1
|
Kogan NM, Begmatova D, Vinnikova L, Malitsky S, Itkin M, Sharon E, Klinov A, Gorelick J, Koman I, Vogel Z, Mechoulam R, Pinhasov A. Endocannabinoid basis of personality-Insights from animal model of social behavior. Front Pharmacol 2023; 14:1234332. [PMID: 37663250 PMCID: PMC10468576 DOI: 10.3389/fphar.2023.1234332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Rationale: The endocannabinoid system is known to be involved in learning, memory, emotional processing and regulation of personality patterns. Here we assessed the endocannabinoid profile in the brains of mice with strong characteristics of social dominance and submissiveness. Methods: A lipidomics approach was employed to assess the endocannabinoidome in the brains of Dominant (Dom) and Submissive (Sub) mice. The endocannabinoid showing the greatest difference in concentration in the brain between the groups, docosatetraenoyl ethanolamine (DEA), was synthesized, and its effects on the physiological and behavioral responses of Dom and Sub mice were evaluated. mRNA expression of the endocannabinoid receptors and enzymes involved in PUFA biosynthesis was assessed using qRT-PCR. Results: Targeted LC/MS analysis revealed that long-chain polyunsaturated ethanolamides including arachidonoyl ethanolamide (AEA), DEA, docosatrienoyl ethanolamide (DTEA), eicosatrienoyl ethanolamide (ETEA), eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) were higher in the Sub compared with the Dom mice. Untargeted LC/MS analysis showed that the parent fatty acids, docosatetraenoic (DA) and eicosapentaenoic (EPA), were higher in Sub vs. Dom. Gene expression analysis revealed increased mRNA expression of genes encoding the desaturase FADS2 and the elongase ELOVL5 in Sub mice compared with Dom mice. Acute DEA administration at the dose of 15 mg/kg produced antinociceptive and locomotion-inducing effects in Sub mice, but not in Dom mice. Subchronic treatment with DEA at the dose of 5 mg/kg augmented dominant behavior in wild-type ICR and Dom mice but not in Sub mice. Conclusion: This study suggests that the endocannabinoid system may play a role in the regulation of dominance and submissiveness, functional elements of social behavior and personality. While currently we have only scratched the surface, understanding the role of the endocannabinoid system in personality may help in revealing the mechanisms underlying the etiopathology of psychiatric disorders.
Collapse
Affiliation(s)
- Natalya M. Kogan
- Department of Molecular Biology, Ariel University, Ariel, Israel
- The Institute of Personalized and Translational Medicine, Ariel University, Ariel, Israel
- Institute of Drug Research, Hebrew University, Jerusalem, Israel
| | | | | | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Sharon
- The Institute of Personalized and Translational Medicine, Ariel University, Ariel, Israel
| | - Artem Klinov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Igor Koman
- Department of Molecular Biology, Ariel University, Ariel, Israel
- The Institute of Personalized and Translational Medicine, Ariel University, Ariel, Israel
| | - Zvi Vogel
- Department of Neurbiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
George A, Padilla-Coreano N, Opendak M. For neuroscience, social history matters. Neuropsychopharmacology 2023; 48:979-980. [PMID: 36922626 PMCID: PMC10209051 DOI: 10.1038/s41386-023-01566-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Anne George
- Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Nancy Padilla-Coreano
- Evelyn F. & William McKnight Brain Institute and Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Maya Opendak
- Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Ren H, Wang Q, Li C, Li J, Dai L, Dong M, Zhou J, He J, Liao Y, He Y, Li Z, Chen X, Tang J. Correlation between abnormal N-acetyl-aspartate levels in posterior cingulate cortex and persistent auditory verbal hallucinations in Chinese patients with chronic schizophrenia. Asian J Psychiatr 2023; 80:103416. [PMID: 36577325 DOI: 10.1016/j.ajp.2022.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the relationship between persistent auditory verbal hallucinations (pAVHs) and N-acetyl-aspartate (NAA) levels in posterior cingulate cortex (PCC). 117 schizophrenia (SCZ) patients (61 pAVHs and 56 non-AVHs) and 66 healthy controls were included. The P3 item of the Positive and Negative Syndrome Scale and the Auditory Hallucinations subscale of the Psychotic Symptom Rating Scale were used to assess the severity of pAVHs. NAA levels were significantly lower in the AVHs group, and were negatively correlated with pAVHs. Therefore, increasing the NAA levels in PCC may be helpful in treating pAVHs.
Collapse
Affiliation(s)
- Honghong Ren
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qianjin Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Jinguang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lulin Dai
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Dong
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jun Zhou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingqi He
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying He
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiaogang Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Smith JA, Eikenberry SA, Scott KA, Baumer-Harrison C, de Lartigue G, de Kloet AD, Krause EG. Oxytocin and cardiometabolic interoception: Knowing oneself affects ingestive and social behaviors. Appetite 2022; 175:106054. [PMID: 35447163 DOI: 10.1016/j.appet.2022.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023]
Abstract
Maintaining homeostasis while navigating one's environment involves accurately assessing and interacting with external stimuli while remaining consciously in tune with internal signals such as hunger and thirst. Both atypical social interactions and unhealthy eating patterns emerge as a result of dysregulation in factors that mediate the prioritization and attention to salient stimuli. Oxytocin is an evolutionarily conserved peptide that regulates attention to exteroceptive and interoceptive stimuli in a social environment by functioning in the brain as a modulatory neuropeptide to control social behavior, but also in the periphery as a hormone acting at oxytocin receptors (Oxtr) expressed in the heart, gut, and peripheral ganglia. Specialized sensory afferent nerve endings of Oxtr-expressing nodose ganglia cells transmit cardiometabolic signals via the Vagus nerve to integrative regions in the brain that also express Oxtr(s). These brain regions are influenced by vagal sensory pathways and coordinate with external events such as those demanding attention to social stimuli, thus the sensations related to cardiometabolic function and social interactions are influenced by oxytocin signaling. This review investigates the literature supporting the idea that oxytocin mediates the interoception of cardiovascular and gastrointestinal systems, and that the modulation of this awareness likewise influences social cognition. These concepts are then considered in relation to Autism Spectrum Disorder, exploring how atypical social behavior is comorbid with cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Justin A Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Sophia A Eikenberry
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Karen A Scott
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Caitlin Baumer-Harrison
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA
| | - Annette D de Kloet
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Multidimensional nature of dominant behavior: Insights from behavioral neuroscience. Neurosci Biobehav Rev 2021; 132:603-620. [PMID: 34902440 DOI: 10.1016/j.neubiorev.2021.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
Social interactions for many species of animals are critical for survival, wellbeing, and reproduction. Optimal navigation of a social system increases chances for survival and reproduction, therefore there is strong incentive to fit into social structures. Social animals rely heavily on dominant-submissive behaviors in establishment of stable social hierarchies. There is a link between extreme manifestation of dominance/submissiveness and behavioral deviations. To understand neural substrates affiliated with a specific hierarchical rank, there is a real need for reliable animal behavioral models. Different paradigms have been consolidated over time to study the neurobiology of social rank behavior in a standardized manner using rodent models to unravel the neural pathways and substrates involved in normal and abnormal intraspecific social interactions. This review summarizes and discusses the commonly used behavioral tests and new directions for the assessment of dominance in rodents. We discuss the hierarchy inheritable nature and other critical issues regarding hierarchical rank manifestation which may help in designing social-rank-related studies that serve as promising pre-clinical tools in behavioral psychiatry.
Collapse
|
6
|
Otsuka A, Nomura C, Miura K, Honda A, Kagawa N. Immediate Early Gene Expression in Brain Regions Associated with the Social Behavioral Network After Male Competition in Medaka Fish. Zoolog Sci 2020; 37:391-398. [PMID: 32972079 DOI: 10.2108/zs200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
In this study, we used the immediate early gene, egr-1, as a marker for neural activation and examined whether egr-1 expression is affected in brain regions associated with the social behavioral network (SBN) when social rank is determined and changed in male medaka fish (Oryzias latipes). Based on the behavioral contest protocol used in this study, we obtained four types of males: social ascending, social descending, dominant, and subordinate. In some brain regions associated with the SBN, we detected higher egr-1 expression in ascending and descending males than in dominant and subordinate males. Social-rank stable males (i.e., dominant and subordinate male fish) showed a similar level of egr-1 expression as the control male fish, which were housed without social stimulus of encountering another conspecific. These findings suggested that the transitioning of social rank could enhance neural activity in some brain regions associated with the SBN in male medaka. The use of medaka fish has many advantages in various fields of research such as genetics, developmental biology, environmental biology, and behavioral neurology. The findings of this study would contribute to future research exploring the roles of the SBN regions in regulating physiological and behavioral events associated with social-rank transition.
Collapse
Affiliation(s)
- Airi Otsuka
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Chihomi Nomura
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Kensuke Miura
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Akira Honda
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Nao Kagawa
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Osaka 577-8502, Japan,
| |
Collapse
|