1
|
He X, Yang H, Zheng Y, Zhao X, Wang T. The role of non-coding RNAs in neuropathic pain. Pflugers Arch 2024; 476:1625-1643. [PMID: 39017932 DOI: 10.1007/s00424-024-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Neuropathic pain (NPP) is a refractory pain syndrome, caused by damage or disease of the somatosensory nervous system and characterized by spontaneous pain, hyperalgesia, abnormal pain and sensory abnormality. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA) and Piwi interacting RNA (piRNA), play a notable role in initiation and maintenance of NPP. In this review, we summarize the role of ncRNAs in NPP and their underlaying mechanism. Generally, ncRNAs are interacted with mRNA, protein or DNA to regulate the molecules and signals assciated with neuroinflammation, ion channels, neurotrophic factors and others, and then involved in the occurrence and development of NPP. Therefore, this review not only contributes to deepen our understanding of the pathophysiological mechanism of NPP, but also provides theoretical basis for the development of new therapy strategies for this disorder.
Collapse
Affiliation(s)
- Xiuying He
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Huisi Yang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Yuexiang Zheng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Xiaoming Zhao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650504, P.R. China.
| | - Tinghua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Yue J, Wang Q, Zhao W, Wu B, Ni J. Long non-coding RNA Snhg16 Lessens Ozone Curative Effect on Chronic Constriction Injury mice via microRNA-719/SCN1A axis. Mol Biotechnol 2024; 66:2273-2286. [PMID: 37632673 DOI: 10.1007/s12033-023-00847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/29/2023] [Indexed: 08/28/2023]
Abstract
We investigated the function and molecular mechanism of long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (Snhg16) in modifying ozone treatment for neuropathic pain (NP) in a mouse model of chronic constriction injury (CCI). Pain-related behavioral responses were evaluated using paw withdrawal threshold (PWT), paw lifting number (PLN), and paw withdrawal latency (PWL) tests. Interleukin (IL)-1β, IL-10, IL-6, and tumor necrosis factor-alpha (TNF-α) were measured by ELISA and qRT-PCR to evaluate neuroinflammation. qRT-PCR was performed to detect expressions of Snhg16, microRNA (miR)-719, sodium voltage-gated channel alpha subunit 1 (SCN1A), and inflammatory factors. Bioinformatics, dual-luciferase reporter assay, and RNA pull-down verified the underlying molecular mechanisms. Snhg16 expression increased in CCI mice. Snhg16 overexpression retarded the curative effect of ozone and induced NP. miR-719 was sponged by Snhg16. SCN1A was a target of miR-719. Inhibition of miR-719 markedly reversed the effects of Snhg16 on pain-related behavioral responses and neuroinflammation. Upregulation of SCN1A partly abrogated the effects of elevated miR-719 levels on the occurrence of NP. The findings demonstrate that lncRNA Snhg16 promotes NP progression in CCI mice by binding to miR-719 to increase SCN1A expression. The Snhg16/miR-719/SCN1A axis may influence the curative effects of ozone therapy in treating NP.
Collapse
Affiliation(s)
- Jianning Yue
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Qi Wang
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Wenxing Zhao
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Baishan Wu
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Jiaxiang Ni
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, 45, Changchun Street, Xicheng District, Beijing, 100053, China
| |
Collapse
|
3
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
4
|
Yang X, Huang X, Lu W, Yan F, Ye Y, Wang L, Tang X, Zeng W, Huang J, Xie J. Transcriptome Profiling of miRNA-mRNA Interactions and Associated Mechanisms in Chemotherapy-Induced Neuropathic Pain. Mol Neurobiol 2023; 60:5672-5690. [PMID: 37332017 DOI: 10.1007/s12035-023-03398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a dose-limiting adverse event affecting 40% of chemotherapy patients. MiRNA-mRNA interaction plays an important role in various processes. However, detailed profiling of miRNA-mRNA interactions in CINP remains unclear. Here, a rat-based CINP model was established using paclitaxel, followed by nociceptive behavioral tests related to mechanical allodynia, thermal hyperalgesia, and cold allodynia. The landscape of miRNA-mRNA interaction in the spinal dorsal horn was investigated through mRNA transcriptomics and small RNA sequencing. Under CINP condition, 86 differentially expressed mRNAs and 56 miRNAs were identified. Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated the activity of Odorant binding, postsynaptic specialization and synaptic density, extracellular matrix, mitochondrial matrix, retrograde endocannabinoid signaling, and GTPase activity. Protein-protein interaction (PPI), networks of circRNA-miRNA-mRNA, lncRNA-miRNA-mRNA, and TF-genes were demonstrated. We next explored the immune infiltration microenvironment and found a higher infiltration abundance of Th17 and a lower abundance of MDSC in CINP. RT-qPCR and dual-luciferase assays were used to verify the sequencing results, and single-cell analysis based on the SekSeeq database was conducted. Combined with bioinformatics analyses and experimental validations, Mpz, a protein-coding gene specifically expressed in Schwann cells, was found critical in maintaining CINP under miRNA regulation. Therefore, these data highlight the expression patterns of miRNA-mRNA, and the underlying mechanism in the spinal dorsal horn under CINP condition, and Mpz may serve as a promising therapeutic target for patients with CINP.
Collapse
Affiliation(s)
- Xiaohua Yang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xiqiang Huang
- Department of Anesthesiology, Zhongshan People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Weicheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Fang Yan
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yaqi Ye
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Linjie Wang
- Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
| | - Xiaole Tang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Weian Zeng
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Jingxiu Huang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Jingdun Xie
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
5
|
Fu J, Zhao B, Luo G, Ni H, Xu L, He Q, Xu M, Xu C, Wang Y, Ni C, Yao M. JAG-1/Notch signaling axis in the spinal cord contributes to bone cancer pain in rats. J Neurochem 2023; 166:747-762. [PMID: 37422446 DOI: 10.1111/jnc.15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023]
Abstract
Notch signal plays an important role in regulating cell-cell interactions with the adjacent cells. However, it remains unknown whether Jagged1 (JAG-1) mediated Notch signaling regulates bone cancer pain (BCP) via the spinal cell interactions mechanism. Here, we showed that intramedullary injection of Walker 256 breast cancer cells increased the expression of JAG-1 in spinal astrocytes and knockdown of JAG-1 reduced BCP. The supplementation of exogenous JAG-1 to the spinal cord induced BCP-like behavior and promoted expression of c-Fos and hairy and enhancer of split homolog-1 (Hes-1) in the spinal cord of the naïve rats. These effects were reversed when the rats were administered intrathecal injections of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT). The intrathecal injection of DAPT reduced BCP and inhibited Hes-1 and c-Fos expression in the spinal cord. Furthermore, our results showed that JAG-1 up-regulated Hes-1 expression by inducing the recruitment of Notch intracellular domain (NICD) to the RBP-J/CSL-binding site located within the Hes-1 promoter sequence. Finally, the intrathecal injection of c-Fos-antisense oligonucleotides (c-Fos-ASO) and administration of sh-Hes-1 to the spinal dorsal horn also alleviated BCP. The study indicates that inhibition of the JAG-1/Notch signaling axis may be a potential strategy for the treatment of BCP.
Collapse
Affiliation(s)
- Jie Fu
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Baoxia Zhao
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ge Luo
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chengfei Xu
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yahui Wang
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
6
|
Zhang H, Xing Z, Zheng J, Shi J, Cui C. Ursolic acid ameliorates traumatic brain injury in mice by regulating microRNA-141-mediated PDCD4/PI3K/AKT signaling pathway. Int Immunopharmacol 2023; 120:110258. [PMID: 37244112 DOI: 10.1016/j.intimp.2023.110258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Neuronal apoptosis and inflammation are the key pathogenic features of secondary brain injury, which results in the neurological impairment that traumatic brain injury (TBI) patients experience. Ursolic Acid (UA) has been shown to have neuroprotective properties against brain damage, however, detailed mechanisms have not been fully disclosed. Research on brain-related microRNAs (miRNAs) has opened up new possibilities for the neuroprotective treatment of UA by manipulating miRNAs. The present study was designed to investigate the impact of UA on neuronal apoptosis and the inflammatory response in TBI mice. METHODS The mice's neurologic condition was assessed using the modified neurological severity score (mNSS) and the learning and memory abilities were assessed using the Morris water maze (MWM). Cell apoptosis, oxidative stress, and inflammation were utilized to examine the impact of UA on neuronal pathological damage. miR-141-3p was selected to evaluate whether UA influences miRNAs in a way that has neuroprotective benefits. RESULTS The results showed that UA markedly decreased brain edema and neuronal mortality through oxidative stress and neuroinflammation in TBI mice. Using data from the GEO database, we found that miR-141-3p was considerably downregulated in TBI mice and that this downregulation was reversed by UA treatment. Further studies have shown that UA regulates miR-141-3p expression to exhibit its neuroprotective effect in mouse models and cell injury models. Then, miR-141-3p was discovered to directly target PDCD4 in TBI mice and neurons, a well-known PI3K/AKT pathway regulator in the neurons. Most importantly, the upregulation of phosphorylated (p)-AKT and p-PI3K provided the most compelling evidence that UA reactivated the PI3K/AKT pathway in the TBI mouse model, which was through regulating miR-141-3p. CONCLUSION Our findings support the notion that UA can improve TBI by modulating miR-141 mediated PDCD4/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Hongyun Zhang
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Zhenyi Xing
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China.
| | - Jie Zheng
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Jiantao Shi
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chong'qing 40000, China
| | - Chengxi Cui
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China
| |
Collapse
|
7
|
Morchio M, Sher E, Collier DA, Lambert DW, Boissonade FM. The Role of miRNAs in Neuropathic Pain. Biomedicines 2023; 11:biomedicines11030775. [PMID: 36979754 PMCID: PMC10045079 DOI: 10.3390/biomedicines11030775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Neuropathic pain is a debilitating condition affecting around 8% of the adult population in the UK. The pathophysiology is complex and involves a wide range of processes, including alteration of neuronal excitability and synaptic transmission, dysregulated intracellular signalling and activation of pro-inflammatory immune and glial cells. In the past 15 years, multiple miRNAs–small non-coding RNA–have emerged as regulators of neuropathic pain development. They act by binding to target mRNAs and preventing the translation into proteins. Due to their short sequence (around 22 nucleotides in length), they can have hundreds of targets and regulate several pathways. Several studies on animal models have highlighted numerous miRNAs that play a role in neuropathic pain development at various stages of the nociceptive pathways, including neuronal excitability, synaptic transmission, intracellular signalling and communication with non-neuronal cells. Studies on animal models do not always translate in the clinic; fewer studies on miRNAs have been performed involving human subjects with neuropathic pain, with differing results depending on the specific aetiology underlying neuropathic pain. Further studies using human tissue and liquid samples (serum, plasma, saliva) will help highlight miRNAs that are relevant to neuropathic pain diagnosis or treatment, as biomarkers or potential drug targets.
Collapse
Affiliation(s)
- Martina Morchio
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Emanuele Sher
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - David A. Collier
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - Daniel W. Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence:
| |
Collapse
|
8
|
Zhang X, Zhu L, Wang X, Xia L, Zhang Y. Advances in the role and mechanism of miRNA in inflammatory pain. Biomed Pharmacother 2023; 161:114463. [PMID: 36868014 DOI: 10.1016/j.biopha.2023.114463] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Pain is a distressing experience associated with tissue damage or potential tissue damage, and its occurrence is related to sensory, emotional, cognitive and social factors. Inflammatory pain is one of the chronic pains where pain hypersensitivity are functional features of inflammation used to protect tissues from further damage. Pain has a serious impact on people's lives and has become a social problem that cannot be ignored. MiRNAs are small non-coding RNA molecules that exert directing effects on RNA silencing by complementary binding to the 3'UTR of target mRNA. MiRNAs can target a number of protein-coding genes and participate in almost all developmental and pathological processes in animals. Growing studies have suggested that miRNAs have significant implications for inflammatory pain via participating in multiple processes during the occurrence and development, such as affecting the activation of glial cells, regulating pro-inflammatory cytokines and inhibiting central and peripheral sensitization. In this review, the advances in the role of miRNAs in inflammatory pain were discussed. miRNAs as a class of micro-mediators are potential biomarkers and therapeutic targets for inflammatory pain, which provides a better diagnostic and treatment approach for inflammatory pain.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuezhen Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yanan Zhang
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
9
|
Gada Y, Pandey A, Jadhav N, Ajgaonkar S, Mehta D, Nair S. New Vistas in microRNA Regulatory Interactome in Neuropathic Pain. Front Pharmacol 2022; 12:778014. [PMID: 35280258 PMCID: PMC8914318 DOI: 10.3389/fphar.2021.778014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain is a chronic pain condition seen in patients with diabetic neuropathy, cancer chemotherapy-induced neuropathy, idiopathic neuropathy as well as other diseases affecting the nervous system. Only a small percentage of people with neuropathic pain benefit from current medications. The complexity of the disease, poor identification/lack of diagnostic and prognostic markers limit current strategies for the management of neuropathic pain. Multiple genes and pathways involved in human diseases can be regulated by microRNA (miRNA) which are small non-coding RNA. Several miRNAs are found to be dysregulated in neuropathic pain. These miRNAs regulate expression of various genes associated with neuroinflammation and pain, thus, regulating neuropathic pain. Some of these key players include adenylate cyclase (Ac9), toll-like receptor 8 (Tlr8), suppressor of cytokine signaling 3 (Socs3), signal transducer and activator of transcription 3 (Stat3) and RAS p21 protein activator 1 (Rasa1). With advancements in high-throughput technology and better computational power available for research in present-day pharmacology, biomarker discovery has entered a very exciting phase. We dissect the architecture of miRNA biological networks encompassing both human and rodent microRNAs involved in the development of neuropathic pain. We delineate various microRNAs, and their targets, that may likely serve as potential biomarkers for diagnosis, prognosis, and therapeutic intervention in neuropathic pain. miRNAs mediate their effects in neuropathic pain by signal transduction through IRAK/TRAF6, TLR4/NF-κB, TXIP/NLRP3 inflammasome, MAP Kinase, TGFβ and TLR5 signaling pathways. Taken together, the elucidation of the landscape of signature miRNA regulatory networks in neuropathic pain will facilitate the discovery of novel miRNA/target biomarkers for more effective management of neuropathic pain.
Collapse
|
10
|
Dai H, Liu F, Lu J, Yang Y, Liu P. miR-124-3p Combined with ANGPTL2 Has High Diagnostic Values for Obese and Nonobese Polycystic Ovary Syndrome. Int J Endocrinol 2022; 2022:2155018. [PMID: 35747760 PMCID: PMC9213205 DOI: 10.1155/2022/2155018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/08/2022] [Accepted: 05/10/2022] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a hormonal disorder that affects 5-20% of women of reproductive age. Interestingly, serum miR-124-3p and ANGPTL2 are differentially expressed in PCOS patients. Accordingly, this study set out to explore the clinical roles of serum miR-124-3p/ANGPTL2 in PCOS. Firstly, miR-124-3p/ANGPTL2 expression patterns were detected in the serum of 102 PCOS patients and 100 healthy subjects. miR-124-3p or/and ANGPTL2 diagnostic efficacy on PCOS was further analyzed, in addition to the measurement of lipid metabolism, glucose metabolism, sex hormone indexes, and inflammation levels. Correlations between serum miR-124-3p/ANGPTL2 expressions and age, BMI, Ferriman-Gallwey score, lipid metabolism, glucose metabolism, sex hormone indexes, TNF-α, and IL-6 in PCOS patients were determined. The expression correlation and binding relationship of ANGPTL2 and miR-124-3p were identified. In addition, miR-124-3p was downregulated and ANGPTL2 was upregulated in the serum of obese and nonobese PCOS patients. miR-124-3p expression was found to be negatively correlated with Ferriman-Gallwey score and serum total testosterone (T), and negatively related to prolactin (PRL). ANGPTL2 expression was positively correlated with FNS and inversely linked with PRL. TNF-α and IL-6 were negatively correlated with miR-124-3p, but positively correlated with ANGPTL2. Furthermore, there was a negative correlation and a targeting relationship between ANGPTL2 and miR-124-3p expression in the serum of obese and nonobese PCOS patients. Collectively, our findings indicated that miR-124-3p might target ANGPTL2 expression in obese and nonobese PCOS patients, and further underscored the diagnostic value of their combination.
Collapse
Affiliation(s)
- Hongmei Dai
- Department of Reproductive Medicine, Dongying People's Hospital, Dongying, Shandong, China
| | - Fangting Liu
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, China
| | - Jianshu Lu
- Department of Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Yan Yang
- Department of Respiratory, Dongying People's Hospital, Dongying, Shandong, China
| | - Pingping Liu
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, China
| |
Collapse
|
11
|
Xu S, Dong H, Zhao Y, Feng W. Differential Expression of Long Non-Coding RNAs and Their Role in Rodent Neuropathic Pain Models. J Pain Res 2021; 14:3935-3950. [PMID: 35002313 PMCID: PMC8722684 DOI: 10.2147/jpr.s344339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain, which is accompanied by an unpleasant sensation, affects the patient's quality of life severely. Considering the complexity of the neuropathic pain, there are huge unmet medical needs for it while current effective therapeutics remain far from satisfactory. Accordingly, exploration of mechanisms of neuropathic pain could provide new therapeutic insights. While numerous researches have pointed out the contribution of sensory neuron-immune cell interactions, other mechanisms of action, such as long non-coding RNAs (lncRNAs), also could contribute to the neuropathic pain observed in vivo. LncRNAs have more than 200 nucleotides and were originally considered as transcriptional byproducts. However, recent studies have suggested that lncRNAs played a significant role in gene regulation and disease pathogenesis. A substantial number of long non-coding RNAs were expressed differentially in neuropathic pain models. Besides, therapies targeting specific lncRNAs can significantly ameliorate the development of neuropathic pain, which reveals the contribution of lncRNAs in the generation and maintenance of neuropathic pain and provides a new therapeutic strategy. The primary purpose of this review is to introduce recent studies of lncRNAs on different neuropathic pain models.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - He Dong
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Wei Feng
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
12
|
Li Z, Li X, Jian W, Xue Q, Liu Z. Roles of Long Non-coding RNAs in the Development of Chronic Pain. Front Mol Neurosci 2021; 14:760964. [PMID: 34887726 PMCID: PMC8649923 DOI: 10.3389/fnmol.2021.760964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023] Open
Abstract
Chronic pain, a severe public health issue, affects the quality of life of patients and results in a major socioeconomic burden. Only limited drug treatments for chronic pain are available, and they have insufficient efficacy. Recent studies have found that the expression of long non-coding RNAs (lncRNAs) is dysregulated in various chronic pain models, including chronic neuropathic pain, chronic inflammatory pain, and chronic cancer-related pain. Studies have also explored the effect of these dysregulated lncRNAs on the activation of microRNAs, inflammatory cytokines, and so on. These mechanisms have been widely demonstrated to play a critical role in the development of chronic pain. The findings of these studies indicate the significant roles of dysregulated lncRNAs in chronic pain in the dorsal root ganglion and spinal cord, following peripheral or central nerve lesions. This review summarizes the mechanism underlying the abnormal expression of lncRNAs in the development of chronic pain induced by peripheral nerve injury, diabetic neuropathy, inflammatory response, trigeminal neuralgia, spinal cord injury, cancer metastasis, and other conditions. Understanding the effect of lncRNAs may provide a novel insight that targeting lncRNAs could be a potential candidate for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
13
|
Fang X, Wang H, Zhuo Z, Tian P, Chen Z, Wang Y, Cheng X. miR-141-3p inhibits the activation of astrocytes and the release of inflammatory cytokines in bacterial meningitis through down-regulating HMGB1. Brain Res 2021; 1770:147611. [PMID: 34403663 DOI: 10.1016/j.brainres.2021.147611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bacterial meningitis (BM) is a serious infectious disease of the central nervous system that often occurs in children and adolescents. Many studies have suggested that microRNAs (miRNAs) are involved in BM. This study aimed to address the effects of miR-141-3p on astrocyte activation and inflammatory response in BM through HMGB1. METHODS The 3-week-old rats were injected with Streptococcus pneumoniae (SP) into the lateral ventricle to establish a BM model. Loeffler scoring method was used to evaluate the recovery of neurological function. Brain pathological damage was observed by hematoxylin and eosin (H&E) staining. Primary astrocytes were isolated from brain tissues of BM or non-infected SD rats. The levels of TNF-α, IL-1β, and IL-6 in brain tissues and astrocyte culture supernatant were measured by enzyme-linked immunosorbent assay (ELISA). The targeting relationship between miR-141-3p and HMGB1 was tested using dual-luciferase reporter assay. The expression of miR-141-3p, HMGB1, and the astrocytic marker glial fibrillary acidic protein (GFAP) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blotting. Methylation-specific PCR (MSP) analysis was performed to measure the methylation status of miR-141 promoter. RESULTS The results showed that lower Loeffler scores were exhibited in rats with BM. The subarachnoid space of brain tissues of BM rats was widened, and obvious inflammatory cells were observed. miR-141-3p expression was reduced in BM rats and SP-treated astrocytes. Additionally, we found that overexpression of miR-141-3p led to the downregulation of HMGB1, GFAP, and inflammatory cytokines (TNF-α, IL-1β, and IL-6) in astrocytes. Furthermore, the results of dual-luciferase reporter assay confirmed that miR-141-3p directly targeted HMGB1. Overexpression of miR-141-3p inhibited the levels of GFAP, TNF-α, IL-1β, and IL-6 in astrocytes, which was eliminated by the up-regulation of HMGB1. The results of MSP analysis indicated that miR-141 promoter was highly methylated in brain tissues and astrocytes. DNMT1 was involved in the methylation of miR-141 promoter in BM. CONCLUSION The present study verified that miR-141-3p affected inflammatory response by suppressing HMGB1 in SP-induced astrocytes and BM rat model.
Collapse
Affiliation(s)
- Xiao Fang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peichao Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiuyong Cheng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
14
|
Zhang Q, Zhu D, Li Q. LncRNA CRNDE exacerbates neuropathic pain in chronic constriction injury-induced(CCI) rats through regulating miR-146a-5p/WNT5A pathway. Bioengineered 2021; 12:7348-7359. [PMID: 34612146 PMCID: PMC8806618 DOI: 10.1080/21655979.2021.1972901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain (NP) originating from a dysfunction in the nervous system is often intractable and chronic. Many studies have implicated long noncoding RNAs (lncRNAs) in the physiological and pathological development of NP. The lncRNA colorectal neoplasia differentially expressed gene (CRNDE) has been shown to mediate NP progression. However, further investigations are needed to gain deeper understanding of the specific mechanisms governing CRNDE in NP etiopathology. In this study, we successfully used chronic constrictive injury (CCI)-induced rats to establish an NP model with intrathecal injection, and confirmed the upregulation of CRNDE in CCI-induced rats. Moreover, silencing of CRNDE relieved mechanical allodynia, thermal hyperalgesia, and neuroinflammation in the NP model. Bioinformatics analysis predicted that miR-146a-5p binds to CRNDE. Our findings validated that miR-146a-5p was a target of CRNDE and that the expression of miR-146a-5p was decreased in CCI rats. Furthermore, miR-151A-3p was found to exert a negative regulatory effect on WNT5A. In addition, knockdown of WNT5A alleviated the pain-related behavior and inflammatory response of NP in vivo. Finally, we demonstrated that CRNDE contributed to the progression of CCI-induced NP via competitive binding to miR-146a-5p to upregulate WNT5A. The present study offers novel insights that may be translated into improved therapies for NP.
Collapse
Affiliation(s)
- Qiangze Zhang
- Department of Pain, Ji'nan People's Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong China
| | - Dongxia Zhu
- Department of Traditional Chinese Medicine, Ji'nan People's Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong China
| | - Qiang Li
- Department of Infectious Diseases Division, Laiwu People's Hospital, Ji'nan, Shandong China
| |
Collapse
|
15
|
Cheng F, Qin W, Yang AX, Yan FF, Chen Y, Ma JX. Propofol alleviates neuropathic pain in chronic constriction injury rat models via the microRNA-140-3p/Jagged-1 peptide/Notch signaling pathway. Synapse 2021; 75:e22219. [PMID: 34269482 DOI: 10.1002/syn.22219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Chronic constriction injury (CCI) of the sciatic nerve was used to establish neuropathic pain (NP) models in rats. CCI rats were then treated with propofol (Pro) and their paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were measured. In addition, the expression patterns of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10 were detected. CCI rats treated with propofol were further injected with antagomiR-140-3p to verify the role of miR-140-3p in propofol's analgesic actions. In addition to confirming the relationship between miR-140-3p and JAG1, the expression patterns of JAG1 itself were detected. Propofol-treated CCI rats were also injected with Ad-JAG1 (adenovirus-packaged JAG1 overexpression vector and Ad-NC) to test the role of JAG1 in propofol's analgesic mechanism of action. Finally, the levels of JAG1 and Notch pathway-related proteins were detected RESULTS: Propofol was found to alleviate NP, including thermal hyperalgesia and mechanical pain threshold. Propofol could also ameliorate neuroinflammation by up-regulating the expression of IL-10 and inhibiting the release of TNF-α and IL-1β. Mechanically, propofol enhanced the amount of miR-140-3p in CCI rats via the regulation of JAG1. Down-regulation of miR-140-3p, or up-regulation of JAG1, could reduce the protective effect of propofol against NP. Propofol inhibited the activation of Notch signaling via miR-140-3p/JAG1 to realize its analgesic effect CONCLUSION: Our findings indicated that propofol inhibits inflammatory responses and the Notch signaling pathway via miR-140-3p/JAG1 to alleviate NP. These data provide evidence to support a potential clinical therapy for NP.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Bengbu Medical College, Lianyungang, Jiangsu, China
| | - Wei Qin
- Department of Critical Care Medicine, The Affiliated Lianyungang Oriental Hospital of Bengbu Medical College, Lianyungang, Jiangsu, China
| | - Ai-Xing Yang
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Bengbu Medical College, Lianyungang, Jiangsu, China
| | - Feng-Feng Yan
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Bengbu Medical College, Lianyungang, Jiangsu, China
| | - Yu Chen
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Bengbu Medical College, Lianyungang, Jiangsu, China
| | - Jian-Xin Ma
- Department of Oncology, The Affiliated Lianyungang Oriental Hospital of Bengbu Medical College, Lianyungang, Jiangsu, China
| |
Collapse
|
16
|
Yu Z, Zhang Y, Zheng H, Gao Q, Wang H. LncRNA SNHG16 regulates trophoblast functions by the miR-218-5p/LASP1 axis. J Mol Histol 2021; 52:1021-1033. [PMID: 34110517 DOI: 10.1007/s10735-021-09985-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022]
Abstract
Altered placental development and function lead to placental diseases such as preeclampsia (PE) which is mainly characterized by insufficient trophoblast invasion and abnormally invasive placenta disorders. Long noncoding RNAs (lncRNAs) are widely reported to function as crucial players in the pathogenesis of PE. The present investigation clarified the role of lncRNA small nucleolar RNA host gene 16 (SNHG16) in PE. RT-qPCR was used to measure gene expression. The proliferation of trophoblast cells was examined using CCK-8 and EdU assays. Trophoblast migration and invasion were assessed using wound healing and transwell assays. The apoptosis was estimated by flow cytometry. Luciferase reporter and RNA pull-down assays were performed to explore the molecular mechanisms in trophoblast cells. We found that SNHG16 was downregulated in placenta from patients with PE. Moreover, SNHG16 depletion significantly inhibited trophoblast cell proliferation, migration, and invasion and stimulated apoptosis, while SNHG16 overexpression exerted an opposite effect. Subsequently, we confirmed that SNHG16 acted as a competing RNA (ceRNA) of miR-218-5p that was verified to directly target LASP1. Both miR-218-5p depletion and LASP1 upregulation antagonized the effect of SNHG16 knockdown on HTR-8/SVneo cell functions. In conclusion, SNHG16 facilitates trophoblast cell migration and invasion by the miR-218-5p/LASP1 axis.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huaian , 223300, Jiangsu, China
| | - Yulei Zhang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huaian , 223300, Jiangsu, China
| | - Haoyu Zheng
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huaian , 223300, Jiangsu, China
| | - Qiong Gao
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huaian , 223300, Jiangsu, China
| | - Haidong Wang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huaian , 223300, Jiangsu, China.
| |
Collapse
|
17
|
Li Q, Liu S, Yan J, Sun MZ, Greenaway FT. The potential role of miR-124-3p in tumorigenesis and other related diseases. Mol Biol Rep 2021; 48:3579-3591. [PMID: 33877528 DOI: 10.1007/s11033-021-06347-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded noncoding and endogenous RNA molecules with a length of 18-25 nucleotides. Previous work has shown that miR-124-3p leads to malignant progression of cancer including cell apoptosis, migration, invasion, drug resistance, and also recovers neural function, affects adipogenic differentiation, facilitates wound healing through control of various target genes. miR-124-3p has been mainly previously characterized as a tumor suppressor regulating tumorigenesis and progression in several cancers, such as hepatocellular carcinoma (HCC), gastric cancer (GC), bladder cancer, ovarian cancer (OC), and leukemia, as a tumor promotor in breast cancer (BC), and it has been also widely studied in a variety of neurological diseases, like Parkinson's disease (PD), dementia and Alzheimer's disease (AD), and cardiovascular diseases, ulcerative colitis (UC), acute respiratory distress syndrome (ARDS). To lay the groundwork for future therapeutic strategies, in this review we mainly focus on the most recent years of literature on the functions of miR-124-3p in related major cancers, as well as its downstream target genes. Although current work as yet provides an incomplete picture, miR-124-3p is still worthy of more attention as a practical and effective clinical biomarker.
Collapse
Affiliation(s)
- Qian Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China.,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Jinsong Yan
- Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, 01610, USA
| |
Collapse
|
18
|
Chen P, Wang C, Lin D, Li B, Ye S, Qu J, Wang W. Identification of Slc6a19os and SOX11 as Two Novel Essential Genes in Neuropathic Pain Using Integrated Bioinformatic Analysis and Experimental Verification. Front Neurosci 2021; 15:627945. [PMID: 33584192 PMCID: PMC7876402 DOI: 10.3389/fnins.2021.627945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to identify critical genes associated with neuropathic pain. We also used the competing endogenous RNA (ceRNA) hypothesis to identify related long non-coding RNAs (lncRNAs) and messenger RNAs (miRNAs) with potential regulatory roles. We downloaded GSE107180 from the Gene Expression Omnibus database, screened differentially expressed genes (DEGs) using R software, performed comprehensive bioinformatic analyses, and validated the expression of lncRNA Slc6a19os, miR-125a-5p, miR-125b-5p, miR-351-5p, and Sox11 by qRT-PCR and Western blots. We identified 620 DEGs in spared nerve injury (SNI) mice compared with sham (control) mice, including 309 mRNAs and 311 non-coding RNAs. The up-regulated mRNAs were enriched primarily in several inflammation-related GO biological processes and KEGG signaling pathways. A ceRNA network was constructed that included 82 mRNAs, 4 miRNAs, and 2 lnRNAs. An ingenuity pathway analysis (IPA)-based interaction network for mRNAs differentially expressed in the ceRNA identified several biological processes, including "cellular development, connective tissue development and function, tissue development." Compared with sham mice, lncRNA Slc6a19os and Sox11 expression were significantly up-regulated in dorsal root ganglion (DRG) samples from SNI mice detected using qRT-PCR and Western blots (P < 0.05). MiR-125a-5p, miR-125b-5p, and miR-351-5p expression were down-regulated in DRG samples from SNI mice detected using qRT-PCR (P < 0.05). We concluded that Sox11 and lncRNA Slc6a19os were novel essential genes in the pathogenesis and progression of neuropathic pain and speculated that these two genes were regulated by miR-125a-5p, miR-125b-5p, and miR-351-5p.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chen Wang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongsheng Lin
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Li
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuai Ye
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jinglian Qu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenjing Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|