1
|
Yun HJ, Nagaraj UD, Grant PE, Merhar SL, Ou X, Lin W, Acheson A, Grewen K, Kline-Fath BM, Im K. A Prospective Multi-Institutional Study Comparing the Brain Development in the Third Trimester between Opioid-Exposed and Nonexposed Fetuses Using Advanced Fetal MR Imaging Techniques. AJNR Am J Neuroradiol 2024; 45:218-223. [PMID: 38216298 PMCID: PMC11285994 DOI: 10.3174/ajnr.a8101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND AND PURPOSE While the adverse neurodevelopmental effects of prenatal opioid exposure on infants and children in the United States are well described, the underlying causative mechanisms have yet to be fully understood. This study aims to compare quantitative volumetric and surface-based features of the fetal brain between opioid-exposed fetuses and unexposed controls by using advanced MR imaging processing techniques. MATERIALS AND METHODS This is a multi-institutional IRB-approved study in which pregnant women with and without opioid use during the current pregnancy were prospectively recruited to undergo fetal MR imaging. A total of 14 opioid-exposed (31.4 ± 2.3 weeks of gestation) and 15 unexposed (31.4 ± 2.4 weeks) fetuses were included. Whole brain volume, cortical plate volume, surface area, sulcal depth, mean curvature, and gyrification index were computed as quantitative features by using our fetal brain MR imaging processing pipeline. RESULTS After correcting for gestational age, fetal sex, maternal education, polysubstance use, high blood pressure, and MR imaging acquisition site, all of the global morphologic features were significantly lower in the opioid-exposed fetuses compared with the unexposed fetuses, including brain volume, cortical volume, cortical surface area, sulcal depth, cortical mean curvature, and gyrification index. In regional analysis, the opioid-exposed fetuses showed significantly decreased surface area and sulcal depth in the bilateral Sylvian fissures, central sulci, parieto-occipital fissures, temporal cortices, and frontal cortices. CONCLUSIONS In this small cohort, prenatal opioid exposure was associated with altered fetal brain development in the third trimester. This adds to the growing body of literature demonstrating that prenatal opioid exposure affects the developing brain.
Collapse
Affiliation(s)
- Hyuk Jin Yun
- From the Division of Newborn Medicine (H.J.Y, P.E.G., K.I.), Boston Children's Hospital, Boston, MA
- Harvard Medical School (H.J.Y, P.E.G., K.I.), Boston, MA
| | - Usha D Nagaraj
- Department of Radiology and Medical Imaging (U.D.N., B.M.K.-F.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine (U.D.N., S.L.M., B.M.K.-F.), Cincinnati, OH
| | - P Ellen Grant
- From the Division of Newborn Medicine (H.J.Y, P.E.G., K.I.), Boston Children's Hospital, Boston, MA
- Harvard Medical School (H.J.Y, P.E.G., K.I.), Boston, MA
- Department of Radiology (P.E.G.), Boston Children's Hospital, Boston, MA
| | - Stephanie L Merhar
- University of Cincinnati College of Medicine (U.D.N., S.L.M., B.M.K.-F.), Cincinnati, OH
- Division of Neonatology, Perinatal Institute (S.L.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Xiawei Ou
- Departments of Radiology and Pediatrics (X.O.), University of Arkansas for Medical Sciences, Little Rock, AR
| | - Weili Lin
- Department of Radiology (W.L.), University of North Carolina, Chappel Hill, NC
| | - Ashley Acheson
- Department of Psychiatry and Behavioral Sciences (A.A.), University of Arkansas for Medical Sciences, Little Rock, AR
| | - Karen Grewen
- Department of Psychiatry (K.G.), University of North Carolina, Chappel Hill, NC
| | - Beth M Kline-Fath
- Department of Radiology and Medical Imaging (U.D.N., B.M.K.-F.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine (U.D.N., S.L.M., B.M.K.-F.), Cincinnati, OH
| | - Kiho Im
- From the Division of Newborn Medicine (H.J.Y, P.E.G., K.I.), Boston Children's Hospital, Boston, MA
- Harvard Medical School (H.J.Y, P.E.G., K.I.), Boston, MA
| |
Collapse
|
2
|
Nagaraj UD, Kline-Fath BM, Zhang B, Vannest JJ, Ou X, Lin W, Acheson A, Grewen K, Grant PE, Merhar SL. MRI Findings in Third-Trimester Opioid-Exposed Fetuses, With Focus on Brain Measurements: A Prospective Multicenter Case-Control Study. AJR Am J Roentgenol 2023; 220:418-427. [PMID: 36169547 PMCID: PMC9975088 DOI: 10.2214/ajr.22.28357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND. The opioid epidemic has profoundly affected infants born in the United States, as in utero opioid exposure increases the risk of cognitive and behavioral problems in childhood. Scarce literature has evaluated prenatal brain development in fetuses with opioid exposure in utero (hereafter opioid-exposed fetuses). OBJECTIVE. The purpose of this study is to compare opioid-exposed fetuses and fetuses without opioid exposure (hereafter unexposed fetuses) in terms of 2D biometric measurements of the brain and additional pregnancy-related assessments on fetal MRI. METHODS. This prospective case-control study included patients in the third trimester of pregnancy who underwent investigational fetal MRI at one of three U.S. academic medical centers from July 1, 2020, through December 31, 2021. Fetuses were classified as opioid exposed or unexposed in utero. Fourteen 2D biometric measurements of the fetal brain were manually assessed and used to derive four indexes. Measurements and indexes were compared between the two groups by use of multivariable linear regression models, which were adjusted for gestational age (GA), fetal sex, and nicotine exposure. Additional pregnancy-related findings on MRI were evaluated. RESULTS. The study included 65 women (mean age, 29.0 ± 5.5 [SD] years). A total of 28 fetuses (mean GA at the time of MRI, 32.2 ± 2.5 weeks) were opioid-exposed, and 37 fetuses (mean GA at the time of MRI, 31.9 ± 2.7 weeks) were unexposed. In the adjusted models, seven measurements were smaller (p < .05) in opioid-exposed fetuses than in unexposed fetuses: cerebral frontooccipital diameter (93.8 ± 7.4 vs 95.0 ± 8.6 mm), bone biparietal diameter (79.0 ± 6.0 vs 80.3 ± 7.1 mm), brain biparietal diameter (72.9 ± 7.7 vs 74.1 ± 8.6 mm), corpus callosum length (37.7 ± 4.0 vs 39.4 ± 3.7 mm), vermis height (18.2 ± 2.7 vs 18.8 ± 2.6 mm), anteroposterior pons measurement (11.6 ± 1.4 vs 12.1 ± 1.4 mm), and transverse cerebellar diameter (40.4 ± 5.1 vs 41.4 ± 6.0 mm). In addition, in the adjusted model, the frontoocccipital index was larger (p = .02) in opioid-exposed fetuses (0.04 ± 0.02) than in unexposed fetuses (0.04 ± 0.02). Remaining measures and indexes were not significantly different between the two groups (p > .05). Fetal motion, cervical length, and deepest vertical pocket of amniotic fluid were not significantly different (p > .05) between groups. Opioid-exposed fetuses, compared with unexposed fetuses, showed higher frequencies of both breech position (21% vs 3%, p = .03) and increased amniotic fluid volume (29% vs 8%, p = .04). CONCLUSION. Fetuses with opioid exposure in utero had a smaller brain size and altered fetal physiology. CLINICAL IMPACT. The findings provide insight into the impact of prenatal opioid exposure on fetal brain development.
Collapse
Affiliation(s)
- Usha D Nagaraj
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3026
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Beth M Kline-Fath
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3026
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Bin Zhang
- Department of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jennifer J Vannest
- Department of Speech Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Communication Sciences and Disorders, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Xiawei Ou
- Department of Radiology, Arkansas Children's Hospital, Little Rock, AR
- Department of Pediatrics, Arkansas Children's Hospital, Little Rock, AR
| | - Weili Lin
- Department of Radiology, University of North Carolina, Chapel Hill, NC
| | - Ashley Acheson
- Department of Psychiatry and Behavioral Sciences, Arkansas Children's Hospital, Little Rock, AR
| | - Karen Grewen
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC
| | - P Ellen Grant
- Departments of Medicine and Radiology, Boston Children's Hospital, Boston, MA
| | - Stephanie L Merhar
- Perinatal Institute, Division of Neonatalogy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
3
|
Zhang J, Chang Q, Rizzello L, Wu Y. Research progress on the effects and mechanisms of anesthetics on neural stem cells. IBRAIN 2022; 8:453-464. [PMID: 37786590 PMCID: PMC10528967 DOI: 10.1002/ibra.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 10/04/2023]
Abstract
Exposure to anesthetic drugs has been proven to seriously affect developing animals in terms of neural stem cells' (NSCs') proliferation, differentiation, and apoptosis. This can severely hamper the development of physiological learning and memory skills. Studies on the effects of anesthetics on NSCs' proliferation and differentiation are thus reviewed here, with the aim to highlight which specific drug mechanisms are the least harmful to NSCs. PubMed has been used as the preferential searching database of relevant literature to identify studies on the effects and mechanisms of NSCs' proliferation and differentiation. It was concluded that propofol and sevoflurane may be the safest options for NSCs during pregnancy and in pediatric clinical procedures, while dexmedetomidine has been found to reduce opioid-related damage in NSCs. It was also found that the growth environment may impact neurodevelopment even more than narcotic drugs. Nonetheless, the current scientific literature available further highlights how more extensive clinical trials are absolutely required for corroborating the conclusion drawn here.
Collapse
Affiliation(s)
- Ji Zhang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Quan‐Yuan Chang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- National Institute of Molecular Genetics (INGM)MilanItaly
| | - You Wu
- Department of Family PlanningThe Affiliated Hospital of Zunyi Medical UniversityGuizhouZunyiChina
| |
Collapse
|
4
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
5
|
Gill S, Kumara VMR. Detecting Neurodevelopmental Toxicity of Domoic Acid and Ochratoxin A Using Rat Fetal Neural Stem Cells. Mar Drugs 2019; 17:md17100566. [PMID: 31590222 PMCID: PMC6835907 DOI: 10.3390/md17100566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, animal experiments in rodents are the gold standard for developmental neurotoxicity (DNT) investigations; however, testing guidelines for these experiments are insufficient in terms of animal use, time, and costs. Thus, alternative reliable approaches are needed for predicting DNT. We chose rat neural stem cells (rNSC) as a model system, and used a well-known neurotoxin, domoic acid (DA), as a model test chemical to validate the assay. This assay was used to investigate the potential neurotoxic effects of Ochratoxin A (OTA), of which the main target organ is the kidney. However, limited information is available regarding its neurotoxic effects. The effects of DA and OTA on the cytotoxicity and on the degree of differentiation of rat rNSC into astrocytes, neurons, and oligodendrocytes were monitored using cell-specific immunofluorescence staining for undifferentiated rNSC (nestin), neurospheres (nestin and A2B5), neurons (MAP2 clone M13, MAP2 clone AP18, and Doublecortin), astrocytes (GFAP), and oligodendrocytes (A2B5 and mGalc). In the absence of any chemical exposure, approximately 46% of rNSC differentiated into astrocytes and neurons, while 40% of the rNSC differentiated into oligodendrocytes. Both non-cytotoxic and cytotoxic concentrations of DA and OTA reduced the differentiation of rNSC into astrocytes, neurons, and oligodendrocytes. Furthermore, a non-cytotoxic nanomolar (0.05 µM) concentration of DA and 0.2 µM of OTA reduced the percentage differentiation of rNSC into astrocytes and neurons. Morphometric analysis showed that the highest concentration (10 μM) of DA reduced axonal length. These indicate that low, non-cytotoxic concentrations of DA and OTA can interfere with the differentiation of rNSC.
Collapse
Affiliation(s)
- S Gill
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney's Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada.
| | - V M Ruvin Kumara
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney's Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|