1
|
Gasalla P, Manahan-Vaughan D, Dwyer DM, Hall J, Méndez-Couz M. Characterisation of the neural basis underlying appetitive extinction & renewal in Cacna1c rats. Neuropharmacology 2023; 227:109444. [PMID: 36724867 DOI: 10.1016/j.neuropharm.2023.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Recent studies have revealed impairments in Cacna1c ± heterozygous animals (a gene that encodes the Cav 1.2 L-type voltage-gated calcium channels and is implicated in risk for multiple neuropsychiatric disorders) in aversive forms of learning, such as latent inhibition, reversal learning or context discrimination. However, the role of Cav 1.2 L-type voltage-gated calcium channels in extinction of appetitive associations remains under-investigated. Here, we used an appetitive Pavlovian conditioning task and evaluated extinction learning (EL) with a change of context from that of training and test (ABA) and without such a change (AAA) in Cacna1c ± male rats versus their wild-type (WT) littermates. In addition, we used fluorescence in situ hybridization of somatic immediate early genes (IEGs) Arc and Homer1a expression to scrutinize associated changes in the medial prefrontal cortex and the amygdala. Cacna1c ± animals successfully adapt their responses by engaging in appetitive EL and renewal. However, the regional IEG expression profile changed. For the EL occurring in the same context, Cacna1c ± animals presented higher IEG expression in the infralimbic cortex and the central amygdala than controls. The prelimbic region presented a larger neural ensemble in Cacna1c ± than WT animals, co-labelled for the time window of EL in the original context and prolonged exposure to the unrewarded context. With a context change, the Cacna1c ± infralimbic region displayed higher IEG expression during renewal than controls. Taken together, our findings provide novel evidence of distinct brain activation patterns occurring in Cacna1c ± rats after appetitive extinction and renewal despite preserved behavioral responses. This article is part of the Special Issue on "L-type calcium channel mechanisms in neuropsychiatric disorders".
Collapse
Affiliation(s)
- Patricia Gasalla
- Neuroscience & Mental Health Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK; School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Denise Manahan-Vaughan
- Dept. Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße 150, Building MA 4/158, 44780, Bochum, Germany
| | - Dominic Michael Dwyer
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Marta Méndez-Couz
- Dept. Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße 150, Building MA 4/158, 44780, Bochum, Germany.
| |
Collapse
|
2
|
Maleninska K, Janikova M, Radostova D, Vojtechova I, Petrasek T, Kirdajova D, Anderova M, Svoboda J, Stuchlik A. Selective deficits in attentional set-shifting in mice induced by maternal immune activation with poly(I:C). Behav Brain Res 2022; 419:113678. [PMID: 34838932 DOI: 10.1016/j.bbr.2021.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Maternal immune activation has been identified as a significant risk factor for schizophrenia. Using rodent models, past work has demonstrated various behavioral and brain impairments in offspring after immune-activating events. We applied 5 mg/kg of poly(I:C) on gestation day 9 to pregnant mouse dams, whose offspring were then stressed during puberty. We show impairments in attentional set-shifting in a T-maze, and a decreased number of parvalbumin-positive interneurons in the hippocampus as a result of peripubertal stress specifically in females.
Collapse
Affiliation(s)
- Kristyna Maleninska
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, Klecany, Czech Republic
| | - Martina Janikova
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dominika Radostova
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Iveta Vojtechova
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; National Institute of Mental Health, Topolova 748, Klecany, Czech Republic
| | - Tomas Petrasek
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; National Institute of Mental Health, Topolova 748, Klecany, Czech Republic
| | - Denisa Kirdajova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Jan Svoboda
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Ales Stuchlik
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.
| |
Collapse
|
3
|
Cernotova D, Stuchlik A, Svoboda J. Roles of the ventral hippocampus and medial prefrontal cortex in spatial reversal learning and attentional set-shifting. Neurobiol Learn Mem 2021; 183:107477. [PMID: 34116140 DOI: 10.1016/j.nlm.2021.107477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/25/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Neural components enabling flexible cognition and behavior are well-established, and depend mostly on proper intercommunication within the prefrontal cortex (PFC) and striatum. However, dense projections from the ventral hippocampus (vHPC) alter the functioning of the medial PFC (mPFC). Dysfunctional hippocampo-prefrontal connectivity negatively affects the integrity of flexible cognition, especially in patients with schizophrenia. In this study, we aimed to test the role of the vHPC and mPFC in a place avoidance task on a rotating arena using two spatial flexibility task variants - reversal learning and set-shifting. To achieve this, we inactivated each of these structures in adult male Long-Evans rats by performing bilateral local muscimol (a GABAA receptor agonist) injections. A significantly disrupted performance was observed in reversal learning in the vHPC-inactivated, but not in the mPFC-inactivated rats. These results confirm the notion that the vHPC participates in some forms of behavioral flexibility, especially when spatial cues are needed. It seems, rather unexpectedly, that the mPFC is not taxed in these flexibility tasks on a rotating arena.
Collapse
Affiliation(s)
- Daniela Cernotova
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ales Stuchlik
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jan Svoboda
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Thonnard D, Callaerts-Vegh Z, D'Hooge R. Effects of orbitofrontal cortex and ventral hippocampus disconnection on spatial reversal learning. Neurosci Lett 2021; 750:135711. [PMID: 33571575 DOI: 10.1016/j.neulet.2021.135711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
Behavioural flexibility is a cognition-related function that enables subjects to adapt to a changing environment. Orbitofrontal cortex (OFC) and hippocampus (HC) have been involved in cognitive flexibility, but the interaction between these structures might be of particular functional significance. We applied a disconnection model in C57BL/6JRj mice to investigate the importance of OFC and ventral HC (vHC) interaction. Spatial acquisition and reversal performance in the Morris water maze (MWM) was compared between animals with small contralateral excitotoxic lesions to OFC and vHC, ipsilateral lesions (i.e., OFC-vHC lesions in the same hemisphere), as well as small bilateral OFC or vHC lesions. Spatial learning and memory performance was mostly unimpaired or only slightly impaired in our brain-lesioned animals compared to sham-lesioned control mice. However, contralaterally lesioned mice were significantly impaired during the early phase of reversal learning, whereas the other lesion groups performed similar to controls. These mice might also have experienced some difficulties using cognitively advanced search strategies. Additional non-mnemonic tests indicated that none of the defects could be reduced to motor, motivational or anxiety-related changes. Our findings support the particular role of PFC-HC interaction in advanced cognitive processes and flexibility.
Collapse
Affiliation(s)
- David Thonnard
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium.
| |
Collapse
|
5
|
Dombrovski AY, Luna B, Hallquist MN. Differential reinforcement encoding along the hippocampal long axis helps resolve the explore-exploit dilemma. Nat Commun 2020; 11:5407. [PMID: 33106508 PMCID: PMC7589536 DOI: 10.1038/s41467-020-18864-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
When making decisions, should one exploit known good options or explore potentially better alternatives? Exploration of spatially unstructured options depends on the neocortex, striatum, and amygdala. In natural environments, however, better options often cluster together, forming structured value distributions. The hippocampus binds reward information into allocentric cognitive maps to support navigation and foraging in such spaces. Here we report that human posterior hippocampus (PH) invigorates exploration while anterior hippocampus (AH) supports the transition to exploitation on a reinforcement learning task with a spatially structured reward function. These dynamics depend on differential reinforcement representations in the PH and AH. Whereas local reward prediction error signals are early and phasic in the PH tail, global value maximum signals are delayed and sustained in the AH body. AH compresses reinforcement information across episodes, updating the location and prominence of the value maximum and displaying goal cell-like ramping activity when navigating toward it.
Collapse
Affiliation(s)
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Michael N Hallquist
- Department of Psychology, Penn State University, University Park, PA, 16801, USA.
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599-3270, USA.
| |
Collapse
|
6
|
Dolleman-van der Weel MJ, Griffin AL, Ito HT, Shapiro ML, Witter MP, Vertes RP, Allen TA. The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learn Mem 2019; 26:191-205. [PMID: 31209114 PMCID: PMC6581009 DOI: 10.1101/lm.048389.118] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
The nucleus reuniens of the thalamus (RE) is a key component of an extensive network of hippocampal and cortical structures and is a fundamental substrate for cognition. A common misconception is that RE is a simple relay structure. Instead, a better conceptualization is that RE is a critical component of a canonical higher-order cortico-thalamo-cortical circuit that supports communication between the medial prefrontal cortex (mPFC) and the hippocampus (HC). RE dysfunction is implicated in several clinical disorders including, but not limited to Alzheimer's disease, schizophrenia, and epilepsy. Here, we review key anatomical and physiological features of the RE based primarily on studies in rodents. We present a conceptual model of RE circuitry within the mPFC-RE-HC system and speculate on the computations RE enables. We review the rapidly growing literature demonstrating that RE is critical to, and its neurons represent, aspects of behavioral tasks that place demands on memory focusing on its role in navigation, spatial working memory, the temporal organization of memory, and executive functions.
Collapse
Affiliation(s)
- Margriet J Dolleman-van der Weel
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam NL-1007MB, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | - Matthew L Shapiro
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York 12208, USA
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, Florida 33199, USA
- Department of Environmental Health Sciences, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|