models.
Collapse
Affiliation(s)
- Nachum Dafny
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Gloria M. Elizondo
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Cruz Perez-Vasquez
- Physiology Department Medical School, National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Yuan A, Claussen C, Jones Z, Tang B, Dafny N. Methylphenidate induces a different response in the dorsal raphe as compared to ventral tegmental area and locus coeruleus: behavioral and concomitant neuronal recordings in adult rats. J Neural Transm (Vienna) 2023; 130:1579-1599. [PMID: 37391573 DOI: 10.1007/s00702-023-02665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Methylphenidate (MPD) is a psychostimulant used to treat attention deficit hyperactivity disorder. MPD exerts its neurocognitive effects through increasing concentrations of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in the neuronal synapse. This study recorded from adult freely behaving rats a total of 1170 neurons, 403 from the ventral tegmental area (VTA), 409 from locus coeruleus (LC), and 356 from dorsal raphe (DR) nucleus, which are the main sources of DA, NE, and 5-HT to the mesocorticolimbic circuitry, respectively. Electrophysiological and behavioral activities were recorded simultaneously following acute and repetitive (chronic) saline or 0.6, 2.5, or 10.0 mg/kg MPD. The uniqueness of this study is the evaluation of neuronal activity based on the behavioral response to chronic MPD. Animals received daily saline or MPD administration on experimental days 1-6 (ED1-6), followed by a 3-day wash-out period, and then MPD rechallenge on ED10. Each chronic MPD dose elicits behavioral sensitization in some animals, while in others, behavioral tolerance. Neuronal excitation following chronic MPD was observed in brains areas of animals exhibiting behavioral sensitization, while neuronal attenuation following chronic MPD was observed in those animals expressing behavioral tolerance. DR neuronal activity was most affected in response to acute and chronic MPD administration and responded differently compared to the neurons recorded from VTA and LC neurons at all doses. This suggests that although not directly related, DR and 5-HT are involved in the acute and chronic effects of MPD in adult rats, but exhibit a different role in response to MPD.
Collapse
Affiliation(s)
- Anthony Yuan
- Department of Neurobiology and Anatomy, McGovern Medical School at University of Texas Health Sciences Center, 6431 Fannin Street, MSB 7.208, Houston, TX, 77030-2501, USA
| | - Catherine Claussen
- Department of Neurobiology and Anatomy, McGovern Medical School at University of Texas Health Sciences Center, 6431 Fannin Street, MSB 7.208, Houston, TX, 77030-2501, USA
| | - Zachary Jones
- Department of Neurobiology and Anatomy, McGovern Medical School at University of Texas Health Sciences Center, 6431 Fannin Street, MSB 7.208, Houston, TX, 77030-2501, USA
| | - Bin Tang
- Department of Neurobiology and Anatomy, McGovern Medical School at University of Texas Health Sciences Center, 6431 Fannin Street, MSB 7.208, Houston, TX, 77030-2501, USA
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, McGovern Medical School at University of Texas Health Sciences Center, 6431 Fannin Street, MSB 7.208, Houston, TX, 77030-2501, USA.
| |
Collapse
|
4
|
Yuan A, Kharas N, King N, Yang P, Dafny N. Methylphenidate cross-sensitization with amphetamine is dose dependent but not age dependent. Behav Brain Res 2023; 438:114178. [PMID: 36341913 DOI: 10.1016/j.bbr.2022.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/29/2022]
Abstract
Psychostimulants such as methylphenidate (MPD) and amphetamine (AMP) are often prescribed to young children and adolescents to treat behavioral disorders, or used to improve their intellectual performance in our competitive society. This is concerning as the temporal effects of how MPD exposure at a young age influences the response to MPD and AMP administration later in adulthood remains unclear. The objective of this study was to test whether MPD has the characteristics of substances that elicit behavioral symptoms of dependence and whether those effects are influenced by the initial age of MPD exposure. Three control and nine experimental groups of male rats were used. They were exposed to repetitive (chronic) 0.6, 2.5, or 10.0 mg/kg MPD in adolescence only, adulthood only, or adolescence and adulthood respectively. Then all groups were subsequently re-challenged with a single AMP dose in adulthood to test whether cross-sensitization between MPD and AMP was expressed, potentially as a result of prior MPD consumption. Exposure to 2.5 mg/kg and 10.0 mg/kg MPD in adolescence and adulthood or in adulthood alone led to cross-sensitization with AMP while exposure to 0.6 mg/kg MPD in adolescence and adulthood or in adulthood alone did not lead to cross-sensitization with AMP. Thus, these results indicate that MPD cross-sensitization with AMP is dose dependent.
Collapse
Affiliation(s)
- Anthony Yuan
- Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School, 6431 Fannin Street, Houston TX 77030, United States
| | - Natasha Kharas
- Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School, 6431 Fannin Street, Houston TX 77030, United States
| | - Nicholas King
- Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School, 6431 Fannin Street, Houston TX 77030, United States
| | - Pamela Yang
- Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School, 6431 Fannin Street, Houston TX 77030, United States
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School, 6431 Fannin Street, Houston TX 77030, United States.
| |
Collapse
|
5
|
Idrees I, Bellato A, Cortese S, Groom MJ. The effects of stimulant and non-stimulant medications on the autonomic nervous system (ANS) functioning in people with ADHD: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 144:104968. [PMID: 36427764 DOI: 10.1016/j.neubiorev.2022.104968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
We carried out a systematic review and meta-analysis to investigate the effects of stimulant and non-stimulant medications on autonomic functioning in people with ADHD (PROSPERO: CRD42020212439). We searched (9th August 2021) PsycInfo, MEDLINE, EMBASE, Web of Science and The Cochrane Library, for randomised and non-randomised studies reporting indices of autonomic activity, (electrodermal, pupillometry and cardiac), pre- and post-medication exposure in people meeting DSM/ICD criteria for ADHD. In the narrative syntheses, we included 5 electrodermal studies, 1 pupillometry study and 57 studies investigating heart rate and blood pressure. In the meta-analyses, 29 studies were included on blood pressure and 32 on heart rate. Administration of stimulants, and to a lesser degree, non-stimulants increased heart rate and blood pressure in people with ADHD. Similarly, an upregulation of arousal, reflected in increased electrodermal activity and pupil diameter was observed following stimulant use. Yet, the methodological diversity of studies presented in this review reinforces the need for more standardised and rigorous research to fully understand the relationship between arousal, medication, and behaviour in ADHD.
Collapse
Affiliation(s)
- Iman Idrees
- Academic Unit of Mental Health & Clinical Neurosciences, School of Medicine, Institute of Mental Health, University of Nottingham, Nottingham, UK.
| | - Alessio Bellato
- School of Psychology, University of Nottingham Malaysia, Malaysia
| | - Samuele Cortese
- Academic Unit of Mental Health & Clinical Neurosciences, School of Medicine, Institute of Mental Health, University of Nottingham, Nottingham, UK; Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| | - Madeleine J Groom
- Academic Unit of Mental Health & Clinical Neurosciences, School of Medicine, Institute of Mental Health, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Characterisation of methylphenidate-induced excitation in midbrain dopamine neurons, an electrophysiological study in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110406. [PMID: 34339759 DOI: 10.1016/j.pnpbp.2021.110406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/12/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
Methylphenidate (MPH) is a drug routinely used for patients with attention deficit and hyperactivity disorder (ADHD). Concerns arise about psychostimulant use, with dramatic increases in prescriptions. Besides, antipsychotic drugs are often administered in combination with MPH. In this study, we examine the consequences of MPH exposure in combination with dopamine D2 receptor antagonism (eticlopride) on midbrain dopaminergic neurons in anaesthetised rodents, using in vivo extracellular single-cell electrophysiology. As expected, we show that methylphenidate (2 mg/kg, i.v.) decreases the firing and bursting activities of ventral tegmental area (VTA) dopamine neurons, an effect that is reversed with eticlopride (0.2 mg/kg, i.v.). However, using such a paradigm, we observed higher firing and bursting activities than under baseline conditions. Furthermore, we demonstrate that such an effect is dependent on dual alpha-1 and dopamine D1 receptors, as well as glutamatergic transmission, through glutamate N-Methyl-D-aspartate (NMDA) receptor activation. Chronic MPH treatment during adolescence greatly dampens MPH-induced excitatory effects measured at adulthood. To conclude, we demonstrated here that a combination of methylphenidate and a dopamine D2 receptor antagonist produced long-lasting consequences on midbrain dopamine neurons, via glutamatergic-dependent mechanisms.
Collapse
|
7
|
Dafny N. Immunotherapy as a treatment to confront the ongoing opioid epidemic- A review. JOURNAL OF CELLULAR AND MOLECULAR IMMUNOLOGY 2022; 1:20-27. [PMID: 36624866 PMCID: PMC9825804 DOI: 10.46439/immunol.1.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Substance use disorders continue to be major medical and social problems worldwide. The use of opiate has grown substantially over the past three decades reaching the dimensions of a global epidemic. Current drug treatments have many limitations: long treatment times, dependency on treatment medications, relapses after treatment, high costs of treatment, and non-adherence by affected persons. Most of the available drug treatments for opiate addiction belong to the opioid family. Some worry that the availability of the drugs may simply cause substituting one opioid medication for another. Immunotherapy has a great potential of becoming an additional therapeutic strategy in the treatment of addiction. Immunotherapy also prevents overdose of treatment drugs. This monograph reviews preclinical studies of immunotherapy and experiments using treatments with three different immunomodifiers that were able to significantly attenuate the severity of opioid withdrawal symptoms in morphine dependent animals. These immunotherapy treatments are short, and will prevent relapse of opioid dependency and toxicity.
Collapse
|
8
|
Moriya R, Kanamaru M, Okuma N, Yoshikawa A, Tanaka KF, Hokari S, Ohshima Y, Yamanaka A, Honma M, Onimaru H, Kikuchi T, Izumizaki M. Optogenetic activation of DRN 5-HT neurons induced active wakefulness, not quiet wakefulness. Brain Res Bull 2021; 177:129-142. [PMID: 34563634 DOI: 10.1016/j.brainresbull.2021.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
There has been a long-standing controversy regarding the physiological role of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) in sleep/wake architecture. Some studies have reported that 5-HT acts as a sleep-promoting agent, but several studies have suggested that DRN 5-HT neurons function predominantly to promote wakefulness and inhibit rapid eye movement (REM) sleep. Furthermore, recent studies have reported that there is a clear neurobiological difference between a waking state that includes alertness and active exploration (i.e., active wakefulness) and a waking state that is devoid of locomotion (i.e., quiet wakefulness). These states have also been shown to differ clinically in terms of memory consolidation. However, the effects of 5-HT neurons on the regulation of these two different waking states have not been fully elucidated. In the present study, we attempted to examine the physiological role of DRN 5-HT neurons in various sleep/wake states using optogenetic methods that allowed manipulation of cell-type specific neuronal activation with high temporal and anatomical precision. We crossed TPH2-tTA and TetO-ChR2(C128S) mice to obtain mice with channelrhodopsin-2 (ChR2) [C128S]-expressing central 5-HT neurons, and we activated DRN-5HT neurons or medullary 5-HT neurons. Optogenetic activation of DRN 5-HT neurons caused rapid transition from non-REM sleep to active wakefulness, not quiet wakefulness, whereas activation of medullary 5-HT neurons did not appear to affect sleep/wake states or locomotor activity. Our results may shed light on the physiological role of DRN 5-HT neurons in sleep/wake architecture and encourage further investigations of the cortical functional connectivity involved in sleep/wake state regulation.
Collapse
Affiliation(s)
- Rika Moriya
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 757-1 Asahimachi-dori, Chuo-ku, Niigata, Niigata 951-8520, Japan
| | - Mitsuko Kanamaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Naoki Okuma
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akira Yoshikawa
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Satoshi Hokari
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 757-1 Asahimachi-dori, Chuo-ku, Niigata, Niigata 951-8520, Japan
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 757-1 Asahimachi-dori, Chuo-ku, Niigata, Niigata 951-8520, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 757-1 Asahimachi-dori, Chuo-ku, Niigata, Niigata 951-8520, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
9
|
The prefrontal cortex and the caudate nucleus respond conjointly to methylphenidate (Ritalin). Concomitant behavioral and neuronal recording study. Brain Res Bull 2020; 157:77-89. [PMID: 31987926 DOI: 10.1016/j.brainresbull.2019.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/15/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023]
Abstract
Methylphenidate (MPD) is commonly used to treat attention-deficit hyperactivity disorder (ADHD). Recently, it is being abused for cognitive enhancement and recreation leading to concerns regarding its addictive potential. The prefrontal cortex (PFC) and caudate nucleus (CN) are two of the brain structures involved in the motive/reward circuit most affected by MPD and are also thought to be responsible for ADHD phenomena. This study is unique in that it investigated acute and chronic, dose-response MPD exposure on animals' behavior activity concomitantly with PFC and CN neuronal circuitry in freely behaving adult animals without the interference of anesthesia. Further, it compared acute and chronic MPD action on over 1,000 subcortical and cortical neurons simultaneously, allowing for a more accurate interpretation of drug action on corticostriatal neuronal circuitry. For this experiment, four groups of animals were used: saline (control), 0.6, 2.5, and 10.0 mg/kg MPD following acute and repetitive exposure. The data shows that the same MPD dose elicits behavioral sensitization in some animals and tolerance in others and that the PFC and CN neuronal activity correlates with the animals' behavioral responses to MPD. The expression of sensitization and tolerance are experimental biomarkers indicating that a drug has addictive potential. In general, a greater percentage of CN units responded to both acute and chronic MPD exposure as compared to PFC units. Dose response differences between the PFC and the CN units were observed. The dichotomy that some PFC and CN units responded to the same MPD dose by excitation and other units by attenuation in neuronal firing rate is discussed. In conclusion, to understand the mechanism of action of the drug, it is essential to study, simultaneously, on more than one brain site, the electrophysiological and behavioral effects of acute and chronic drug exposure, as sensitization and tolerance are experimental biomarkers indicating that a drug has addictive potential. The behavioral and neuronal data obtained from this study indicates that chronic MPD exposure results in behavioral and biochemical changes consistent with a substance abuse disorder.
Collapse
|
10
|
Exposure to methylphenidate in adolescence and adulthood modulates cross-sensitization to amphetamine in adulthood in three genetically variant female rat strains. Behav Brain Res 2019; 362:36-45. [DOI: 10.1016/j.bbr.2018.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/30/2018] [Accepted: 12/08/2018] [Indexed: 12/16/2022]
|
11
|
Salman T, Nawaz S, Waraich RS, Haleem DJ. Repeated administration of methylphenidate produces reinforcement and downregulates 5-HT-1A receptor expression in the nucleus accumbens. Life Sci 2019; 218:139-146. [DOI: 10.1016/j.lfs.2018.12.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
|
12
|
Hsu SPC, Wang DY, Min MY, Fu YS. Long-term challenge of methylphenidate changes the neuronal population and membrane property of dopaminergic neuron in rats. Neurochem Int 2019; 122:187-195. [DOI: 10.1016/j.neuint.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 11/02/2018] [Indexed: 01/08/2023]
|
13
|
Venkataraman SS, Claussen C, Joseph M, Dafny N. Concomitant behavioral and PFC neuronal activity recorded following dose-response protocol of MPD in adult male rats. Brain Res Bull 2017; 130:125-137. [DOI: 10.1016/j.brainresbull.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022]
|