1
|
Lv R, Zhao Y, Wang X, He Y, Dong N, Min X, Liu X, Yu Q, Yuan K, Yue H, Yin Q. GLP-1 analogue liraglutide attenuates CIH-induced cognitive deficits by inhibiting oxidative stress, neuroinflammation, and apoptosis via the Nrf2/HO-1 and MAPK/NF-κB signaling pathways. Int Immunopharmacol 2024; 142:113222. [PMID: 39321702 DOI: 10.1016/j.intimp.2024.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Obstructive sleep apnea (OSA) is a common clinical condition linked to cognitive impairment, mainly characterized by chronic intermittent hypoxia (CIH). GLP-1 receptor agonist, known for promoting insulin secretion and reducing glucose levels, has demonstrated neuroprotective effects in various experimental models such as stroke, Alzheimer's disease, and Parkinson's disease. This study aims to investigate the potential role and mechanisms of the GLP-1 receptor agonist liraglutide in ameliorating OSA-induced cognitive deficits. CIH exposure, a well-established and mature OSA pathological model, was used both in vitro and in vivo. In vitro, CIH significantly activated oxidative stress, inflammation, and apoptosis in SH-SY5Y cells. Liraglutide enhanced the nuclear translocation of Nrf2, activating its downstream pathways, thereby mitigating CIH-induced injury in SH-SY5Y cells. Additionally, liraglutide modulated the MAPK/NF-κB signaling pathway, reducing the expression of inflammatory factors and proteins. In vivo, we subjected mice to an intermittent hypoxia incubator to mimic the pathogenesis of human OSA. The Morris water maze test revealed that CIH exposure substantially impaired spatial memory. Subsequent western blot analyses and histopathological examinations indicated that liraglutide could activate the Nrf2/HO-1 axis and inhibit the MAPK/NF-κB signaling pathway, thereby alleviating OSA-associated cognitive dysfunction in mice. These findings suggest that GLP-1 receptor agonists may offer a promising preventive strategy for OSA-associated cognitive impairment. By refining these findings, we provide new insights into GLP-1's protective mechanisms in combating cognitive deficits associated with CIH, underscoring its potential as a therapeutic agent for conditions linked to OSA.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yan Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xiangzhen Min
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xueying Liu
- Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Qin Yu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| |
Collapse
|
2
|
Yang H, Yuan Y, Yang K, Wang N, Li X. ELK4 ameliorates cognitive impairment and neuroinflammation induced by obstructive sleep apnea. Brain Res Bull 2024; 216:111054. [PMID: 39173777 DOI: 10.1016/j.brainresbull.2024.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Intermittent hypoxia (IH) in patients with obstructive sleep apnea (OSA) syndrome elicited neuron injury (especially in the hippocampus and cortex), contributing to cognitive dysfunction. This study investigated the effects and clarified the mechanisms of ETS domain-containing protein Elk-4 (ELK4) on the cognitive function and neuroinflammation of mice with IH. Mouse microglia BV2 cells were induced with IH by exposure to fluctuating O2 concentrations (alternating from 5 % to 21 % every 30 min), and mice with OSA were developed and subjected to lentivirus-mediated gene intervention. ELK4 expression was significantly reduced in IH-induced microglia and brain tissues of mice with OSA. Overexpression of ELK4 attenuated oxidative stress, decreased the pro-inflammatory factors IL-1β, IL-6, and TNF-α, and increased the level of the anti-inflammatory factors IL-10 and TGF-β1, as well as the neuroprotective factor BDNF. ELK4 promoted the transcription of fibronectin type III domain-containing protein 5 (FNDC5) by binding to the promoter of FNDC5. Knockdown of FNDC5 in IH-induced microglia and animals reversed the protective effects of ELK4 on OSA-associated neuroinflammation and cognitive dysfunction. Overall, the results demonstrated that ELK4 overexpression repressed microglial activation by inducing the transcription of FNDC5, thus attenuating neuroinflammation and cognitive dysfunction induced by OSA.
Collapse
Affiliation(s)
- Haiming Yang
- Department of Neurology, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, PR China
| | - Ying Yuan
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, PR China
| | - Ke Yang
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, PR China
| | - Ning Wang
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, PR China
| | - Xiao Li
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, PR China.
| |
Collapse
|
3
|
Zhang X, Zhou H, Liu H, Xu P. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol 2024; 61:5083-5101. [PMID: 38159196 DOI: 10.1007/s12035-023-03899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.
Collapse
Affiliation(s)
- XiaoPing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - HaiJun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Wang S, Tan J, Zhang Q. Cytosolic Escape of Mitochondrial DNA Triggers cGAS-STING Pathway-Dependent Neuronal PANoptosis in Response to Intermittent Hypoxia. Neurochem Res 2024; 49:2228-2248. [PMID: 38833090 DOI: 10.1007/s11064-024-04151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), characterized by neuronal cell death and neurocognitive impairment. We focus on the accumulated mitochondrial DNA (mtDNA) in the cytosol, which acts as a damage-associated molecular pattern (DAMP) and activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, a known trigger for immune responses and neuronal death in degenerative diseases. However, the specific role and mechanism of the mtDNA-cGAS-STING axis in IH-induced neural damage remain largely unexplored. Here, we investigated the involvement of PANoptosis, a novel type of programmed cell death linked to cytosolic mtDNA accumulation and the cGAS-STING pathway activation, in neuronal cell death induced by IH. Our study found that PANoptosis occurred in primary cultures of hippocampal neurons and HT22 cell lines exposed to IH. In addition, we discovered that during IH, mtDNA released into the cytoplasm via the mitochondrial permeability transition pore (mPTP) activates the cGAS-STING pathway, exacerbating PANoptosis-associated neuronal death. Pharmacologically inhibiting mPTP opening or depleting mtDNA significantly reduced cGAS-STING pathway activation and PANoptosis in HT22 cells under IH. Moreover, our findings indicated that the cGAS-STING pathway primarily promotes PANoptosis by modulating endoplasmic reticulum (ER) stress. Inhibiting or silencing the cGAS-STING pathway substantially reduced ER stress-mediated neuronal death and PANoptosis, while lentivirus-mediated STING overexpression exacerbated these effects. In summary, our study elucidates that cytosolic escape of mtDNA triggers cGAS-STING pathway-dependent neuronal PANoptosis in response to IH, mainly through regulating ER stress. The discovery of the novel mechanism provides theoretical support for the prevention and treatment of neuronal damage and cognitive impairment in patients with OSA.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China.
| |
Collapse
|
5
|
Si J, Chen X, Qi K, Li D, Liu B, Zheng Y, Ji E, Yang S. Shengmaisan combined with Liuwei Dihuang Decoction alleviates chronic intermittent hypoxia-induced cognitive impairment by activating the EPO/EPOR/JAK2 signaling pathway. Chin J Nat Med 2024; 22:426-440. [PMID: 38796216 DOI: 10.1016/s1875-5364(24)60640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 05/28/2024]
Abstract
Chronic intermittent hypoxia (CIH), a principal pathophysiological aspect of obstructive sleep apnea (OSA), is associated with cognitive deficits. Clinical evidence suggests that a combination of Shengmaisan and Liuwei Dihuang Decoctions (SMS-LD) can enhance cognitive function by nourishing yin and strengthening the kidneys. This study aimed to assess the efficacy and underlying mechanisms of SMS-LD in addressing cognitive impairments induced by CIH. We exposed C57BL/6N mice to CIH for five weeks (20%-5% O2, 5 min/cycle, 8 h/day) and administered SMS-LD intragastrically (15.0 or 30 g·kg-1·day) 30 min before each CIH session. Additionally, AG490, a JJanus kinase 2 (JAK2) inhibitor, was administered via intracerebroventricular injection. Cognitive function was evaluated using the Morris water maze, while synaptic and mitochondrial structures were examined by transmission electron microscopy. Oxidative stress levels were determined using DHE staining, and the activation of the erythropoietin (ER)/ER receptor (EPOR)/JAK2 signaling pathway was analyzed through immunohistochemistry and Western blotting. To further investigate molecular mechanisms, HT22 cells were treated in vitro with either SMS-LD medicated serum alone or in combination with AG490 and then exposed to CIH for 48 h. Our results indicate that SMS-LD significantly mitigated CIH-induced cognitive impairments in mice. Specifically, SMS-LD treatment enhanced dendritic spine density, ameliorated mitochondrial dysfunction, reduced oxidative stress, and activated the EPO/EPOR/JAK2 signaling pathway. Conversely, AG490 negated SMS-LD's neuroprotective and cognitive improvement effects under CIH conditions. These findings suggest that SMS-LD's beneficial impact on cognitive impairment and synaptic and mitochondrial integrity under CIH conditions may predominantly be attributed to the activation of the EPO/EPOR/JAK2 signaling pathway.
Collapse
Affiliation(s)
- Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Xue Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Department of Geriatrics, First People's Hospital of Xiaogan, Xiaogan 432000, China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang 050000, China.
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang 050000, China.
| |
Collapse
|
6
|
Li C, Zhao Z, Jin J, Zhao C, Zhao B, Liu Y. NLRP3-GSDMD-dependent IL-1β Secretion from Microglia Mediates Learning and Memory Impairment in a Chronic Intermittent Hypoxia-induced Mouse Model. Neuroscience 2024; 539:51-65. [PMID: 38154620 DOI: 10.1016/j.neuroscience.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/14/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Hypoxia/reoxygenation caused by chronic intermittent hypoxia (CIH) plays an important role in cognitive deficits in patients with obstructive sleep apnea. However, the precise underlying mechanism remains unclear. This study investigated whether the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is involved in CIH-induced spatial learning and memory impairment in mice, and the possible underlying upstream and downstream mechanisms. The C57BL/6 male mice were exposed to CIH (21% O2-6% O2, 4 min/cycle, 8 h/day) for 9 weeks to investigate the role of NLRP3 in CIH-induced spatial learning and memory impairment in mice. BV2 cells were exposed to intermittent hypoxia (21% O2-1% O2, 90 min/cycle) for 48 h to investigate the possible mechanisms in vitro. We found that: 1) inhibition of NLRP3 inflammasome activation improved CIH-induced spatial learning and memory impairment in mice. 2) CIH damaged hippocampal neurons but increased the number of microglia in mice hippocampi; CIH activated microglia-specific NLRP3 inflammasome, leading to upregulation of matured IL-1β and N-GSDMD. 3) intermittent hypoxia activated NLRP3 inflammasome via the ROS-NF-κB signaling pathway to promote the release of matured IL-1β from microglia in a GSDMD-dependent manner without pyroptosis. 4) The IL-1β released from microglia might impair the synaptic plasticity of hippocampal CA3-CA1 synapses by acting on IL-1 receptors in hippocampal neurons. Our findings reveal that ROS-NF-κB-NLRP3 inflammasome-GSDMD dependent IL-1β release from microglia may participate in CIH-induced spatial learning and memory impairment by acting on hippocampal neuronal IL-1 receptor, leading to synaptic plasticity impairment.
Collapse
Affiliation(s)
- Chaohong Li
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China; Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China.
| | - Zhen Zhao
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| | - Jiahao Jin
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| | - Chenlu Zhao
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| | - Yuzhen Liu
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| |
Collapse
|
7
|
Liu ZL, Huang YP, Wang X, He YX, Li J, Li B. The role of ferroptosis in chronic intermittent hypoxia-induced cognitive impairment. Sleep Breath 2023; 27:1725-1732. [PMID: 36607542 DOI: 10.1007/s11325-022-02760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Obstructive sleep apnea (OSA) is a sleep disorder that may lead to cognitive impairment. The primary pathophysiological feature of OSA is chronic intermittent hypoxia (CIH), but the underlying mechanisms of CIH are not known. There have been few studies on the role of ferroptosis, a novel form of programmed cell death, during CIH-induced cognitive impairment. Therefore, this paper examined ferroptosis' effect on CIH-mediated cognitive impairment. METHODS The study randomized twenty-four Sprague-Dawley (SD) male rats to control or CIH group. CIH rats were subjected to intermittent hypoxia for 4 weeks. Rat learning and memory were analyzed by the Morris water maze (MWM) test. Alterations of hippocampal neuronal ultrastructure were observed by transmission electron microscopy (TEM). Malondialdehyde (MDA) and ferrous iron (Fe2+) levels and superoxide dismutase (SOD) and reduced glutathione (GSH) contents were determined. Ferroptosis-associated protein levels were examined by Western blotting. RESULTS The MWM test indicated that rats in the CIH group exhibited neurocognitive impairment. TEM showed that CIH induced mitochondrial damage. Significant increases in Fe2+ and MDA levels were observed in the CIH group, and GSH and SOD levels were decreased. Expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4) increased, and glutathione peroxidase 4 (GPX4) protein levels were decreased, suggesting that ferroptosis was induced in CIH model rats. The NF-E2-related factor 2 (Nrf2) protein level in the CIH group was decreased. CONCLUSION Ferroptosis had an essential effect on CIH-mediated cognitive impairment, and it may occur via Nrf2 dysregulation. These findings lay a solid foundation for the subsequent study of OSA-associated cognitive impairment offering potential evidence for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Zhi-Li Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yin-Pei Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xin Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Xin He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Juan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Bing Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Badran M, Puech C, Barrow MB, Runion AR, Gozal D. Solriamfetol enhances wakefulness and improves cognition and anxiety in a murine model of OSA. Sleep Med 2023; 107:89-99. [PMID: 37137196 PMCID: PMC11556240 DOI: 10.1016/j.sleep.2023.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH). Excessive daytime sleepiness (EDS) is a common consequence of OSA and is associated with cognitive deficits and anxiety. Modafinil (MOD) and Solriamfetol (SOL) are potent wake-promoting agents clinically used to improve wakefulness in OSA patients with EDS. METHODS Male C57Bl/6J mice were exposed to either IH or room air (RA) controls during the light phase for 16 weeks. Both groups were then randomly assigned to receive once-daily intraperitoneal injections of SOL (200 mg/kg), MOD (200 mg/kg) or vehicle (VEH) for 9 days while continuing IH exposures. Sleep/wake activity was assessed during the dark (active) phase. Novel object recognition (NOR), elevated-plus maze test (EPMT), and forced swim test (FST) were performed before and after drug treatment. RESULTS IH exposure increased dark phase sleep percentage and reduced wake bouts lengths and induced cognitive deficits and anxiogenic effects. Both SOL and MOD treatments decreased sleep propensity under IH conditions, but only SOL promoted improvements in NOR performance (explicit memory) and reduced anxiety-like behaviors. CONCLUSION Chronic IH, a hallmark feature of OSA, induces EDS in young adult mice that is ameliorated by both SOL and MOD. SOL, but not MOD, significantly improves IH-induced cognitive deficits and promotes anxiolytic effects. Thus, SOL could potentially benefit OSA patients beyond EDS management.
Collapse
Affiliation(s)
- Mohammad Badran
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Clementine Puech
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Max B Barrow
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
9
|
Si J, Liu B, Qi K, Chen X, Li D, Yang S, Ji E. Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116677. [PMID: 37268259 DOI: 10.1016/j.jep.2023.116677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic intermittent hypoxia (CIH) is the primary pathophysiological process of obstructive sleep apnea (OSA) and is closely linked to neurocognitive dysfunction. Tanshinone IIA (Tan IIA) is extracted from Salvia miltiorrhiza Bunge and used in Traditional Chinese Medicine (TCM) to improve cognitive impairment. Studies have shown that Tan IIA has anti-inflammatory, anti-oxidant, and anti-apoptotic properties and provides protection in intermittent hypoxia (IH) conditions. However, the specific mechanism is still unclear. AIM OF THE STUDY To assess the protective effect and mechanism of Tan IIA treatment on neuronal injury in HT22 cells exposed to IH. MATERIALS AND METHODS The study established an HT22 cell model exposed to IH (0.1% O2 3 min/21% O2 7 min for six cycles/h). Cell viability was determined using the Cell Counting Kit-8, and cell injury was determined using the LDH release assay. Mitochondrial damage and cell apoptosis were observed using the Mitochondrial Membrane Potential and Apoptosis Detection Kit. Oxidative stress was assessed using DCFH-DA staining and flow cytometry. The level of autophagy was assessed using the Cell Autophagy Staining Test Kit and transmission electron microscopy (TEM). Western blot was used to detect the expressions of the AMPK-mTOR pathway, LC3, P62, Beclin-1, Nrf2, HO-1, SOD2, NOX2, Bcl-2/Bax, and caspase-3. RESULTS The study showed that Tan IIA significantly improved HT22 cell viability under IH conditions. Tan IIA treatment improved mitochondrial membrane potential, decreased cell apoptosis, inhibited oxidative stress, and increased autophagy levels in HT22 cells under IH conditions. Furthermore, Tan IIA increased AMPK phosphorylation and LC3II/I, Beclin-1, Nrf2, HO-1, SOD2, and Bcl-2/Bax expressions, while decreasing mTOR phosphorylation and NOX2 and cleaved caspase-3/caspase-3 expressions. CONCLUSION The study suggested that Tan IIA significantly ameliorated neuronal injury in HT22 cells exposed to IH. The neuroprotective mechanism of Tan IIA may mainly be related to inhibiting oxidative stress and neuronal apoptosis by activating the AMPK/mTOR autophagy pathway under IH conditions.
Collapse
Affiliation(s)
- Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Xue Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
10
|
Huang Y, Liu Z, Wang X, Li Y, Liu L, Li B. TGF-β3 Protects Neurons Against Intermittent Hypoxia-Induced Oxidative Stress and Apoptosis Through Activation of the Nrf-2/KEAP1/HO-1 Pathway via Binding to TGF-βRI. Neurochem Res 2023:10.1007/s11064-023-03942-8. [PMID: 37140776 DOI: 10.1007/s11064-023-03942-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Intermittent hypoxia (IH) is the primary pathological manifestation of obstructive sleep apnea (OSA) and the main cause of OSA-induced cognitive impairment. Hippocampal neurons are considered to be critical cells affected by IH. Transforming growth factor-β3 (TGF-β3) is a cytokine with a neuroprotective effect, which plays a crucial role in resisting hypoxic brain injury, while its role in IH-induced neuronal injury is still unclear. Here, we aimed to clarify the mechanism of TGF-β3 protecting IH-exposed neurons by regulating oxidative stress and secondary apoptosis. Morris water maze results revealed that IH exposure was unable to affect the vision and motor ability of rats, but significantly affected their spatial cognition. Second-generation sequencing (RNA-seq) and subsequent experiments supported that IH decreased TGF-β3 expression and stimulated reactive oxygen species (ROS)-induced oxidative stress and apoptosis in rat hippocampus. In vitro, IH exposure significantly activated oxidative stress within HT-22 cells. Exogenous administration of Recombinant Human Transforming Growth Factor-β3 (rhTGF-β3) prevented ROS surge and secondary apoptosis in HT-22 cells caused by IH, while TGF-β type receptor I (TGF-βRI) inhibitor SB431542 blocked the neuroprotective effect of rhTGF-β3. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is a transcription factor preserving intracellular redox homeostasis. rhTGF-β3 improved the nuclear translocation of Nrf-2 and activated downstream pathway. However, Nrf-2 inhibitor ML385 suppressed the activation of the Nrf-2 mechanism by rhTGF-3 and restored the effects of oxidative stress damage. These results indicate that TGF-β3 binding to TGF-βRI activates the intracellular Nrf-2/KEAP1/HO-1 pathway, reduces ROS creation, and attenuates oxidative stress and apoptosis in IH-exposed HT-22 cells.
Collapse
Affiliation(s)
- Yinpei Huang
- Department of ENT, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhili Liu
- Department of ENT, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Wang
- Department of ENT, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yaoxu Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lian Liu
- Department of ENT, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bing Li
- Department of ENT, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
11
|
Zheng Y, Yang S, Si J, Zhao Y, Zhao M, Ji E. Shashen-Maidong Decoction inhibited cancer growth under intermittent hypoxia conditions by suppressing oxidative stress and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115654. [PMID: 36058477 DOI: 10.1016/j.jep.2022.115654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lung cancer is one of the most common malignant tumours and has become the leading cause of cancer-related deaths worldwide. Abnormal microcirculation during tumour growth leads to intermittent hypoxia (IH), which is responsible for promoting cancer cell proliferation and migration. Patients with advanced lung cancers show deficiency of both Qi and Yin Syndrome (DQYS) in TCM, and studies have confirmed that IH exposure is related to DQYS. Shashen-Maidong Decoction (SMD), has been widely applied clinically targeting DQYS and has a long history for treating lung cancer by nourishing the body's "zheng qi" and resisting "xie qi". However, whether SMD could be beneficial to lung cancer under IH conditions remains unclear. AIM OF THE STUDY This study aimed to clarify the effects and mechanism of SMD on non-small cell lung cancer (NSCLC) growth under IH conditions. MATERIALS AND METHODS C57 mice were injected subcutaneously into the right axilla with Lewis lung cancer (LLC) cells and exposed to IH conditions (21%-5% O2, 5 min/cycle, 8 h/day) for 21 days. SMDs were orally treated with different concentrations (2.6, 5.2 or 10.4 g/kg/day) 30 min before IH exposure. Tumour proliferation and migration were assessed by HE and IHC staining, and oxidative stress was assessed by DHE staining and MDA or SOD detection. IL-6, IL-1β and TNF-α levels were assessed by IHC staining, and the IL-6/JAK2/STAT3 signalling pathway was detected by western blotting. RESULTS Our results showed that SMD treatment inhibited tumour growth and liver metastasis in LLC-bearing mice exposed to IH, decreased Ki67, CD31, VEGF, and MMP-2, and increased E-cadherin expression in tumourt tissue. SMD reduced ROS production, increased SOD levels and SOD-2 expression, and decreased MDA levels and NOX-2 expression. SMD decreased IL-6, IL-1β and TNF-α levels, reduced IL-6 expression and inhibited JAK2 and STAT3 phosphorylation. Additionally, SMD treatment improved DQYS and liver and kidney function in LLC-bearing mice under IH conditions. CONCLUSION Our research suggests that SMD treatment can inhibit tumour growth in mice exposed to IH. The antitumour effect of SMD may be related to attenuated oxidative stress and inflammation through inactivation of the IL-6/JAK2/STAT3 signalling pathway under IH conditions.
Collapse
Affiliation(s)
- Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Yang Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ming Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
12
|
Insight into the Effects of High-Altitude Hypoxic Exposure on Learning and Memory. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4163188. [PMID: 36160703 PMCID: PMC9492407 DOI: 10.1155/2022/4163188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The earth land area is heterogeneous in terms of elevation; about 45% of its land area belongs to higher elevation with altitude above 500 meters compared to sea level. In most cases, oxygen concentration decreases as altitude increases. Thus, high-altitude hypoxic stress is commonly faced by residents in areas with an average elevation exceeding 2500 meters and those who have just entered the plateau. High-altitude hypoxia significantly affects advanced neurobehaviors including learning and memory (L&M). Hippocampus, the integration center of L&M, could be the most crucial target affected by high-altitude hypoxia exposure. Based on these points, this review thoroughly discussed the relationship between high-altitude hypoxia and L&M impairment, in terms of hippocampal neuron apoptosis and dysfunction, neuronal oxidative stress disorder, neurotransmitters and related receptors, and nerve cell energy metabolism disorder, which is of great significance to find potential targets for medical intervention. Studies illustrate that the mechanism of L&M damaged by high-altitude hypoxia should be further investigated based on the entire review of issues related to this topic.
Collapse
|
13
|
Li X, Ying H, Zhang Z, Yang Z, You C, Cai X, Lin Z, Xiao Y. Sulforaphane Attenuates Chronic Intermittent Hypoxia-Induced Brain Damage in Mice via Augmenting Nrf2 Nuclear Translocation and Autophagy. Front Cell Neurosci 2022; 16:827527. [PMID: 35401114 PMCID: PMC8986999 DOI: 10.3389/fncel.2022.827527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Obstructive sleep apnea–hypopnea syndrome (OSAHS), typically characterized by chronic intermittent hypoxia (CIH), is associated with neurocognitive dysfunction in children. Sulforaphane (SFN), an activator of nuclear factor E2-related factor 2 (Nrf2), has been demonstrated to protect against oxidative stress in various diseases. However, the effect of SFN on OSAHS remains elusive. In this research, we investigated the neuroprotective role of SFN in CIH-induced cognitive dysfunction and underlying mechanisms of regulation of Nrf2 signaling pathway and autophagy. CIH exposures for 4 weeks in mice, modeling OSAHS, contributed to neurocognitive dysfunction, manifested as increased working memory errors (WMEs), reference memory errors (RMEs) and total memory errors (TEs) in the 8-arm radial maze test. The mice were intraperitoneally injected with SFN (0.5 mg/kg) 30 min before CIH exposure everyday. SFN treatment ameliorated neurocognitive dysfunction in CIH mice, which demonstrates less RME, WME, and TE. Also, SFN effectively alleviated apoptosis of hippocampal neurons following CIH by decreased TUNEL-positive cells, downregulated cleaved PARP, cleaved caspase 3, and upregulated Bcl-2. SFN protects hippocampal tissue from CIH-induced oxidative stress as evidenced by elevated superoxide dismutase (SOD) activities and reduced malondialdehyde (MDA). In addition, we found that SFN enhanced Nrf2 nuclear translocation to hold an antioxidative function on CIH-induced neuronal apoptosis in hippocampus. Meanwhile, SFN promoted autophagy activation, as shown by increased Beclin1, ATG5, and LC3II/LC3I. Overall, our findings indicated that SFN reduced the apoptosis of hippocampal neurons through antioxidant effect of Nrf2 and autophagy in CIH-induced brain damage, which highlights the potential of SFN as a novel therapy for OSAHS-related neurocognitive dysfunction.
Collapse
Affiliation(s)
- Xiucui Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiya Ying
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zilong Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zijing Yang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Cancan You
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongdong Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Blockade of adenosine A 2A receptor alleviates cognitive dysfunction after chronic exposure to intermittent hypoxia in mice. Exp Neurol 2021; 350:113929. [PMID: 34813840 DOI: 10.1016/j.expneurol.2021.113929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is widely known for its multiple systems damage, especially neurocognitive deficits in children. Since their discovery, adenosine A2A receptors (A2ARs) have been considered as key elements in signaling pathways mediating neurodegenerative diseases such as Huntington's and Alzheimer's, as well as cognitive function regulation. Herein, we investigated A2AR role in cognitive impairment induced by chronic intermittent hypoxia (CIH). Mice were exposed to CIH 7 h every day for 4 weeks, and intraperitoneally injected with A2AR agonist CGS21680 or A2AR antagonist SCH58261 half an hour before IH exposure daily. The 8-arm radial arm maze was utilized to assess spatial memory after CIH exposures.To validate findings using pharmacology, the impact of intermittent hypoxia was investigated in A2AR knockout mice. CIH-induced memory dysfunction was manifested by increased error rates in the radial arm maze test. The behavioral changes were associated with hippocampal pathology, neuronal apoptosis, and synaptic plasticity impairment. The stimulation of adenosine A2AR exacerbated memory impairment with more serious neuropathological damage, attenuated long-term potentiation (LTP), syntaxin down-regulation, and increased BDNF protein. Moreover, apoptosis-promoting protein cleaved caspase-3 was upregulated while anti-apoptotic protein Bcl-2 was downregulated. Consistent with these findings, A2AR inhibition with SCH58261 and A2AR deletion exhibited the opposite result. Overall, these findings suggest that A2AR plays a critical role in CIH-induced impairment of learning and memory by accelerating hippocampal neuronal apoptosis and reducing synaptic plasticity. Blockade of adenosine A2A receptor alleviates cognitive dysfunction after chronic exposure to intermittent hypoxia in mice.
Collapse
|
15
|
Zhao Y, Yang S, Guo Q, Guo Y, Zheng Y, Ji E. Shashen-Maidong Decoction improved chronic intermittent hypoxia-induced cognitive impairment through regulating glutamatergic signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114040. [PMID: 33794336 DOI: 10.1016/j.jep.2021.114040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/03/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH), which is associated with cognitive impairment. Previous study suggested CIH exposure could induce similar symptoms and signs to the clinical features of Deficiency of both Qi and Yin Syndrome (DQYS) in Traditional Chinese Medicine (TCM). Shashen-Maidong Decoction (SMD) has been applied clinically for DQYS for hundred years. However, SMD treatment could be beneficial to CIH induced cognitive impairment is still unclear. AIM OF THE STUDY Therefore, the aim of this study was to investigate the effect of SMD treatment on CIH induced cognitive impairment, and to explore the related neuroprotective mechanism. MATERIALS AND METHODS Mice were exposed to CIH for 5 weeks (8 h/day) and were orally treated with either vehicle or SMD (5.265 g/kg/day) 30 min before CIH exposure. Spatial memory was evaluated by Morris Water Maze and Y-Maze test. Synaptic morphology in hippocampus was observed by Golgi-Cox staining and Electron microscope, and NR2B-ERK signaling pathway were detected by western blotting. RESULTS Our results showed that SMD treatment improved performance in either Morris Water Maze or Y-Maze test in mice exposed to CIH, increased spine density and postsynaptic density (PSD) thickness in hippocampus. SMD treatment suppressed the over-activation of NR2B/CaMKII/SynGAP induced by CIH exposure, enhanced ERK/CREB phosphorylation and increased PSD-95 and BDNF expression. CONCLUSION SMD attenuates the CIH-induced cognitive impairment through regulating NR2B-ERK signaling pathway. Additionally, our findings provided that DQYS may be the potential therapeutic target for neurocognitive diseases in patients with OSA.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China
| | - Qiuhong Guo
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China
| | - Yajing Guo
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
16
|
Chen W, Zhang HT, Qin SC. Neuroprotective Effects of Molecular Hydrogen: A Critical Review. Neurosci Bull 2021; 37:389-404. [PMID: 33078374 PMCID: PMC7954968 DOI: 10.1007/s12264-020-00597-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular hydrogen (H2) is a physiologically inert gas. However, during the last 10 years, increasing evidence has revealed its biological functions under pathological conditions. More specifically, H2 has protective effects against a variety of diseases, particularly nervous system disorders, which include ischemia/reperfusion injury, traumatic injury, subarachnoid hemorrhage, neuropathic pain, neurodegenerative diseases, cognitive dysfunction induced by surgery and anesthesia, anxiety, and depression. In addition, H2 plays protective roles mainly through anti-oxidation, anti-inflammation, anti-apoptosis, the regulation of autophagy, and preservation of mitochondrial function and the blood-brain barrier. Further, H2 is easy to use and has neuroprotective effects with no major side-effects, indicating that H2 administration is a potential therapeutic strategy in clinical settings. Here we summarize the H2 donors and their pharmacokinetics. Meanwhile, we review the effectiveness and safety of H2 in the treatment of various nervous system diseases based on preclinical and clinical studies, leading to the conclusion that H2 can be a simple and effective clinical therapy for CNS diseases such as ischemia-reperfusion brain injury, Parkinson's disease, and diseases characterized by cognitive dysfunction. The potential mechanisms involved in the neuroprotective effect of H2 are also analyzed.
Collapse
Affiliation(s)
- Wei Chen
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine and Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| | - Shu-Cun Qin
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China.
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China.
| |
Collapse
|
17
|
Ji W, Zhang Y, Ge RL, Wan Y, Liu J. NMDA Receptor-Mediated Excitotoxicity Is Involved in Neuronal Apoptosis and Cognitive Impairment Induced by Chronic Hypobaric Hypoxia Exposure at High Altitude. High Alt Med Biol 2021; 22:45-57. [PMID: 33252277 DOI: 10.1089/ham.2020.0127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Weizhong Ji
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Loint Research Key Lab for High Altitude Medicine), Xining, China
- Qinghai Provincial People's Hospital, Xining, China
| | - Yaqing Zhang
- Qinghai Provincial People's Hospital, Xining, China
| | - Ri-li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Loint Research Key Lab for High Altitude Medicine), Xining, China
| | - Yaqi Wan
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Loint Research Key Lab for High Altitude Medicine), Xining, China
- Qinghai Provincial People's Hospital, Xining, China
| | - Jie Liu
- Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
18
|
Zhang P, Wang Y, Wang H, Cao J. Sesamol alleviates chronic intermittent hypoxia-induced cognitive deficits via inhibiting oxidative stress and inflammation in rats. Neuroreport 2021; 32:105-111. [PMID: 33323839 DOI: 10.1097/wnr.0000000000001564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic intermittent hypoxia (CIH) is a major pathophysiological feature of obstructive sleep apnea (OSA), which can cause oxidative stress and inflammation which can further impair the nervous system. Cognitive impairment is a common complication of the nervous system in OSA. Sesamol, a natural extract from Sesamum plants, is believed to have strong antioxidant and anti-inflammation capacity, which has a powerful neuroprotective function. But whether sesamol can improve CIH-induced cognitive impairment is unclear. This study aimed to explore whether sesamol can improve CIH-induced cognitive impairment and its relative mechanism in the model rats with OSA. Rats were exposed to CIH for 8 h a day for 2, 4, 6, and 8 weeks separately and concurrently were treated with sesamol (20 mg/kg/day, intraperitoneal). The Morris water maze (MWM) test was used to evaluate their learning and memory function. The activity of the superoxide dismutase (SOD) and the level of malondialdehyde were measured to evaluate the oxidative stress in the hippocampus of the rats. The levels of tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the hippocampus were quantified to analyse neuroinflammation by ELISA. The MWM test showed that sesamol improved learning and memory impairment in CIH-exposed rats. We also found that the sesamol-treated CIH-exposed rats had significantly increased the activity of SOD, as well as reduced the level of malondialdehyde in the hippocampus. In addition, sesamol also reduced the levels of TNF-α and IL-1β in the hippocampus. These data show that sesamol is able to alleviate cognitive impairments in CIH-exposed rats, with its neuroprotective effects likely inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Respiratory and Critical Medicine, Tianjin Medical University General Hospital
- Department of Respiratory and Critical Medicine, North China University of Science and Technology Affiliated Hospital
| | - Yanhui Wang
- Department of Clinical Medicine, Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Hongyang Wang
- Department of Respiratory and Critical Medicine, North China University of Science and Technology Affiliated Hospital
| | - Jie Cao
- Department of Respiratory and Critical Medicine, Tianjin Medical University General Hospital
| |
Collapse
|
19
|
Lin HY, Lai PC, Chen WL. A narrative review of hydrogen-oxygen mixture for medical purpose and the inhaler thereof. Med Gas Res 2021; 10:193-200. [PMID: 33380588 PMCID: PMC8092144 DOI: 10.4103/2045-9912.295226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent development regarding mixture of H2 (concentration of ~66%) with O2 (concentration of ~34%) for medical purpose, such as treatment of coronavirus disease-19 (COVID-19) patients, is introduced. Furthermore, the design principles of a hydrogen inhaler which generates mixture of hydrogen (~66%) with oxygen (~34%) for medical purpose are proposed. With the installation of the liquid blocking module and flame arresters, the air pathway of the hydrogen inhaler is divided by multiple isolation zones to prevent any unexpected explosion propagating from one zone to the other. An integrated filtering/cycling module is utilized to purify the impurity, and cool down the temperature of the electrolytic module to reduce the risk of the explosion. Moreover, a nebulizer is provided to selectively atomize the water into vapor which is then mixed with the filtered hydrogen-oxygen mix gas, such that the static electricity of a substance hardly occurs to reduce the risk of the explosion. Furthermore, hydrogen concentration detector is installed to reduce the risk of hydrogen leakage. Result shows that the hydrogen inhaler implementing the aforesaid design rules could effectively inhibit the explosion, even ignition at the outset of the hydrogen inhaler which outputs hydrogen-oxygen gas (approximately 66% hydrogen: 34% oxygen).
Collapse
|
20
|
Kozin SV, Kravtsov AA, Zlischeva EI, Shurygina LV, Malyshko VV, Moiseev AV, Elkina AA, Baryshev MG. The Influence of a Deuterium Depleted Drinking Diet on the Functional State of the Central Nervous System of Animals in Hypoxia. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920060093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Ding H, Huang J, Wu D, Zhao J, Huang J, Lin Q. Silencing of the long non-coding RNA MEG3 suppresses the apoptosis of aortic endothelial cells in mice with chronic intermittent hypoxia via downregulation of HIF-1α by competitively binding to microRNA-135a. J Thorac Dis 2020; 12:1903-1916. [PMID: 32642094 PMCID: PMC7330306 DOI: 10.21037/jtd-19-2472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/01/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic intermittent hypoxia (CIH) involves substantial cortico-hippocampal injury, causing impairments of neurocognitive, respiratory, and cardiovascular functions. Long non-coding RNAs (lncRNAs) participate in CIH functions and development. Therefore, we explored the mechanisms involving lncRNA maternally expressed gene 3 (MEG3) regulating the aortic endothelial function of CIH mice via regulation of microRNA-135a (miR-135a) and the hypoxia-inducible factor (HIF)-1α. METHODS Expression of MEG3, miR-135a, and HIF-1α in CIH mice and CIH-treated cells was detected. Then, the apoptosis and proliferation of the aortic endothelial cells were examined to verify whether miR-135a and HIF-1α participated in CIH. Next, the interactions between MEG3, miR-135a, and HIF-1α were explored. Later, the effects of MEG3/miR-135a/HIF-1α on the expression of proliferation- and apoptosis-related factors and aortic injury were investigated via gain- and loss-of function studies both in vivo and in vitro. RESULTS MEG3 and HIF-1α were highly expressed while miR-135a was poorly expressed in CIH mice and CIH-modeled cells. Moreover, miR-135a targeted HIF-1α to promote cell proliferation and inhibit apoptosis. MEG3 regulated HIF-1α expression by competitively binding to miR-135a. More importantly, we found that the silencing of MEG3/HIF-1α and the overexpression of miR-135a inhibited the apoptosis and injury of aortic endothelial cells while promoting cell proliferation in CIH mice. CONCLUSIONS Altogether, silencing of MEG3 suppressed the aortic endothelial injury and cell apoptosis in CIH mice by downregulating HIF-1α through sponging miR-135a, providing evidence of a potential therapeutic target for CIH.
Collapse
Affiliation(s)
- Haibo Ding
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jiefeng Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Dawen Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jianming Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jianchai Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Qichang Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
22
|
An JR, Zhao YS, Luo LF, Guan P, Tan M, Ji ES. Huperzine A, reduces brain iron overload and alleviates cognitive deficit in mice exposed to chronic intermittent hypoxia. Life Sci 2020; 250:117573. [PMID: 32209423 DOI: 10.1016/j.lfs.2020.117573] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Chronic intermittent hypoxia (CIH) is a consequence of obstructive sleep apnea (OSA), which increases reactive oxygen species (ROS) generation, resulting in oxidative damage and neurocognitive impairment. This study was designed to determine whether abnormal iron metabolism occurs in the brain under conditions of CIH and whether Huperzine A (HuA) could improve abnormal iron metabolism and neurological damage. The mouse model of CIH was established by reducing the percentage of inspired O2 (FiO2) from 21% to 9% 20 times/h for 8 h/day, and Huperzine A (HuA, 0.1 mg/kg, i.p.) was administered during CIH exposure for 21 days. HuA significantly improved cognitive impairment and neuronal damage in the hippocampus of CIH mice via increasing the ratio of Bcl-2/Bax and inhibiting caspase-3 cleavage. HuA considerably decreased ROS levels by downregulating the high levels of NADPH oxidase (NOX 2, NOX 4) mediated by CIH. There was an overload of iron, which was characterized by high levels of ferritin (FTL and FTH) and transferrin receptor 1 (TfR1) and low levels of ferroportin 1 (FPN1) in the hippocampus of CIH mice. Decreased levels of TfR1 and FTL proteins observed in HuA treated CIH group, could reduce iron overload in hippocampus. HuA increased PSD 95 protein expression, CREB activation and BDNF protein expression to protect against synaptic plasticity impairment induced by CIH. HuA acts as an effective iron chelator to attenuate apoptosis, oxidative stress and synaptic plasticity mediated by CIH.
Collapse
Affiliation(s)
- Ji-Ren An
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ya-Shuo Zhao
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li-Fei Luo
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Peng Guan
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Miao Tan
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - En-Sheng Ji
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
23
|
Su MS, Xu L, Gu SG, Huang N, Ren XK, Cai XH, Li CC. Therapeutic effects and modulatory mechanism of Alpiniae oxyphyllae Fructus in chronic intermittent hypoxia induced enuresis in rats. Sleep Breath 2020; 24:329-337. [PMID: 31898190 DOI: 10.1007/s11325-019-01983-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/25/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective of this study was to explore the effect of Alpiniae oxyphyllae Fructus (AOF) on a rat model of chronic intermittent hypoxia (CIH)-induced enuresis. Findings of this study may help identify therapeutic targets in children with nocturnal enuresis (NE). METHODS Female rats were randomly divided into a control group (saline gavage, 4 weeks of normal air), CIH group (saline gavage, 4 weeks of CIH), and AOF group (AOF gavage, 4 weeks of CIH). The variables measured in this study included water intake, urine output, bladder leak point pressure (BLPP), malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activity. The expression levels of the purinergic P2X3 receptor, muscarinic M3 receptor, and ß3-adrenergic receptor (ß3-AR) in the bladder were also measured. The bladder was subjected to haematoxylin and eosin (HE) and Weigert staining, and histological changes were observed under a light microscope to evaluate the morphological changes in the bladder in each group. RESULTS Compared with the control group, urine output was increased, and the BLPP was decreased in the CIH group, but AOF administration decreased urine output and increased BLPP. In addition, the serum MDA level increased and the SOD activity decreased in the CIH group compared with the control group. Administration of AOF decreased the MDA level and increased the SOD activity. Additionally, compared with the control group, HE and Weigert staining in the CIH group showed that the bladder detrusor muscle bundles were disordered and loose, some muscle bundles were broken, the content of collagen fibres in the gap was reduced, and the gap was significantly widened. However, following the administration of AOF, the bladder detrusor muscle bundles were neatly arranged, and the content of collagen fibres in the gap was increased. Furthermore, compared with the control group, the purinergic P2X3 receptor and muscarinic M3 receptor were expressed at higher levels, and ß3-AR was expressed at lower levels in the CIH group, but AOF administration decreased the expression of the purinergic P2X3 receptor and muscarinic M3 receptor and increased the expression of the ß3-AR. CONCLUSIONS AOF improves enuresis by inhibiting oxidative stress and regulating the expression of the purinergic P2X3 receptor, muscarinic M3 receptor, and ß3 adrenergic receptor.
Collapse
Affiliation(s)
- Miao-Shang Su
- Department of Pediatric Respiratory Medicine and Sleep Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Li Xu
- Department of Pediatric Respiratory Medicine and Sleep Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Shu-Ge Gu
- Department of Pediatric Respiratory Medicine and Sleep Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Nan Huang
- Department of Pediatric Respiratory Medicine and Sleep Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xi-Kai Ren
- Department of Pediatric Respiratory Medicine and Sleep Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiao-Hong Cai
- Department of Pediatric Respiratory Medicine and Sleep Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Chang-Chong Li
- Department of Pediatric Respiratory Medicine and Sleep Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
24
|
Guan P, Sun ZM, Luo LF, Zhou J, Yang S, Zhao YS, Yu FY, An JR, Wang N, Ji ES. Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis. Life Sci 2019; 225:46-54. [PMID: 30951745 DOI: 10.1016/j.lfs.2019.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
AIMS Hydrogen gas (H2) has a diversity of effects such as anti-apoptotic, anti-inflammatory and anti-oxidative properties. However, molecular mechanism underlying the potential effect of H2 on chronic intermittent hypoxia (CIH) induced renal injury remains obscure. MATERIALS AND METHODS In the present study, adult male Sprague-Dawley rats were randomly allocated into four groups: control (CON) group, CIH group, CIH with H2 treatment (CIH + H2) group, and control with H2 treatment (CON + H2) group. Oxidative stress, autophagy and endoplasmic reticulum (ER) stress were detected to determine how H2 affected the renal function of CIH exposed rats. KEY FINDINGS We demonstrated that rats who inhale hydrogen gas showed improved renal function, alleviated pathological damage, oxidative stress and apoptosis in CIH rats. Meanwhile, CIH-induced endoplasmic reticulum stress was decreased by H2 as the expressions of CHOP, caspase-12, and GRP78 were down-regulated. Furthermore, relative higher levels of LC3-II/I ratio and Beclin-1, with decreased expression of p62, were found after H2 administrated. Inhibition of mTOR may be involved in the upregulation of autophagy by H2. Finally, increased phosphorylation of p38 and JNK was involved in the CIH-induced pathological process. H2 could inhibit the activation of p38 and JNK, suggesting H2 played an active part in resisting renal injury via MAPK. SIGNIFICANCE Taken together, our study reveals that H2 can ameliorate CIH-induced kidney injury by decreasing endoplasmic reticulum stress and activating autophagy through inhibiting oxidative stress-dependent p38 and JNK MAPK activation.
Collapse
Affiliation(s)
- Peng Guan
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Zhi-Min Sun
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Li-Fei Luo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Jian Zhou
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Ya-Shuo Zhao
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Fu-Yang Yu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Ji-Ren An
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China.
| |
Collapse
|
25
|
Hydrogen Gas Alleviates Chronic Intermittent Hypoxia-Induced Renal Injury through Reducing Iron Overload. Molecules 2019; 24:molecules24061184. [PMID: 30917568 PMCID: PMC6471060 DOI: 10.3390/molecules24061184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Iron-induced oxidative stress has been found to be a central player in the pathogenesis of kidney injury. Recent studies have indicated H2 can be used as a novel antioxidant to protect cells. The present study was designed to investigate the protective effects of H2 against chronic intermittent hypoxia (CIH)-induced renal injury and its correlation mechanism involved in iron metabolism. We found that CIH-induced renal iron overloaded along with increased apoptosis and oxidative stress. Iron accumulates mainly occurred in the proximal tubule epithelial cells of rats as showed by Perl’s stain. Moreover, we found that CIH could promote renal transferrin receptor and divalent metal transporter-1 expression, inhibit ceruloplasmin expression. Renal injury, apoptosis and oxidative stress induced by CIH were strikingly attenuated in H2 treated rats. In conclusion, hydrogen may attenuate CIH-induced renal injury at least partially via inhibiting renal iron overload.
Collapse
|