1
|
Lou L, Yu W, Cheng Y, Lin Q, Jiang Y, Wang D, Che L, Du M, Wang S, Zhen H. Quercetin can improve anesthesia induced neuroinflammation and cognitive dysfunction by regulating miR-138-5p/ LCN2. BMC Anesthesiol 2025; 25:21. [PMID: 39794698 PMCID: PMC11720507 DOI: 10.1186/s12871-024-02876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Anesthesia can lead to functional cognitive impairment, which can seriously affect postoperative recovery. To investigate the effect and mechanism of quercetin (Que) in anesthetized rats, the study provided a new therapeutic idea for the prevention of cognitive dysfunction caused by anesthesia. METHODS Cognitively impaired rats were constructed using Isoflurane (ISO) anesthesia and treated with Que. The capacity of the rats to learn and remember was tested using the Morris water maze test. Rat hippocampal tissues were collected and analyzed for inflammatory factor concentration and miR-138-5p expression using ELISA and qRT-PCR, respectively, and the targeting link between miR-138-5p and LCN2 was verified by dual luciferase reporter. RESULTS Que treatment was found to improve ISO-induced cognitive dysfunction and inhibit the level of hippocampal inflammatory factors in rats. miR-138-5p was down-regulated in rats with cognitive dysfunction, while Que treatment increased miR-138-5p expression. The study found that knockdown miR-138-5p can reverse the positive effects of Que therapy, aggravate cognitive dysfunction, and promote the secretion of TNF-α, IL-1β, and IL-6 in the hippocampus. In addition, LCN2, a target gene of miR-138-5p, was significantly up-regulated in the hippocampus after ISO induction. CONCLUSION Que may inhibit ISO-induced hippocampal neuroinflammation and ameliorate functional cognitive deficits in rats by modulating miR-138-5p/ LCN2.
Collapse
Affiliation(s)
- Linjie Lou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanning Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ying Cheng
- Department of Anesthesiology and Surgery, Dongying District People's Hospital, Dongying, 257000, China
| | - Quan Lin
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, No.30, Jinan Road, Dongying, 257000, China
| | - Yanyan Jiang
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, 257000, China
| | - Dalong Wang
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, No.30, Jinan Road, Dongying, 257000, China
| | - Lei Che
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, No.30, Jinan Road, Dongying, 257000, China
| | - Meiqing Du
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, No.30, Jinan Road, Dongying, 257000, China
| | - Shuai Wang
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, No.30, Jinan Road, Dongying, 257000, China.
| | - Haining Zhen
- Department of Neurosurgery, Xijing Hospital, No. 127, Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
2
|
Zhai S, Li Y, Guo A, Zhao W, Mou C. Up-regulation of miR-490-3p improves learning/memory disability of sevoflurane exposure by relieving neuroinflammation. Toxicol Res (Camb) 2025; 14:tfae226. [PMID: 39790359 PMCID: PMC11707532 DOI: 10.1093/toxres/tfae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Our study focused on the potential mechanism of microRNA-490-3p (miR-490-3p) on learning/memory disability of rats resulting from sevoflurane (Sev). The rat model of cognitive dysfunction was established by infection with miR-490-3p mimic and Sev-exposure. Morris water maze and open field test assay were used for the assessment of cognitive deficits. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction assays were used for the measurements of neuroinflammatory cytokines and inflammatory-related genes in respective order. Bioinformatics analysis was employed for the predictive miR-490-3p-related genes. The targeted interaction was verified via dual-luciferase reporter assay. A significant decline of miR-490-3p was discovered in rats with Sev treatment, while the levels were up-regulated in rats with infection miR-490-3p pretreatment (P < 0.001). For Sev-induced rats, the stay time in the target quadrant was shorten, while distance travelled lengthened significantly with the control group by comparison (P < 0.001). Notably, an increased time of the escape latency and a decreased number of platform crossings were found in the Sev group, which alleviated by infection with miR-490-3p mimic pretreatment (P < 0.001). Moreover, the neuroinflammatory cytokines were elevated in the Sev group, the effects of which were recovered via miR-490-3p pretreatment (P < 0.001). Bioinformatics analysis predicted the miR-490-3p-associated genes. CDK1 (Cyclin-dependent kinase 1) was a potential target gene of miR-490-3p, which confirmed by dual-luciferase reporter detection. MiR-490-3p alleviated the learning and memory deficits in Sev-treated rats via the modulation of CDK1.
Collapse
Affiliation(s)
- Shuang Zhai
- Department of Anaesthesia and Surgery, Shengli Oilfield Central Hospital, Dongying 257034, China
| | - Ying Li
- Department of Anesthesiology, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin 214400, China
| | - Aili Guo
- Department of Anaesthesia and Surgery, Shengli Oilfield Central Hospital, Dongying 257034, China
| | - Wei Zhao
- Department of Anaesthesia and Surgery, Shengli Oilfield Central Hospital, Dongying 257034, China
| | - Changliang Mou
- Department of Anaesthesia and Surgery, Shengli Oilfield Central Hospital, Dongying 257034, China
| |
Collapse
|
3
|
Shima T, Onishi H, Terashima C. Possible Involvement of Hippocampal miR-539-3p/Lrp6/Igf1r Axis for Diminished Working Memory in Mice Fed a Low-Carbohydrate and High-Protein Diet. Mol Nutr Food Res 2025; 69:e202400648. [PMID: 39707649 PMCID: PMC11744036 DOI: 10.1002/mnfr.202400648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
A low-carbohydrate and high-protein (LC-HP) diet demonstrates favorable impacts on metabolic parameters, albeit it leads to a decline in hippocampal function with the decreased expression of hippocampal insulin-like growth factor-1 receptor (IGF-1R) among healthy mice. However, the precise mechanisms underlying this phenomenon remain unexplored. Eight-week-old male C57BL/6 mice were divided into the LC-HP diet-fed group (25.1% carbohydrate, 57.2% protein, and 17.7% fat as percentages of calories; n = 10) and the control diet-fed group (58.9% carbohydrate, 24.0% protein, and 17.1% fat; n = 10). After 4 weeks, all mice underwent the Y-maze test, followed by analyses of hippocampal mRNA and miRNA expressions. We revealed that feeding the LC-HP diet suppressed working memory function and hippocampal Igf1r mRNA levels in mice. Sequencing of hippocampal miRNA demonstrated 17 upregulated and 27 downregulated miRNAs in the LC-HP diet-fed mice. Notably, we found decreased hippocampal mRNA levels of low-density lipoprotein receptor-related protein 6 (Lrp6), a gene modulated by miR-539-3p, in mice fed the LC-HP diet. Furthermore, a significant positive correlation was observed between Lrp6 and Igf1r mRNA levels in the hippocampus. These findings suggest that LC-HP diets may suppress hippocampal function via the miR-539-3p/Lrp6/Igf1r axis.
Collapse
Affiliation(s)
- Takeru Shima
- Department of Health and Physical EducationCooperative Faculty of EducationGunma UniversityMaebashiGunmaJapan
| | - Hayate Onishi
- Course of Biomedical Sciences in Graduate School of MedicineGunma UniversityMaebashiGunmaJapan
| | - Chiho Terashima
- Department of Health and Physical EducationCooperative Faculty of EducationGunma UniversityMaebashiGunmaJapan
| |
Collapse
|
4
|
Campo A, Aliquò F, Velletri T, Scuruchi M, Avenoso A, Campo GM, D'Ascola A, Campo S, De Pasquale M. Involvement of selected circulating ncRNAs in the regulation of cognitive dysfunction induced by anesthesia. Gene 2024; 928:148806. [PMID: 39074643 DOI: 10.1016/j.gene.2024.148806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Post-operative cognitive dysfunction (POCD) refers to the functional impairment of the nervous system caused by prolonged exposure to anesthetics. It is known that prolonged exposure to anesthetics may increase the risk for the development of several cognitive impairments. The drugs used to induce general anesthesia are generally safe, owing to the CNS's direct and/or indirect self-protective activity against drug-induced damages. Non-coding RNAs have recently started to gain attention to better understand the mechanism of gene regulation correlated to cellular physiology and pathology. In order to provide new insights for the neuroprotective function of highly expressed ncRNAs in the central nervous system, we investigated their expression profile in the circulating exosomes of patients exposed to anesthesia vs healthy controls. The experimental design envisaged the recruitment of 30 adult patients undergoing general anesthesia and healthy controls. The effects of anesthetics have been evaluated on miR-34a and miR-124, on the lncRNAs MALAT-1, HOTAIR, GAS5, BLACAT1, HULC, PANDA, and on YRNAs. NcRNAs miR-34a, miR-124, MALAT-1, HOTAIR, GAS5, BLACAT1, and YRNA1 are significantly overexpressed following anesthesia, while YRNA5 is significantly down regulated. Some of them have neuroprotective function, while other correlate with neurological dysfunctions. Our data suggests that, during anesthesia, the toxic action of some non-coding RNAs could be compensated by other non-coding RNAs, both synthesized by the CNS or also transported into neurons from other tissues. It is reasonable to suppose a mutual action of these molecules likely to secure the CNS from anesthetics, that drive a convoluted cascade of ncRNA-dependent biological counter-responses. Our findings are novel in the field of brain dysfunction, indicating that some of the analyzed ncRNAs, although several of their functions still need to be addressed, could be suggested as potential biomarkers and therapeutic targets in post-operative cognitive dysfunction-related processes.
Collapse
Affiliation(s)
- Adele Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Tania Velletri
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppe Maurizio Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Maria De Pasquale
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|
5
|
Wang Y, Wu D, Li D, Zhou X, Fan D, Pan J. The role of PERK-eIF2α-ATF4-CHOP pathway in sevoflurane induced neuroapoptosis and cognitive dysfunction in aged mice. Cell Signal 2023; 110:110841. [PMID: 37549858 DOI: 10.1016/j.cellsig.2023.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common surgical complication that causes additional pain in patients and affects their quality of life. To address this problem, emerging studies have focused on the POCD. Recent studies have shown that aging and anesthetic exposure are the two major risk factors for developing POCD. However, few reports described the exact molecular mechanisms underlying POCD in elderly patients. In the previous studies, the endoplasmic reticulum (ER) stress and neuroapoptosis in the hippocampus were associated with inducing POCD; however, no further information on the related signaling pathways could be disclosed. The PERK-eIF2α-ATF4-CHOP pathway is identified as the main regulatory pathway involved in ER stress and cell apoptosis. Therefore, we assume that the occurrence of POCD induced by sevoflurane inhalation may potentially result from ER stress and neuroapoptosis in the hippocampus of aged mice mediated by the PERK-eIF2α-ATF4-CHOP pathway. In our study, we found a relationship between sevoflurane inhalation concentration and memory decline in aged mice, with a 'ceiling effect'. We have confirmed that POCD induced by sevoflurane results from ER stress and neuroapoptosis in the hippocampus of aged mice, which is regulated by the over-expression of PERK-eIF2α-ATF4-CHOP pathway. Furthermore, we also showed that the dephosphorylation inhibitor of eIF2α (salubrinal) could down-regulate PERK-eIF2α-ATF4-CHOP pathway expression to inhibit ER stress and enhance the cognitive function of aged mice. In general, our study has elucidated one of the molecular mechanisms of sevoflurane-related cognitive dysfunction in aged groups and provided new strategies for treating sevoflurane-induced POCD.
Collapse
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Di Wu
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Danni Li
- Department of Anesthesiology, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu 610072, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Xueer Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Dan Fan
- Department of Anesthesiology, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu 610072, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR China.
| | - Jian Pan
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
6
|
Vasiliev GV, Ovchinnikov VY, Lisachev PD, Bondar NP, Grinkevich LN. The Expression of miRNAs Involved in Long-Term Memory Formation in the CNS of the Mollusk Helix lucorum. Int J Mol Sci 2022; 24:ijms24010301. [PMID: 36613744 PMCID: PMC9820140 DOI: 10.3390/ijms24010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mollusks are unique animals with a relatively simple central nervous system (CNS) containing giant neurons with identified functions. With such simple CNS, mollusks yet display sufficiently complex behavior, thus ideal for various studies of behavioral processes, including long-term memory (LTM) formation. For our research, we use the formation of the fear avoidance reflex in the terrestrial mollusk Helix lucorum as a learning model. We have shown previously that LTM formation in Helix requires epigenetic modifications of histones leading to both activation and inactivation of the specific genes. It is known that microRNAs (miRNAs) negatively regulate the expression of genes; however, the role of miRNAs in behavioral regulation has been poorly investigated. Currently, there is no miRNAs sequencing data being published on Helix lucorum, which makes it impossible to investigate the role of miRNAs in the memory formation of this mollusk. In this study, we have performed sequencing and comparative bioinformatics analysis of the miRNAs from the CNS of Helix lucorum. We have identified 95 different microRNAs, including microRNAs belonging to the MIR-9, MIR-10, MIR-22, MIR-124, MIR-137, and MIR-153 families, known to be involved in various CNS processes of vertebrates and other species, particularly, in the fear behavior and LTM. We have shown that in the CNS of Helix lucorum MIR-10 family (26 miRNAs) is the most representative one, including Hlu-Mir-10-S5-5p and Hlu-Mir-10-S9-5p as top hits. Moreover, we have shown the involvement of the MIR-10 family in LTM formation in Helix. The expression of 17 representatives of MIR-10 differentially changes during different periods of LTM consolidation in the CNS of Helix. In addition, using comparative analysis of microRNA expression upon learning in normal snails and snails with deficient learning abilities with dysfunction of the serotonergic system, we identified a number of microRNAs from several families, including MIR-10, which expression changes only in normal animals. The obtained data can be used for further fundamental and applied behavioral research.
Collapse
Affiliation(s)
- Gennady V. Vasiliev
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vladimir Y. Ovchinnikov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Pavel D. Lisachev
- Federal Research Center for Information and Computational Technologies, 6 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Natalia P. Bondar
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Larisa N. Grinkevich
- The Federal State Budget Scientific Institution Pavlov Institute of Physiology, Russian Academy of Sciences, 6 nab. Makarova, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
7
|
Wei K, Liu Y, Yang X, Liu J, Li Y, Deng M, Wang Y. Bumetanide attenuates sevoflurane-induced neuroapoptosis in the developing dentate gyrus and impaired behavior in the contextual fear discrimination learning test. Brain Behav 2022; 12:e2768. [PMID: 36184814 PMCID: PMC9660414 DOI: 10.1002/brb3.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Sevoflurane acts as a gamma-aminobutyric acid subtype A receptor agonist and can induce widespread apoptosis of immature dentate granule cells in postnatal day 21 mice. The dentate granule cells of postnatal day 21 mice undergo a developmental stage when gamma-aminobutyric acid (GABA) shifts from inducing the depolarization of neurons to causing hyperpolarization. However, it is unclear whether sevoflurane induces apoptosis of immature granule cells by facilitating the depolarization or hyperpolarization of neurons. METHODS We utilized bumetanide, an Na+ -K+ -2Cl- cotransporter isoform 1 (NKCC1) antagonist, to determine whether the NKCC1-mediated GABA depolarization of neurons plays a role in sevoflurane-induced neuroapoptosis. We also investigated whether sevoflurane exposure is related to long-term cognitive dysfunction in postnatal day 21 mice and explored the possible protective effects of bumetanide. RESULTS Bumetanide attenuated the sevoflurane-induced apoptosis of dentate granule cells in postnatal day 21 mice. Exposure to sevoflurane at postnatal day 21 mice did not affect their motor ability or anxiety level, and it had no effect on spatial learning or memory functions. However, sevoflurane exposure at postnatal day 21 impaired the pattern separation ability in the contextual fear discrimination test; bumetanide mitigated this effect of sevoflurane as well. CONCLUSION Bumetanide attenuates sevoflurane-induced apoptosis and is a promising prospect for protecting against anesthesia-induced neurotoxicity in the developing brain.
Collapse
Affiliation(s)
- Kai Wei
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiheng Liu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiamin Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Liu
- Happy Life Tech, Shanghai, China
| | - Yuan Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Deng
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Pandur E, Szabó I, Hormay E, Pap R, Almási A, Sipos K, Farkas V, Karádi Z. Alterations of the expression levels of glucose, inflammation, and iron metabolism related miRNAs and their target genes in the hypothalamus of STZ-induced rat diabetes model. Diabetol Metab Syndr 2022; 14:147. [PMID: 36210435 PMCID: PMC9549668 DOI: 10.1186/s13098-022-00919-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The hypothalamus of the central nervous system is implicated in the development of diabetes due to its glucose-sensing function. Dysregulation of the hypothalamic glucose-sensing neurons leads to abnormal glucose metabolism. It has been described that fractalkine (FKN) is involved in the development of hypothalamic inflammation, which may be one of the underlying causes of a diabetic condition. Moreover, iron may play a role in the pathogenesis of diabetes via the regulation of hepcidin, the iron regulatory hormone synthesis. MicroRNAs (miRNAs) are short non-coding molecules working as key regulators of gene expression, usually by inhibiting translation. Hypothalamic miRNAs are supposed to have a role in the control of energy balance by acting as regulators of hypothalamic glucose metabolism via influencing translation. METHODS Using a miRNA array, we analysed the expression of diabetes, inflammation, and iron metabolism related miRNAs in the hypothalamus of a streptozotocin-induced rat type 1 diabetes model. Determination of the effect of miRNAs altered by STZ treatment on the target genes was carried out at protein level. RESULTS We found 18 miRNAs with altered expression levels in the hypothalamus of the STZ-treated animals, which act as the regulators of mRNAs involved in glucose metabolism, pro-inflammatory cytokine synthesis, and iron homeostasis suggesting a link between these processes in diabetes. The alterations in the expression level of these miRNAs could modify hypothalamic glucose sensing, tolerance, uptake, and phosphorylation by affecting the stability of hexokinase-2, insulin receptor, leptin receptor, glucokinase, GLUT4, insulin-like growth factor receptor 1, and phosphoenolpyruvate carboxykinase mRNA molecules. Additional miRNAs were found to be altered resulting in the elevation of FKN protein. The miRNA, mRNA, and protein analyses of the diabetic hypothalamus revealed that the iron import, export, and iron storage were all influenced by miRNAs suggesting the disturbance of hypothalamic iron homeostasis. CONCLUSION It can be supposed that glucose metabolism, inflammation, and iron homeostasis of the hypothalamus are linked via the altered expression of common miRNAs as well as the increased expression of FKN, which contribute to the imbalance of energy homeostasis, the synthesis of pro-inflammatory cytokines, and the iron accumulation of the hypothalamus. The results raise the possibility that FKN could be a potential target of new therapies targeting both inflammation and iron disturbances in diabetic conditions.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary.
| | - István Szabó
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Attila Almási
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Viktória Farkas
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| |
Collapse
|
9
|
Chen Y, Gao X, Pei H. miRNA-384-3p alleviates sevoflurane-induced nerve injury by inhibiting Aak1 kinase in neonatal rats. Brain Behav 2022; 12:e2556. [PMID: 35726359 PMCID: PMC9304839 DOI: 10.1002/brb3.2556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/20/2022] [Accepted: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Sevoflurane is a common anesthetic and is widely used in pediatric clinical surgery to induce and maintain anesthesia through inhalation. Increasing studies have revealed that sevoflurane has neurotoxic effects on neurons, apoptosis, and memory impairment. miR-384 is involved in the process of neurological diseases. However, the role of miRNA-384-3p in sevoflurane-induced nerve injury is not clear. This study focused on exploring the roles and mechanisms of miRNA-384-3p in sevoflurane-induced nerve injury. METHODS Seven-day-old rats were exposed to 2.3% sevoflurane to induce nerve injury. The morphological changes in neurons in the hippocampal CA1 region were detected by HE staining and Nissl staining. Neuronal apoptosis was detected by TUNEL and Western blot assays. Spatial memory and learning ability were detected by the Morris water maze assay. The target gene of miRNA-384-3p was verified through a luciferase reporter assay. A rescue experiment was used to confirm the miRNA-384-3p pathway in sevoflurane-induced nerve injury. RESULTS Sevoflurane reduced miRNA-384-3p expression in the rat hippocampus. miRNA-384-3p alleviated sevoflurane-induced morphological changes in hippocampal neurons and apoptosis of neurons in the hippocampal CA1 region. Meanwhile, miRNA-384-3p attenuated the decline in spatial memory and learning ability induced by sevoflurane. miRNA-384-3p alleviated sevoflurane-induced nerve injury by inhibiting the expression of adaptor-associated kinase 1 (Aak1). CONCLUSION Our findings revealed the role and mechanism of miRNA-384-3p in sevoflurane-induced nerve injury, suggesting that miRNA-384-3p could be a novel and promising strategy for reducing sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Anesthesiology, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu, China
| | - Xuan Gao
- Department of Anesthesiology, Shanghai Blue Cross Brain Hospital, Shanghai, China
| | - Hao Pei
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
10
|
Ma LH, Yan J, Jiao XH, Zhou CH, Wu YQ. The Role of Epigenetic Modifications in Neurotoxicity Induced by Neonatal General Anesthesia. Front Mol Neurosci 2022; 15:877263. [PMID: 35571375 PMCID: PMC9097083 DOI: 10.3389/fnmol.2022.877263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
It has been widely demonstrated by numerous preclinical studies and clinical trials that the neonates receiving repeated or long-time general anesthesia (GA) could develop prolonged cognitive dysfunction. However, the definite mechanism remains largely unknown. Epigenetics, which is defined as heritable alterations in gene expression that are not a result of alteration of DNA sequence, includes DNA methylation, histone post-translational modifications, non-coding RNAs (ncRNAs), and RNA methylation. In recent years, the role of epigenetic modifications in neonatal GA-induced neurotoxicity has been widely explored and reported. In this review, we discuss and conclude the epigenetic mechanisms involving in the process of neonatal anesthesia-induced cognitive dysfunction. Also, we analyze the wide prospects of epigenetics in this field and its possibility to work as treatment target.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jing Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Cheng-Hua Zhou,
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Cheng-Hua Zhou,
| |
Collapse
|
11
|
Ji H, Li H, Zhang H, Cheng Z. Role of microRNA‑218‑5p in sevoflurane‑induced protective effects in hepatic ischemia/reperfusion injury mice by regulating GAB2/PI3K/AKT pathway. Mol Med Rep 2021; 25:1. [PMID: 34726254 PMCID: PMC8600399 DOI: 10.3892/mmr.2021.12517] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury (HIRI) often occurs following tissue resection, hemorrhagic shock or transplantation surgery. Previous investigations showed that sevoflurane (Sevo), an inhalation anesthetic, had protective properties against different organ damage in animal models including HIRI. This study is aimed to investigate the underlying mechanisms involved in the protective effects of Sevo on HIRI. The present study results showed that treatment with Sevo improved histologic damage, inflammatory response, oxidative stress and apoptosis after hepatic I/R, indicating the protective role of Sevo against liver I/R injury. Importantly, in order to determine the molecular mechanism of Sevo in HIRI, the focus of the study was on microRNA (miR) regulation. By retrieving the microarray data in the Gene Expression Omnibus dataset (GSE72315), miR-218-5p was found to be significantly downregulated by Sevo. Moreover, miR-218-5p overexpression using agomiR-218-5p reversed the protective roles of Sevo against HIRI. Furthermore, GAB2, a positive regulator of PI3K/AKT signaling pathway, was found as a target gene of miR-218-5p. It was also found that the Sevo-mediated protective effects may be dependent on the activation of GAB2/PI3K/AKT. Collectively, these data revealed that Sevo alleviated HIRI in mice by restraining apoptosis, relieving oxidative stress and inflammatory response through the miR-218-5p/GAB2/PI3K/AKT pathway, which helps in understanding the novel mechanism of the hepatic-protection of Sevo.
Collapse
Affiliation(s)
- Hui Ji
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Hui Li
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Haixia Zhang
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Zhijun Cheng
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| |
Collapse
|
12
|
He B, Yang F, Ning Y, Li Y. Sevoflurane alleviates hepatic ischaemia/reperfusion injury by up-regulating miR-96 and down-regulating FOXO4. J Cell Mol Med 2021; 25:5899-5911. [PMID: 34061461 PMCID: PMC8256341 DOI: 10.1111/jcmm.16063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023] Open
Abstract
Hepatic ischaemia/reperfusion (I/R) injury represents an event characterized by anoxic cell death and an inflammatory response, that can limit the treatment efficacy of liver surgery. Ischaemic preconditioning agents such as sevoflurane (Sevo) have been highlighted to play protective roles in hepatic I/R injury. The current study aimed to investigate the molecular mechanism underlying the effects associated with Sevo in hepatic I/R injury. Initially, mouse hepatic I/R injury models were established via occlusion of the hepatic portal vein and subsequent reperfusion. The expression of forkhead box protein O4 (FOXO4) was detected using reverse transcription quantitative polymerase chain reaction and Western blot analysis from clinical liver tissue samples obtained from patients who had previously undergone liver transplantation, mouse I/R models and oxygen-deprived hepatocytes. The morphology of the liver tissues was analysed using haematoxylin-eosin (HE) staining, with apoptosis detected via TUNEL staining. Immunohistochemistry methods were employed to identify the FOXO4-positive cells. Mice with knocked out FOXO4 (FOXO4-KO mice) were subjected to I/R. In this study, we found FOXO4 was highly expressed following hepatic I/R injury. After treatment with Sevo, I/R modelled mice exhibited an alleviated degree of liver injury, fewer apoptotic cells and FOXO4-positive cells. FOXO4 was a target gene of miR-96. Knockdown of FOXO4 could alleviate hepatic I/R injury and decrease cell apoptosis. Taken together, the key observations of our study suggest that Sevo alleviates hepatic I/R injury by means of promoting the expression of miR-96 while inhibiting FOXO4 expression. This study highlights the molecular mechanism mediated by Sevo in hepatic I/R injury.
Collapse
Affiliation(s)
- Binghua He
- Jinan UniversityGuangzhouChina
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Fan Yang
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Yingxia Ning
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yalan Li
- Department of Anesthesiologythe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
13
|
Li W, Wang S, Wang H, Wang J, Jin F, Fang F, Fang C. Astragaloside IV prevents memory impairment in D-galactose-induced aging rats via the AGEs/RAGE/ NF-κB axis. Arch Med Res 2021; 53:20-28. [PMID: 34217517 DOI: 10.1016/j.arcmed.2021.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND We investigated the effects of astragaloside IV (AS-IV) on memory function in aging rats mimicked by D-galactose administration and explored the potential molecular mechanisms. METHODS Twenty-seven male rats were randomly divided into control group (N = 9), model group (N = 9), and AS-IV treated group (N = 9). Aging model was stimulated by D-galactose (400 mg/kg/d, i.p., dissolved in saline) for 8 weeks in rats. The general status of the rats was observed weekly. Learning and memory function was determined using the eight-arm radical maze and step-down test. Pathological changes in the hippocampal CA1 region were determined by hematoxylin and eosin staining. Organ indexes, superoxide dismutase (SOD) activity and malonaldehyde (MDA) content in the serum were measured. Expression of advanced glycation end products (AGEs), receptor for AGEs (RAGE), nuclear factor-κB (NF-κB), interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, real-time polymerase chain reaction or western blotting. RESULTS AS-IV improved the general status of the aging rats induced by D-galactose, prevented the impairment of memory function, organ indexes, and the pathological damage of the hippocampus. From the prospective of oxidative stress, AS-IV increased sera SOD activity and decreased MDA content. Additionally, AS-IV also reduced the inflammatory response by reducing hippocampal IL-1β, TNF-α, and IL-6 expression. Importantly, AS-IV prevented D-galactose-induced expression of AGEs, RAGE and NF-κB in the hippocampus. CONCLUSION AS-IV could prevent D-galactose-induced aging and memory impairment in rats, likely via regulation of inflammatory response, which was modulated by AGEs/RAGE/NF-κB axis.
Collapse
Affiliation(s)
- Wei Li
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Shuo Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Hao Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jiepeng Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Feng Jin
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chaoyi Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang 050091, China.
| |
Collapse
|
14
|
Wang F, Li C, Shao J, Ma J. Sevoflurane induces inflammation of microglia in hippocampus of neonatal rats by inhibiting Wnt/β-Catenin/CaMKIV pathway. J Pharmacol Sci 2021; 146:105-115. [PMID: 33941321 DOI: 10.1016/j.jphs.2021.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the effect of sevoflurane on inflammation of microglia in hippocampus of neonatal rats, and to investigate whether the related mechanism is related to Wnt/β-Catenin/CaMKIV pathway. METHODS Neonatal rats were anesthetized with 2% or 3% sevoflurane for 4 h a day for 3 consecutive days. Water maze test was used to detect the effect of sevoflurane anesthesia on memory function of neonatal rats. H&E and Nissl staining were used to observe the pathological damage of hippocampal area of neonatal rats induced by sevoflurane anesthesia. The expression of microglial marker Iba-1 was detected by Immunofluorescence. Immunofluorescence and WB were used to detect the expression CD32b, CD86, TNF-α, IL-6, Wnt3a, β-Catenin and CaMKIV in hippocampus. To further explore the related mechanism, Wnt-3α inhibitor and activator was treated to study the effect of sevoflurane on microglial inflammation in hippocampus of neonatal rats. RESULTS Sevoflurane anesthesia significantly increased escape latency time, reduced platform crossing times, and damaged the learning and memory ability of neonatal rats. H&E and Nissl staining results showed that sevoflurane anesthesia caused obvious damage to the hippocampus of neonatal rats. Sevoflurane anesthesia promoted the expression of Iba-1 and activated microglia. Sevoflurane anesthesia not only significantly increased the positive expression of CD32b, CD86, TNF-α and IL-6, but also decreased the expression of Wnt3a, β-Catenin and CaMKIV. These results suggested that sevoflurane inhibited Wnt/β-Catenin/CaMKIV pathway. CONCLUSION Sevoflurane induces inflammation of microglia in hippocampus of neonatal rats by inhibiting Wnt/β-Catenin/CaMKIV pathway.
Collapse
Affiliation(s)
- Fengjuan Wang
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Chuangang Li
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Jianhui Shao
- Spinal Surgery Division II, Weifang City People's Hospital, Weifang, 261000, China
| | - Jinfeng Ma
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
15
|
Sun L, Bai D, Lin M, Eerdenidalai, Zhang L, Wang F, Jin S. miR-96 Inhibits SV2C to Promote Depression-Like Behavior and Memory Disorders in Mice. Front Behav Neurosci 2021; 14:575345. [PMID: 33815074 PMCID: PMC8017146 DOI: 10.3389/fnbeh.2020.575345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence continues to emphasize the role of microRNAs as significant contributors to depression-like behavior and memory disorders. The current study aimed to investigate the mechanism by which miR-96 influences depression-like behavior and memory deficit in mice. A depression-like behavior and memory disorder mouse model was initially established by means of intraperitoneal injection with lipopolysaccharide. Memory deficits in the mice were evaluated using the Novel Object Recognition Test and Morris water maze experiments, whereas the Sucrose Preference Experiment and forced swimming experiments were performed to identify depression-like behavior in mice. The levels of tumor necrosis factor-α, malondialdehyde, superoxide dismutase, glutathione, and the monoamine transmitters 5-hydroxytryptamine and dopamine were subsequently detected in the serum. Reverse transcription-quantitative polymerase chain reaction and Western blot analysis evaluated the expression of miR-96 and SV2C expression in the CA1 hippocampal region of the mice. Finally, the relationship of miR-96 and SV2C was verified by dual-luciferase reporter gene assay. Our data indicated that the expression of miR-96 was increased, whereas that of SV2C was decreased in the CA1 region of mice exhibiting depression-like behavior and memory impairment. When miR-96 was downregulated or SV2C was overexpressed via intra-cerebroventricular injection with a miR-96 antagonist (miR-96 antagomir) or overexpression of SV2C vector, the Novel Object Recognition Test and sucrose preference index were increased, whereas the escape latency, the number of water maze platform crossings, and the immobility time of the mice were decreased. The serum levels of tumor necrosis factor-α, interleukin-1β, and malondialdehyde in the mouse CA1 region of mice were reduced, whereas the levels of superoxide dismutase and glutathione were elevated after the downregulation of miR-96 or overexpression of SV2C. Collectively, our study demonstrates that miR-96 negatively regulates the expression of SV2C, which consequently leads to depression-like behavior and memory impairment in mice. Our findings highlight the potential of miR-96-targeted therapeutics.
Collapse
Affiliation(s)
- Lidong Sun
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Donghao Bai
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Maoguang Lin
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Eerdenidalai
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Li Zhang
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Fengzhen Wang
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Shangwu Jin
- Clinical Laboratory, Ordos Fourth People's Hospital, Ordos, China
| |
Collapse
|
16
|
Xie C, Wang H, Zhang Y, Wei Y. Neuroprotective effects of miR-142-5p downregulation against isoflurane-induced neurological impairment. Diagn Pathol 2020; 15:70. [PMID: 32505188 PMCID: PMC7275573 DOI: 10.1186/s13000-020-00978-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/19/2020] [Indexed: 01/02/2023] Open
Abstract
Background Isoflurane can lead to neuron damage to the developing brain, resulting in learning and memory disability. The aim of this study was to investigate the role of miR-142-5p on isoflurane-induced neurological impairment. Methods The Morris water maze (MWM) test was performed to evaluate spatial learning and memory of rats. The expression level of miR-142-5p was measured using qRT-PCR. MTT assay was used to calculate the viability of hippocampal neuronal cells. The cell apoptosis was analyzed using Flow cytometric assay. Results Isoflurane treatment led to the increase of neurological function score and escape latency, and the reduction of time spent in the original quadrant in rats. The expression level of miR-142-5p was increased significantly in isoflurane-treated rats. MiR-142-5p downregulation protected against isoflurane-induced neurological impairment, which was reflected by the decrease of neurological function score and escape latency, and the increase of time spent in the original quadrant. In vitro, downregulation of miR-142-5p alleviated isoflurane-induced neuron cell viability inhibition, and relieved isoflurane-induced cell apoptosis. Conclusions MiR-142-5p downregulation plays a neuroprotective role in protecting against isoflurane-induced neurological impairment through regulating neuron cell viability and apoptosis. It provides a theoretical basis for the investigation of the mechanism underlying the effect on isoflurane-induced neurological impairment.
Collapse
Affiliation(s)
- Cuili Xie
- Department of Anesthesiology, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong, 272011, People's Republic of China.,Jining Medical University, Jining, Shandong, 272011, People's Republic of China
| | - Hongyue Wang
- Department of Anesthesiology, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong, 272011, People's Republic of China.,Jining Medical University, Jining, Shandong, 272011, People's Republic of China
| | - Yu Zhang
- Department of Anesthesiology, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong, 272011, People's Republic of China.,Jining Medical University, Jining, Shandong, 272011, People's Republic of China
| | - Yanhua Wei
- Department of Anesthesiology, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong, 272011, People's Republic of China. .,Jining Medical University, Jining, Shandong, 272011, People's Republic of China.
| |
Collapse
|
17
|
Mao Z, Wang W, Gong H, Wu Y, Zhang Y, Wang X. Upregulation of miR-496 Rescues Propofol-induced Neurotoxicity by Targeting Rho Associated Coiled-coil Containing Protein Kinase 2 (ROCK2) in Prefrontal Cortical Neurons. Curr Neurovasc Res 2020; 17:188-195. [PMID: 32370715 DOI: 10.2174/1567202617666200506101926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Early exposure to general anesthesia in children might be a potentially highrisk factor for learning and behavioral disorders. The mechanism of neurotoxicity induced by general anesthesia was not defined. miR-496 could regulate cerebral injury, while the roles of miR- 496 in neurotoxicity were not elucidated. Therefore, we aimed to investigate the effects of miR- 496 in neurotoxicity induced by propofol. METHODS Primary Prefrontal Cortical (PFC) neurons were isolated from neonatal rats and treated with propofol to induce neurotoxicity. Cell viability was detected by (3-(4,5-Dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The target relationship of miR-496 and Rho Associated Coiled-Coil Containing Protein Kinase 2 (ROCK2) was explored using luciferase assays. RESULTS Propofol decreased cell viability, promoted cell apoptosis, and decreased the expression of miR-496 in PFC neurons in a dose-dependent manner. Overexpression of miR-496 attenuated neurotoxicity induced by propofol in PFC neurons. ROCK2 was a target of miR-496, and miR-496 oppositely modulated the expression of ROCK2. Besides, propofol increased the expression of ROCK2 through inhibiting miR-496 in PFC neurons. Overexpression of miR-496 attenuated propofol- induced neurotoxicity by targeting ROCK2 in PFC neurons. CONCLUSION miR-496 was decreased in PFC neurons treated with propofol, and overexpression of miR-496 attenuated propofol-induced neurotoxicity by targeting ROCK2. miR-496 and ROCK2 may be promising targets for protecting propofol-induced neurotoxicity.
Collapse
Affiliation(s)
- Zemei Mao
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan City, Hubei Province, 430016, China
| | - Wanju Wang
- Department of General Surgery, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan City, Hubei Province, 430015, China
| | - Haixia Gong
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330006, China
| | - Yinghui Wu
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan City, Hubei Province, 430016, China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330006, China
| | - Xinlei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330006, China
| |
Collapse
|
18
|
Cao Y, Lv W, Ding W, Li J. Sevoflurane inhibits the proliferation and invasion of hepatocellular carcinoma cells through regulating the PTEN/Akt/GSK‑3β/β‑catenin signaling pathway by downregulating miR‑25‑3p. Int J Mol Med 2020; 46:97-106. [PMID: 32319540 PMCID: PMC7255470 DOI: 10.3892/ijmm.2020.4577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022] Open
Abstract
Sevoflurane (Sevo) is one of the most frequently used volatile anesthetic agents in surgical oncology and has various effects on tumors, including inhibiting tumor growth, recurrence, and metastases; however, the molecular mechanisms are unknown. This study tried to investigate the influence of Sevo on hepatocellular carcinoma (HCC) cells and its possible mechanisms of action. The present study found that Sevo suppressed both the proliferative and invasive capabilities of both HCCLM3 and Huh7 cells in a dose-dependent manner. Moreover, 53 differentially expressed microRNAs (miRNAs/miRs) in HCC cells that resulted from Sevo were screened out using miRNA microarray assay. In particular, miR-25-3p displayed a significant decrease in response to Sevo treatment. Further studies showed that Sevo's inhibitory actions on HCC cells were attenuated by overexpression of miR-25-3p but enhanced by its inhibitor. Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN), a tumor suppressor gene, was directly targeted by miR-25-3p and its expression was upregulated by Sevo. In addition, Sevo suppressed the expression of phosphorylated-protein kinase B (p-Akt) (S473), glycogen synthase kinase (GSK) 3β (p-GSK3β) (S9), β-catenin, c-Myc and matrix metalloproteinase 9; whereas these inhibitory effects were reversed by miR-25-3p overexpression. More importantly, Sevo's tumor-suppressive effects were enhanced by LY294002 (a PI3-kinase inhibitor) but weakened by insulin growth factor-1 (an agonist of the Akt signaling pathway). These data suggest that Sevo's antitumor effects on HCC could be explained, in part, by Sevo inhibiting the miR-25-3p/PTEN/Akt/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Anesthesiology, Beijing Youan Hospital, Capital Medical University, Beijing 100048, P.R. China
| | - Wenfei Lv
- Department of Anesthesiology, Beijing Youan Hospital, Capital Medical University, Beijing 100048, P.R. China
| | - Wan Ding
- Department of Anesthesiology, No. 6 Medical Center, General Hospital of PLA, Beijing 100048, P.R. China
| | - Jun Li
- Department of Anesthesiology, No. 6 Medical Center, General Hospital of PLA, Beijing 100048, P.R. China
| |
Collapse
|
19
|
Liang L, Xie R, Lu R, Ma R, Wang X, Wang F, Liu B, Wu S, Wang Y, Zhang H. Involvement of homodomain interacting protein kinase 2-c-Jun N-terminal kinase/c-Jun cascade in the long-term synaptic toxicity and cognition impairment induced by neonatal Sevoflurane exposure. J Neurochem 2020; 154:372-388. [PMID: 31705656 PMCID: PMC7496229 DOI: 10.1111/jnc.14910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/23/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Sevoflurane is one of the most widely used anesthetics with recent concerns rising about its pediatric application. The synaptic toxicity and mechanisms underlying its long‐term cognition impairment remain unclear. In this study, we investigated the expression and roles of homeodomain interacting protein kinase 2 (HIPK2), a stress activating kinase involved in neuronal survival and synaptic plasticity, and its downstream c‐Jun N‐terminal kinase (JNK)/c‐Jun signaling in the long‐term toxicity of neonatal Sevoflurane exposure. Our data showed that neonatal Sevoflurane exposure results in impairment of memory, enhancement of anxiety, less number of excitatory synapses and lower levels of synaptic proteins in the hippocampus of adult rats without significant changes of hippocampal neuron numbers. Up‐regulation of HIPK2 and JNK/c‐Jun was observed in hippocampal granular neurons shortly after Sevoflurane exposure and persisted to adult. 5‐((6‐Oxo‐5‐(6‐(piperazin‐1‐yl)pyridin‐3‐yl)‐1,6‐dihydropyridin‐3‐yl)methylene)thiazolidine‐2,4‐dione trifluoroacetate, antagonist of HIPK2, could significantly rescue the cognition impairment, decrease in long‐term potentiation, reduction in spine density and activation of JNK/c‐Jun induced by Sevoflurane. JNK antagonist SP600125 partially restored synapse development and cognitive function without affecting the expression of HIPK2. These data, in together, revealed a novel role of HIPK2‐JNK/c‐Jun signaling in the long‐term synaptic toxicity and cognition impairment of neonatal Sevoflurane exposure, indicating HIPK2‐JNK/c‐Jun cascade as a potential target for reducing the synaptic toxicity of Sevoflurane. ![]()
Cover Image for this issue: doi: 10.1111/jnc.14757.
Collapse
Affiliation(s)
- Lirong Liang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Rougang Xie
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Rui Lu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Ruixue Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Xiaoxia Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Fengjuan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Bing Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Hui Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
20
|
Bahmad HF, Darwish B, Dargham KB, Machmouchi R, Dargham BB, Osman M, Khechen ZA, El Housheimi N, Abou-Kheir W, Chamaa F. Role of MicroRNAs in Anesthesia-Induced Neurotoxicity in Animal Models and Neuronal Cultures: a Systematic Review. Neurotox Res 2019; 37:479-490. [PMID: 31707631 DOI: 10.1007/s12640-019-00135-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Abstract
Exposure to anesthetic agents in early childhood or late intrauterine life might be associated with neurotoxicity and long-term neurocognitive decline in adulthood. This could be attributed to induction of neuroapoptosis and inhibition of neurogenesis by several mechanisms, with a pivotal role of microRNAs in this milieu. MicroRNAs are critical regulators of gene expression that are differentially expressed in response to internal and external environmental stimuli, including general anesthetics. Through this systematic review, we aimed at summarizing the current knowledge apropos of the roles and implications of deregulated microRNAs pertaining to anesthesia-induced neurotoxicity in animal models and derived neuronal cultures. OVID/Medline and PubMed databases were lastly searched on April 1st, 2019, using the Medical Subject Heading (MeSH) or Title/Abstract words ("microRNA" and "anesthesia"), to identify all published research studies on microRNAs and anesthesia. During the review process, data abstraction and methodological assessment was done by independent groups of reviewers. In total, 29 studies were recognized to be eligible and were thus involved in this systematic review. Anesthetic agents studied included sevoflurane, isoflurane, propofol, bupivacaine, and ketamine. More than 40 microRNAs were identified to have regulatory roles in anesthesia-induced neurotoxicity. This field of study still comprises several gaps that should be filled by conducting basic, clinical, and translational research in the future to decipher the exact role of microRNAs and their functions in the context of anesthesia-induced neurotoxicity.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Batoul Darwish
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Karem Bou Dargham
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon.,Department of Anesthesiology, Hammoud Hospital University Medical Center, Sidon, Lebanon
| | - Rabih Machmouchi
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon.,Department of Anesthesiology, Hammoud Hospital University Medical Center, Sidon, Lebanon
| | - Bahaa Bou Dargham
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon.,Department of Anesthesiology, Hammoud Hospital University Medical Center, Sidon, Lebanon
| | - Maarouf Osman
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon.,Department of Anesthesiology, Hammoud Hospital University Medical Center, Sidon, Lebanon
| | - Zonaida Al Khechen
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon.,Department of Anesthesiology, Hammoud Hospital University Medical Center, Sidon, Lebanon
| | - Nour El Housheimi
- Department of Anesthesiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
21
|
Su R, Sun P, Zhang D, Xiao W, Feng C, Zhong L. Neuroprotective effect of miR-410-3p against sevoflurane anesthesia-induced cognitive dysfunction in rats through PI3K/Akt signaling pathway via targeting C–X–C motif chemokine receptor 5. Genes Genomics 2019; 41:1223-1231. [DOI: 10.1007/s13258-019-00851-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/04/2019] [Indexed: 12/25/2022]
|