1
|
Liu Y, Xing H, Zhang Y, Song Y. The Endocannabinoid System in Alzheimer's Disease: A Network Meta-Analysis. J Neurosci Res 2024; 102:e25380. [PMID: 39245959 DOI: 10.1002/jnr.25380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
The findings concerning the association between endocannabinoid system (ECS) and Alzheimer's disease (AD) exhibited inconsistencies when examining the expression levels of endocannabinoids. This study aimed to provide a comprehensive summary of the studies regarding alterations of the ECS in AD. Six databases were thoroughly searched for literature to select relevant studies investigating the ECS in AD, including changes in cannabinoid receptors (CB1R and CB2R), endocannabinoids (2-AG and AEA), and their associated enzymes (FAAH and MAGL). Traditional meta-analysis evaluated the expression levels of the ECS in AD, and the results showed no significant differences in ECS components between healthy controls and AD patients. However, subgroup analysis revealed significantly lower expression levels of CB1R in AD than in controls, particularly in studies using western blot (SMD = -0.88, p < 0.01) and in studies testing CB1R of frontal cortex (SMD = -1.09, p < 0.01). For studies using HPLC, the subgroup analysis indicated significantly higher 2-AG levels in AD than in controls (SMD = 0.46, p = 0.02). Network meta-analysis examined the rank of ECS alterations in AD compared to controls, and the findings revealed that 2-AG and MAGL exhibited the largest increase and CB1R showed the largest decrease relative to the control group. Based on the findings of traditional meta-analysis and network meta-analysis, we proposed that AD patients may present decreased expression levels of CB1R and increased expression levels of 2-AG and its degrading enzyme MAGL. Our results may contribute to the growing body of research supporting the therapeutic potential of ECS modulation in the management of AD.
Collapse
Affiliation(s)
- Yu Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Xing
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Song
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Effect of Docosahexaenoic Acid Encapsulation with Whey Proteins on Rat Growth and Tissue Endocannabinoid Profile. Nutrients 2023; 15:4622. [PMID: 37960275 PMCID: PMC10650154 DOI: 10.3390/nu15214622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Modifying the food structure allows a nutrient to be delivered differently, which can modify not only its digestion process but also its subsequent metabolism. In this study, rats received 3 g of omelette daily containing docosahexaenoic acid (DHA) as crude oil or previously encapsulated with whey proteins, whereas a control group received a DHA-free omelette. The results showed that DHA encapsulation markedly induced a different feeding behaviour so animals ate more and grew faster. Then, after four weeks, endocannabinoids and other N-acyl ethanolamides were quantified in plasma, brain, and heart. DHA supplementation strongly reduced endocannabinoid derivatives from omega-6 fatty acids. However, DHA encapsulation had no particular effect, other than a great increase in the content of DHA-derived docosahexaenoyl ethanolamide in the heart. While DHA supplementation has indeed shown an effect on cannabinoid profiles, its physiological effect appears to be mediated more through more efficient digestion of DHA oil droplets in the case of DHA encapsulation. Thus, the greater release of DHA and other dietary cannabinoids present may have activated the cannabinoid system differently, possibly more locally along the gastrointestinal tract. However, further studies are needed to evaluate the synergy between DHA encapsulation, fasting, hormones regulating food intake, and animal growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédérique Pédrono
- National Research Institute for Agriculture, Food and Environment (INRAE), L’Institut Agro Rennes-Angers, Science and Technology of Milk and Egg (STLO), 35042 Rennes, France; (J.W.); (J.O.); (Y.L.G.); (F.B.); (D.D.)
| |
Collapse
|
3
|
Womersley JS, du Plessis M, Greene MC, van den Heuwel LL, Kinyanda E, Seedat S. Advances in the molecular neurobiology of posttraumatic stress disorder from global contexts: A systematic review of longitudinal studies. Glob Ment Health (Camb) 2023; 10:e62. [PMID: 37854422 PMCID: PMC10579657 DOI: 10.1017/gmh.2023.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/25/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
Trauma exposure is prevalent globally and is a defining event for the development of posttraumatic stress disorder (PTSD), characterised by intrusive thoughts, avoidance behaviours, hypervigilance and negative alterations in cognition and mood. Exposure to trauma elicits a range of physiological responses which can interact with environmental factors to confer relative risk or resilience for PTSD. This systematic review summarises the findings of longitudinal studies examining biological correlates predictive of PTSD symptomology. Databases (Pubmed, Scopus and Web of Science) were systematically searched using relevant keywords for studies published between 1 January 2021 and 31 December 2022. English language studies were included if they were original research manuscripts or meta-analyses of cohort investigations that assessed longitudinal relationships between one or more molecular-level measures and either PTSD status or symptoms. Eighteen of the 1,042 records identified were included. Studies primarily included military veterans/personnel, individuals admitted to hospitals after acute traumatic injury, and women exposed to interpersonal violence or rape. Genomic, inflammation and endocrine measures were the most commonly assessed molecular markers and highlighted processes related to inflammation, stress responding, and learning and memory. Quality assessments were done using the Systematic Appraisal of Quality in Observational Research, and the majority of studies were rated as being of high quality, with the remainder of moderate quality. Studies were predominantly conducted in upper-income countries. Those performed in low- and middle-income countries were not broadly representative in terms of demographic, trauma type and geographic profiles, with three out of the four studies conducted assessing only female participants, rape exposure and South Africa, respectively. They also did not generate multimodal data or use machine learning or multilevel modelling, potentially reflecting greater resource limitations in LMICs. Research examining molecular contributions to PTSD does not adequately reflect the global burden of the disorder.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Extramural Unit, Stellenbosch University, Cape Town, South Africa
| | - Morne du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Extramural Unit, Stellenbosch University, Cape Town, South Africa
| | - M Claire Greene
- Program on Forced Migration and Health, Heilbrunn Department of Population and Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Leigh L van den Heuwel
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Extramural Unit, Stellenbosch University, Cape Town, South Africa
| | - Eugene Kinyanda
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Extramural Unit, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Khavandi M, Rao PPN, Beazely MA. Differential Effects of Endocannabinoids on Amyloid-Beta Aggregation and Toxicity. Int J Mol Sci 2023; 24:911. [PMID: 36674424 PMCID: PMC9861930 DOI: 10.3390/ijms24020911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The regulation and metabolism of the endocannabinoid system has received extensive attention for their potential neuroprotective effect in neurodegenerative diseases such as Alzheimer's disease (AD), which is characterized by amyloid β (Aβ) -induced cell toxicity, inflammation, and oxidative stress. Using in vitro techniques and two cell lines, the mouse hippocampus-derived HT22 cells and Chinese hamster ovary (CHO) cells expressing human cannabinoid receptor type 1 (CB1), we investigated the ability of endocannabinoids to inhibit Aβ aggregation and protect cells against Aβ toxicity. The present study provides evidence that endocannabinoids N-arachidonoyl ethanol amide (AEA), noladin and O-arachidonoyl ethanolamine (OAE) inhibit Aβ42 aggregation. They were able to provide protection against Aβ42 induced cytotoxicity via receptor-mediated and non-receptor-mediated mechanisms in CB1-CHO and HT22 cells, respectively. The aggregation kinetic experiments demonstrate the anti-Aβ aggregation activity of some endocannabinoids (AEA, noladin). These data demonstrate the potential role and application of endocannabinoids in AD pathology and treatment.
Collapse
Affiliation(s)
| | | | - Michael A. Beazely
- School of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
5
|
Vicente-Acosta A, Ceprian M, Sobrino P, Pazos MR, Loría F. Cannabinoids as Glial Cell Modulators in Ischemic Stroke: Implications for Neuroprotection. Front Pharmacol 2022; 13:888222. [PMID: 35721207 PMCID: PMC9199389 DOI: 10.3389/fphar.2022.888222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is the second leading cause of death worldwide following coronary heart disease. Despite significant efforts to find effective treatments to reduce neurological damage, many patients suffer from sequelae that impair their quality of life. For this reason, the search for new therapeutic options for the treatment of these patients is a priority. Glial cells, including microglia, astrocytes and oligodendrocytes, participate in crucial processes that allow the correct functioning of the neural tissue, being actively involved in the pathophysiological mechanisms of ischemic stroke. Although the exact mechanisms by which glial cells contribute in the pathophysiological context of stroke are not yet completely understood, they have emerged as potentially therapeutic targets to improve brain recovery. The endocannabinoid system has interesting immunomodulatory and protective effects in glial cells, and the pharmacological modulation of this signaling pathway has revealed potential neuroprotective effects in different neurological diseases. Therefore, here we recapitulate current findings on the potential promising contribution of the endocannabinoid system pharmacological manipulation in glial cells for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Ceprian
- ERC Team, PGNM, INSERM U1315, CNRS UMR5261, University of Lyon 1, University of Lyon, Lyon, France
| | - Pilar Sobrino
- Departamento de Neurología, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Frida Loría
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| |
Collapse
|
6
|
Boullon L, Abalo R, Llorente-Berzal Á. Cannabinoid Drugs-Related Neuroprotection as a Potential Therapeutic Tool Against Chemotherapy-Induced Cognitive Impairment. Front Pharmacol 2021; 12:734613. [PMID: 34867342 PMCID: PMC8632779 DOI: 10.3389/fphar.2021.734613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023] Open
Abstract
In recent years, and particularly associated with the increase of cancer patients’ life expectancy, the occurrence of cancer treatment sequelae, including cognitive impairments, has received considerable attention. Chemotherapy-induced cognitive impairments (CICI) can be observed not only during pharmacological treatment of the disease but also long after cessation of this therapy. The lack of effective tools for its diagnosis together with the limited treatments currently available for alleviation of the side-effects induced by chemotherapeutic agents, demonstrates the need of a better understanding of the mechanisms underlying the pathology. This review focuses on the comprehensive appraisal of two main processes associated with the development of CICI: neuroinflammation and oxidative stress, and proposes the endogenous cannabinoid system (ECS) as a new therapeutic target against CICI. The neuroprotective role of the ECS, well described in other cognitive-related neuropathologies, seems to be able to reduce the activation of pro-inflammatory cytokines involved in the neuroinflammatory supraspinal processes underlying CICI. This review also provides evidence supporting the role of cannabinoid-based drugs in the modulation of oxidative stress processes that underpin cognitive impairments, and warrant the investigation of endocannabinoid components, still unknown, that may mediate the molecular mechanism behind this neuroprotective activity. Finally, this review points forward the urgent need of research focused on the understanding of CICI and the investigation of new therapeutic targets.
Collapse
Affiliation(s)
- Laura Boullon
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de La Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
- Unidad Asociada I+D+i Del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Madrid, Spain
- Working Group of Basic Sciences in Pain and Analgesia of the Spanish Pain Society (Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de La Sociedad Española Del Dolor), Madrid, Spain
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
- *Correspondence: Álvaro Llorente-Berzal,
| |
Collapse
|
7
|
Estrada JA, Contreras I. Endocannabinoid Receptors in the CNS: Potential Drug Targets for the Prevention and Treatment of Neurologic and Psychiatric Disorders. Curr Neuropharmacol 2021; 18:769-787. [PMID: 32065105 PMCID: PMC7536826 DOI: 10.2174/1570159x18666200217140255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system participates in the regulation of CNS homeostasis and functions, including neurotransmission, cell signaling, inflammation and oxidative stress, as well as neuronal and glial cell proliferation, differentiation, migration and survival. Endocannabinoids are produced by multiple cell types within the CNS and their main receptors, CB1 and CB2, are expressed in both neurons and glia. Signaling through these receptors is implicated in the modulation of neuronal and glial alterations in neuroinflammatory, neurodegenerative and psychiatric conditions, including Alzheimer’s, Parkinson’s and Huntington’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke, epilepsy, anxiety and depression. The therapeutic potential of endocannabinoid receptors in neurological disease has been hindered by unwelcome side effects of current drugs used to target them; however, due to their extensive expression within the CNS and their involvement in physiological and pathological process in nervous tissue, they are attractive targets for drug development. The present review highlights the potential applications of the endocannabinoid system for the prevention and treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- José Antonio Estrada
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Irazú Contreras
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
8
|
In vivo Bidirectional Modulation of Cannabinoid on the Activity of Globus Pallidus in Rats. Neuroscience 2021; 468:123-138. [PMID: 34129911 DOI: 10.1016/j.neuroscience.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Endocannabinoids are bioactive substances which participate in central motor control. The globus pallidus (GP) is a major nucleus in the basal ganglia circuit, which plays an important function in movement regulation. Both cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R) are expressed in the GP suggesting GP as a main action area of endocannabinoids. To investigate the direct electrophysiological and behavioral effects of cannabinoids in GP, in vivo single unit extracellular recordings and behavioral tests were performed in rats. Administration of WIN 55,212-2 exerted three neuronal response patterns from all sampled neurons of GP, including (1) increase of the firing rate; (2) decrease of the firing rate; (3) increase and then decrease of the firing rate. Selectively blocking CB1R by AM 251 decreased the firing rate and increased the firing rate. Selectively blocking CB2R by AM 630 did not change the firing rate significantly, which suggested that endocannabinoids modulated the spontaneous firing activity of pallidal neurons mainly via CB1R. Furthermore, co-application of AM 251, but not AM 630, blocked WIN 55,212-2-induced modulation of firing activity of pallidal neurons. Finally, both haloperidol-induced postural behavioral test and elevated body swing test (EBST) showed that unilateral microinjection of WIN 55,212-2 mainly induced contralateral-biased swing and deflection behaviors. Meanwhile, AM 251 produced opposite effect. The present in vivo study revealed that cannabinoids produced complicated electrophysiological and behavioral effects in the GP, which further demonstrated that the GP is a major functional region of endocannabinoid.
Collapse
|
9
|
Novosadova E, Antonov S, Arsenyeva E, Kobylanskiy A, Vanyushina Y, Malova T, Khaspekov L, Bobrov M, Bezuglov V, Tarantul V, Illarioshkin S, Grivennikov I. Neuroprotective and neurotoxic effects of endocannabinoid-like compounds, N-arachidonoyl dopamine and N-docosahexaenoyl dopamine in differentiated cultures of induced pluripotent stem cells derived from patients with Parkinson's disease. Neurotoxicology 2020; 82:108-118. [PMID: 33248189 DOI: 10.1016/j.neuro.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022]
Abstract
The prominent protective effects in diverse neuron injury paradigms exerted by cannabinoids and in particular their endogenously produced species render the endocannabinoid system a promising molecular target in the treatment of neurodegenerative diseases. However, the effects of individual endocannabinoids in human cells remain poorly investigated. Neural derivatives of human induced pluripotent stem cells (iPSC) offer unique opportunities for studying the neuroprotective compounds and development of patient-specific treatment. For the first time the cytotoxic and neuroprotective effects endocannabinoids N-arachidonoyl dopamine (N-ADA) and N-docosahexaenoyl dopamine (N-DDA) were assessed in human neural progenitors and dopamine neurons derived from iPSCs of healthy donors and patients with Parkinson's disease. While the short-term treatment with the investigated compounds in 0.1-10 μM concentration range exerted no toxicity in these cell types, the long-term exposure to 0.1-5 μM N-ADA or N-DDA reduced the survival of human neural progenitors. At the same time, both N-ADA and N-DDA protected neural progenitors and terminally differentiated neurons both from healthy donors and patients with Parkinson's disease against oxidative stress induced by hydrogen peroxide. The observed dramatic difference in the mode of action of N-acyl dopamines points on the possible existence of novel pathogenic mechanism of neurodegeneration induced by prolonged uncompensated production of these substances within neuronal tissue and should also be considered as a precaution in the future development of N-acyl dopamine-based therapeutic drugs.
Collapse
Affiliation(s)
- Ekaterina Novosadova
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Stanislav Antonov
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Elena Arsenyeva
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Andrey Kobylanskiy
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Yulia Vanyushina
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Tatyana Malova
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | | | - Mikhail Bobrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia; Kulakov Recearh Center of Obstetrics, Gynecology and Perinatology of Ministry of Health of the Russian Federation 117997 Moscow, Russia.
| | - Vladimir Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia.
| | - Vyacheslav Tarantul
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia
| | | | - Igor Grivennikov
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| |
Collapse
|