1
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
2
|
Fan YY, Li Y, Tian XY, Wang YJ, Huo J, Guo BL, Chen R, Yang CH, Li Y, Zhang HF, Niu BL, Zhang MS. Delayed Chronic Acidic Postconditioning Improves Poststroke Motor Functional Recovery and Brain Tissue Repair by Activating Proton-Sensing TDAG8. Transl Stroke Res 2024; 15:620-635. [PMID: 36853417 DOI: 10.1007/s12975-023-01143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Acidic postconditioning by transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects in the acute phase of stroke. However, the effects of delayed chronic acidic postconditioning (DCAPC) initiated during the subacute phase of stroke or other acute brain injuries are unknown. Mice received daily DCAPC by inhaling 5%/10%/20% CO2 for various durations (three cycles of 10- or 20-min CO2 inhalation/10-min break) at days 3-7, 7-21, or 3-21 after photothrombotic stroke. Grid-walk, cylinder, and gait tests were used to assess motor function. DCAPC with all CO2 concentrations significantly promoted motor functional recovery, even when DCAPC was delayed for 3-7 days. DCAPC enhanced the puncta density of GAP-43 (a marker of axon growth and regeneration) and synaptophysin (a marker of synaptogenesis) and reduced the amoeboid microglia number, glial scar thickness and mRNA expression of CD16 and CD32 (markers of proinflammatory M1 microglia) compared with those of the stroke group. Cerebral blood flow (CBF) increased in response to DCAPC. Furthermore, the mRNA expression of TDAG8 (a proton-activated G-protein-coupled receptor) was increased during the subacute phase of stroke, while DCAPC effects were blocked by systemic knockout of TDAG8, except for those on CBF. DCAPC reproduced the benefits by re-expressing TDAG8 in the peri-infarct cortex of TDAG8-/- mice infected with HBAAV2/9-CMV-TDAG8-3flag-ZsGreen. Taken together, we first showed that DCAPC promoted functional recovery and brain tissue repair after stroke with a wide therapeutic time window of at least 7 days after stroke. Brain-derived TDAG8 is a direct target of DCAPC that induces neuroreparative effects.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Yu Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Ying Tian
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Ying-Jing Wang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Lu Guo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Ru Chen
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Cai-Hong Yang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Yan Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hui-Feng Zhang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Long Niu
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Ming-Sheng Zhang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
3
|
Razavi SM, Arab ZN, Niknejad A, Hosseini Y, Fouladi A, Khales SD, Shahali M, Momtaz S, Butler AE, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Therapeutic effects of anti-diabetic drugs on traumatic brain injury. Diabetes Metab Syndr 2024; 18:102949. [PMID: 38308863 DOI: 10.1016/j.dsx.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
AIMS In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications. METHODS Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI. RESULTS Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/β-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI. CONCLUSION Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Darban Khales
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mostafa Shahali
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Li Y, Chen R, Shen G, Yin J, Li Y, Zhao J, Nan F, Zhang S, Zhang H, Yang C, Wu M, Fan Y. Delayed CO 2 postconditioning promotes neurological recovery after cryogenic traumatic brain injury by downregulating IRF7 expression. CNS Neurosci Ther 2023; 29:3378-3390. [PMID: 37208955 PMCID: PMC10580333 DOI: 10.1111/cns.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
AIMS Few treatments are available in the subacute phase of traumatic brain injury (TBI) except rehabilitation training. We previously reported that transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects against cerebral ischemia/reperfusion injury. In this study, it was hypothesized that delayed CO2 postconditioning (DCPC) starting at the subacute phase may promote neurological recovery of TBI. METHODS Using a cryogenic TBI (cTBI) model, mice received DCPC daily by inhaling 5%/10%/20% CO2 for various time-courses (one/two/three cycles of 10-min inhalation/10-min break) at Days 3-7, 3-14 or 7-18 after cTBI. Beam walking and gait tests were used to assess the effect of DCPC. Lesion size, expression of GAP-43 and synaptophysin, amoeboid microglia number and glia scar area were detected. Transcriptome and recombinant interferon regulatory factor 7 (Irf7) adeno-associated virus were applied to investigate the molecular mechanisms. RESULTS DCPC significantly promoted recovery of motor function in a concentration and time-course dependent manner with a wide therapeutic time window of at least 7 days after cTBI. The beneficial effects of DCPC were blocked by intracerebroventricular injection of NaHCO3 . DCPC also increased puncta density of GAP-43 and synaptophysin, and reduced amoeboid microglia number and glial scar formation in the cortex surrounding the lesion. Transcriptome analysis showed many inflammation-related genes and pathways were altered by DCPC, and Irf7 was a hub gene, while overexpression of IRF7 blocked the motor function improvement of DCPC. CONCLUSIONS We first showed that DCPC promoted functional recovery and brain tissue repair, which opens a new therapeutic time window of postconditioning for TBI. Inhibition of IRF7 is a key molecular mechanism for the beneficial effects of DCPC, and IRF7 may be a potential therapeutic target for rehabilitation after TBI.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Ru Chen
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Gui‐Ping Shen
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Jing Yin
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Yu Li
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Jing Zhao
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Fang Nan
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Shu‐Han Zhang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Hui‐Feng Zhang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Cai‐Hong Yang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Mei‐Na Wu
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Yan‐Ying Fan
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
5
|
Metformin Alleviates Delayed Hydrocephalus after Intraventricular Hemorrhage by Inhibiting Inflammation and Fibrosis. Transl Stroke Res 2022; 14:364-382. [PMID: 35852765 DOI: 10.1007/s12975-022-01026-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/22/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022]
Abstract
Intraventricular hemorrhage (IVH) is a subtype of intracerebral hemorrhage (ICH) with high morbidity and mortality. Posthemorrhagic hydrocephalus (PHH) is a common and major complication that affects prognosis, but the mechanism is still unclear. Inflammation and fibrosis have been well established as the major causes of PHH after IVH. In this study, we aimed to investigate the effects of metformin on IVH in adult male mice and further explored the underlying molecular mechanisms of these effects. In the acute phase, metformin treatment exerted dose-dependent neuroprotective effects by reducing periependymal apoptosis and neuronal degeneration and decreasing brain edema. Moreover, high-dose metformin reduced inflammatory cell infiltration and the release of proinflammatory factors, thus protecting ependymal structure integrity and subependymal neurons. In the chronic phase, metformin administration improved neurocognitive function and reduced delayed hydrocephalus. Additionally, metformin significantly inhibited basal subarachnoid fibrosis and ependymal glial scarring. The ependymal structures partially restored. Mechanically, IVH reduced phospho-AMPK (p-AMPK) and SIRT1 expression and activated the phospho-NF-κB (p-NF-κB) inflammatory signaling pathway. However, metformin treatment increased AMPK/SIRT1 expression and lowered the protein expression of p-NF-κB and its downstream inflammation. Compound C and EX527 administration reversed the anti-inflammatory effect of metformin. In conclusion, metformin attenuated neuroinflammation and subsequent fibrosis after IVH by regulating AMPK /SIRT1/ NF-κB pathways, thereby reducing delayed hydrocephalus. Metformin may be a promising therapeutic agent to prevent delayed hydrocephalus following IVH.
Collapse
|
6
|
Hasanvand A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: a new perspective for treatment and prevention of diseases. Inflammopharmacology 2022; 30:775-788. [PMID: 35419709 PMCID: PMC9007580 DOI: 10.1007/s10787-022-00980-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Metformin can suppress gluconeogenesis and reduce blood sugar by activating adenosine monophosphate-activated protein kinase (AMPK) and inducing small heterodimer partner (SHP) expression in the liver cells. The main mechanism of metformin's action is related to its activation of the AMPK enzyme and regulation of the energy balance. AMPK is a heterothermic serine/threonine kinase made of a catalytic alpha subunit and two subunits of beta and a gamma regulator. This enzyme can measure the intracellular ratio of AMP/ATP. If this ratio is high, the amino acid threonine 172 available in its alpha chain would be activated by the phosphorylated liver kinase B1 (LKB1), leading to AMPK activation. Several studies have indicated that apart from its significant role in the reduction of blood glucose level, metformin activates the AMPK enzyme that in turn has various efficient impacts on the regulation of various processes, including controlling inflammatory conditions, altering the differentiation pathway of immune and non-immune cell pathways, and the amelioration of various cancers, liver diseases, inflammatory bowel disease (IBD), kidney diseases, neurological disorders, etc. Metformin's activation of AMPK enables it to control inflammatory conditions, improve oxidative status, regulate the differentiation pathways of various cells, change the pathological process in various diseases, and finally have positive therapeutic effects on them. Due to the activation of AMPK and its role in regulating several subcellular signalling pathways, metformin can be effective in altering the cells' proliferation and differentiation pathways and eventually in the prevention and treatment of certain diseases.
Collapse
Affiliation(s)
- Amin Hasanvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
7
|
Akhtar N, Singh R, Kamran S, Babu B, Sivasankaran S, Joseph S, Morgan D, Shuaib A. Diabetes: Chronic Metformin Treatment and Outcome Following Acute Stroke. Front Neurol 2022; 13:849607. [PMID: 35557626 PMCID: PMC9087832 DOI: 10.3389/fneur.2022.849607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Aim To evaluate if in patients with known diabetes, pretreatment metformin will lead to less severe stroke, better outcome, and lower mortality following acute stroke. Methods The Qatar stroke database was interrogated for stroke severity and outcome in patients with ischemic stroke. Outcome was compared in nondiabetic vs. diabetic patients and in diabetic patients on metformin vs. other hypoglycemic agents. The National Institute of Health Stroke Scale was used to measure stroke severity and 90-day modified Rankin scale (mRS) score to determine outcome following acute stroke. Results In total, 4,897 acute stroke patients [nondiabetic: 2,740 (56%) and diabetic: 2,157 (44%)] were evaluated. There were no significant differences in age, risk factors, stroke severity and type, or thrombolysis between the two groups. At 90 days, mRS (shift analysis) showed significantly poor outcome in diabetic patients (p < 0.001) but no differences in mortality. In the diabetic group, 1,132 patients were on metformin and 1,025 on other hypoglycemic agents. mRS shift analysis showed a significantly better outcome in metformin-treated patients (p < 0.001) and lower mortality (8.1 vs. 4.6% p < 0.001). Multivariate negative binomial analyses showed that the presence of diabetes negatively affected the outcome (90-day mRS) by factor 0.17 (incidence risk ratio, IRR, 1.17; CI [1.08-1.26]; p < 0.001) when all independent variables were held constant. In diabetic patients, pre-stroke treatment with metformin improved the outcome (90-day mRS) by factor 0.14 (IRR 0.86 [CI 0.75-0.97] p = 0.006). Conclusion Similar to previous reports, our study shows that diabetes adversely affects stroke outcome. The use of prior metformin is associated with better outcome in patients with ischemic stroke and results in lower mortality. The positive effects of metformin require further research to better understand its mechanism.
Collapse
Affiliation(s)
- Naveed Akhtar
- The Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Rajvir Singh
- Cardiology Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Saadat Kamran
- The Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Blessy Babu
- The Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Sujatha Joseph
- The Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Deborah Morgan
- The Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- Neurology Division, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Fan YY, Huo J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int 2021; 148:105080. [PMID: 34048845 DOI: 10.1016/j.neuint.2021.105080] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Astrocytes play a pivotal role in maintaining the central nervous system (CNS) homeostasis and function. In response to CNS injuries and diseases, reactive astrocytes are triggered. By purifying and genetically profiling reactive astrocytes, it has been now found that astrocytes can be activated into two polarization states: the neurotoxic or pro-inflammatory phenotype (A1) and the neuroprotective or anti-inflammatory phenotype (A2). Although the simple dichotomy of the A1/A2 phenotypes does not reflect the wide range of astrocytic phenotypes, it facilitates our understanding of the reactive state of astrocytes in various CNS disorders. This article reviews the recent evidences regarding A1/A2 astrocytes, including (a) the specific markers and morphological characteristics, (b) the effects of A1/A2 astrocytes on the neurovascular unit, and (c) the molecular mechanisms involved in the phenotypic switch of astrocytes. Although many questions remain, a deeper understanding of different phenotypic astrocytes will eventually help us to explore effective strategies for neurological disorders by targeting astrocytes.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|