1
|
Hansen T, Staal SM, Rauhe Harreby ND, Andersen U, Holm MT, von Bülow C, Wæhrens EE. Task-Based Eating and Drinking Interventions in Animal Models: A Narrative Review of Functional Improvements and Neuromuscular Adaptations in Age-Related Dysphagia. Geriatrics (Basel) 2024; 9:138. [PMID: 39449375 PMCID: PMC11503346 DOI: 10.3390/geriatrics9060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Age-related dysphagia involves sarcopenia and nervous system changes affecting ingestion. The ACT-ING program, a novel task-based occupational therapy intervention, has been developed to improve strength, endurance, and ingestive skills using real-world eating and drinking tasks for older adults with age-related dysphagia. This narrative review evaluates the outcomes and neuromuscular adaptations of task-based eating and drinking interventions in aging animal models to inform potential refinements of the ACT-ING program and interpret results from an ongoing proof-of-concept study. METHODS Publications were obtained from PubMed, SCOPUS, CINAHL, and EMBASE, and selected following the PRISMA guideline. Thirteen randomized trials investigated a task-based fluid-licking intervention in rats, combining strength, endurance, and skill training. RESULTS Results suggested benefits in improving muscle strength, endurance, and swallowing skills in terms of quantity and speed. Although neuromuscular adaptations were less conclusive, the intervention appeared to induce cortical plasticity and increase fatigue-resistant muscle fibers in the involved muscles. CONCLUSIONS While these findings are promising, methodological concerns and potential biases were identified. Therefore, further research is necessary to refine the ACT-ING program, including both clinical studies in humans and preclinical studies in aging animal models that clearly define interventions targeting all aspects of ingestion-related skills within a motor learning and strength training framework.
Collapse
Affiliation(s)
- Tina Hansen
- Physical Medicine & Rehabilitation Research—Copenhagen (PMR-C), Department of Occupational Therapy and Physiotherapy, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark;
- Occupation-Centered Occupational Therapy, The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark; (U.A.); (M.T.H.); (C.v.B.); (E.E.W.)
| | - Sabina Mette Staal
- Physical Medicine & Rehabilitation Research—Copenhagen (PMR-C), Department of Occupational Therapy and Physiotherapy, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark;
| | - Nete Deela Rauhe Harreby
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Selma Lagerloefsvej 249, 9260 Aalborg, Denmark;
| | - Ulla Andersen
- Occupation-Centered Occupational Therapy, The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark; (U.A.); (M.T.H.); (C.v.B.); (E.E.W.)
- Occupational Science, User Perspectives and Community-Based Research, Institute of Public Health, University of Southern Denmark, Campusvej 55, 5030 Odense C, Denmark
| | - Masumi Takeuchi Holm
- Occupation-Centered Occupational Therapy, The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark; (U.A.); (M.T.H.); (C.v.B.); (E.E.W.)
| | - Cecillie von Bülow
- Occupation-Centered Occupational Therapy, The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark; (U.A.); (M.T.H.); (C.v.B.); (E.E.W.)
| | - Eva Ejlersen Wæhrens
- Occupation-Centered Occupational Therapy, The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark; (U.A.); (M.T.H.); (C.v.B.); (E.E.W.)
- Occupational Science, User Perspectives and Community-Based Research, Institute of Public Health, University of Southern Denmark, Campusvej 55, 5030 Odense C, Denmark
| |
Collapse
|
2
|
Chasse R, McLeod R, Surian A, Fitch RH, Li J. The role of cerebellar FOXP1 in the development of motor and communicative behaviors in mice. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70001. [PMID: 39407418 PMCID: PMC11479947 DOI: 10.1111/gbb.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/20/2024]
Abstract
The gene FOXP2 is well established for a role in human speech and language; far less is known about FOXP1. However, this related gene has also been implicated in human language development as well as disorders associated with features of autism spectrum disorder (ASD). FOXP1 protein expression has also recently been identified in the cerebellum-a neural structure previously shown to express FOXP2 protein. The current study sought to elucidate the behavioral implications of a conditional knock-out of Foxp1 using an En1-Cre driver, which is active in the entirety of the cerebellum and a subset of neurons in the midbrain and spinal cord, in mice using a test battery including motor tasks associated with cerebellar dysfunction, as well as communicative and autistic-relevant behaviors. Male and female mice with a conditional knock-out (cKO, n = 31) and wildtype littermate controls (WT, n = 34) were assessed for gross and orofacial motor control, motor-coordination learning, locomotion, social behavior, anxiety, auditory processing and expressive vocalizations. Overall results suggest Foxp1 plays a specific role in the development of communicative systems, and phenotypic expression of disruptions may interact with sex. Robust motor deficits associated with Foxp1 protein loss may particularly affect vocalizations based on significant orofacial motor deficits in cKO subjects could also contribute to vocalization anomalies. In summary, the current study provides key insights into the role of Foxp1 in cerebellar function and associated behaviors in mice, with implications for an improved understanding of communicative and motor-based neurodevelopmental disabilities in humans.
Collapse
Affiliation(s)
- R. Chasse
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticutUSA
- Murine Behavioral Neurogenetics Facility and Institute of Brain and Behavioral SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - R. McLeod
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticutUSA
- Murine Behavioral Neurogenetics Facility and Institute of Brain and Behavioral SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - A. Surian
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticutUSA
- Murine Behavioral Neurogenetics Facility and Institute of Brain and Behavioral SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - R. H. Fitch
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticutUSA
- Murine Behavioral Neurogenetics Facility and Institute of Brain and Behavioral SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - J. Li
- Department of Genetics and Genome SciencesUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA
| |
Collapse
|
3
|
Hoffmeister JD, Broadfoot CK, Schaen-Heacock NE, Lechner SA, Krasko MN, Nisbet AF, Russell J, Szot J, Glass TJ, Connor NP, Kelm-Nelson CA, Ciucci MR. Vocal and tongue exercise in early to mid-stage Parkinson disease using the Pink1-/- rat. Brain Res 2024; 1837:148958. [PMID: 38685371 PMCID: PMC11166513 DOI: 10.1016/j.brainres.2024.148958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Vocal and swallowing deficits are common in Parkinson disease (PD). Because these impairments are resistant to dopamine replacement therapies, vocal and lingual exercise are the primary treatment, but not all individuals respond to exercise and neural mechanisms of treatment response are unclear. To explore putative mechanisms, we used the progressive Pink1-/- rat model of early to mid-stage PD and employed vocal and lingual exercises at 6- and 10-months of age in male Pink1-/- and wild type (WT) rats. We hypothesized that vocal and lingual exercise would improve vocal and tongue use dynamics and increase serotonin (5HT) immunoreactivity in related brainstem nuclei. Rats were tested at baseline and after 8 weeks of exercise or sham exercise. At early-stage PD (6 months), vocal exercise resulted in increased call complexity, but did not change intensity, while at mid-stage (10 months), vocal exercise no longer influenced vocalization complexity. Lingual exercise increased tongue force generation and reduced relative optical density of 5HT in the hypoglossal nucleus at both time points. The effects of vocal and lingual exercise at these time points are less robust than in prodromal stages observed in previous work, suggesting that early exercise interventions may yield greater benefit. Future work targeting optimization of exercise at later time points may facilitate clinical translation.
Collapse
Affiliation(s)
- J D Hoffmeister
- University of Minnesota, Dept. of Otolaryngology, 420 Delaware Street SE, Minneapolis, MN 55422, USA; University of Wisconsin-Madison, Dept. of Communication Sciences and Disorders, 1975 Willow Drive, Madison, WI 53706, USA.
| | - C K Broadfoot
- University of South Alabama, Dept. of Speech Pathology and Audiology, 5721 USA Drive N, HAHN 1119, Mobile, AL 36688, USA; University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA.
| | - N E Schaen-Heacock
- University of Wisconsin-Madison, Dept. of Communication Sciences and Disorders, 1975 Willow Drive, Madison, WI 53706, USA; University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA.
| | - S A Lechner
- University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA.
| | - M N Krasko
- University of Wisconsin-Madison, Dept. of Communication Sciences and Disorders, 1975 Willow Drive, Madison, WI 53706, USA; University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA.
| | - A F Nisbet
- University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA.
| | - J Russell
- University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA.
| | - J Szot
- University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA.
| | - T J Glass
- University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA.
| | - N P Connor
- University of Wisconsin-Madison, Dept. of Communication Sciences and Disorders, 1975 Willow Drive, Madison, WI 53706, USA; University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA.
| | - C A Kelm-Nelson
- University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA.
| | - M R Ciucci
- University of Wisconsin-Madison, Dept. of Communication Sciences and Disorders, 1975 Willow Drive, Madison, WI 53706, USA; University of Wisconsin-Madison, Dept. of Surgery, Div. of Otolaryngology, 1300 University Avenue, 483 Medical Sciences Building, Madison, WI 53706, USA; University of Wisconsin-Madison, Neuroscience Training Program, 9531 WIMR II, 1111 Highland Ave., Madison, WI 53705, USA.
| |
Collapse
|
4
|
Fogarty MJ. Age influences the specific force and fatigability of the external abdominal obliques but not pectoralis major muscles. Respir Physiol Neurobiol 2024; 320:104187. [PMID: 37939865 PMCID: PMC10841851 DOI: 10.1016/j.resp.2023.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
In the elderly, airway infections are associated with impaired airway defense behaviors, leading to an increased risk of airway infection. The muscles of the chest and abdominal wall are essential for performing effective airway defense manoeuvres, however, very little is known about their function in aging. Here in the 6- and 24-months old Fischer 344 rat model of aging, we assess the contractility and fatigability of chest (the pectoralis major muscle) and abdominal wall (external abdominal oblique) muscles. We assessed muscle function using an ex vivo approach, measuring isometric specific forces normalised to muscle CSA, via a platinum plate field stimulations at a range of frequencies (5-150 Hz) for 1 s. Surprisingly, we did not observe any effect of age on the specific force and fatigue properties of the pectoral muscle. However, in 24-months old rats, EAO specific force was reduced by ∼32 %. These finding suggest that not all respiratory muscles are equally vulnerable to age-associated weakness.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Meier Bürgisser G, Heuberger DM, Rieber J, Miescher I, Giovanoli P, Calcagni M, Buschmann J. Delineation of the healthy rabbit tongue by immunohistochemistry - A technical note. Acta Histochem 2024; 126:152127. [PMID: 38039795 DOI: 10.1016/j.acthis.2023.152127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
In the oral cavity the tongue is an important muscular organ that supports the swallowing of food and liquids. It is responsible for the sense of taste, based on the many different taste buds it contains. Research in the field of tongue diseases demands for suitable preclinical models. The healthy rabbit tongue may therefore serve as baseline and reference for the pathological situation. With this consideration, we covered the fixation and histological stainings as well as the immunohistochemical labelling of the healthy rabbit tongue. In this technical note, initial choice of the fixative is discussed, with a comparison of formalin fixation and subsequent paraffin embedding versus cryopreservation. Moreover, we delineate the effect of an antigen retrieval step for formalin fixation by several examples. Finally, we provide ECM markers collagen I, collagen III, fibronectin, α-SMA and elastin staining as well as ki67 for proliferative status and PAR-2 protein expression as a marker for inflammatory status and nociception in tongue sections, mainly from the tongue body. Technically, we found superiority of paraffin sections for collagen I, collagen III, fibronectin, ki67 and α-SMA labelling, for selected detections systems. As for ECM components, the lamina propria was very rich in collagen and fibronectin, while the muscular body of the tongue showed only collagen and fibronectin positive areas between the muscle fibers. Moreover, α-SMA was clearly expressed in the walls of arteries and veins. The inflammatory marker PAR-2 on the other hand was prominently expressed in the salivary glands and to some extent in the walls of the vessels. Particular PAR-2 expression was found in the excretory ducts of the tongue. This technical note has the aim to provide baseline images that can be used to compare the pathological state of the diseased rabbit tongue as well as for inter-species comparison, such as mouse or rat tongue. Finally, it can be used for the comparison with the human situation.
Collapse
Affiliation(s)
- Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| |
Collapse
|
6
|
Starski PA, De Oliveira Sergio T, Hopf FW. Using lickometry to infer differential contributions of salience network regions during compulsion-like alcohol drinking. ADDICTION NEUROSCIENCE 2023; 7:100102. [PMID: 38736902 PMCID: PMC11086682 DOI: 10.1016/j.addicn.2023.100102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Alcohol use disorder extracts substantial personal, social and clinical costs, and continued intake despite negative consequences (compulsion-like consumption) can contribute strongly. Here we discuss lickometry, a simple method where lick times are determined across a session, while analysis across many aspects of licking can offer important insights into underlying psychological and action strategies, including their brain mechanisms. We first describe studies implicating anterior insula (AIC) and dorsal medial prefrontal cortex (dMPF) in compulsion-like responding for alcohol, then review work suggesting that AIC/ventral frontal cortex versus dMPF regulate different aspects of behavior (oral control and overall response strategy, versus moment-to-moment action organization). We then detail our lickometer work comparing alcohol-only drinking (AOD) and compulsion-like drinking under moderate- or higher-challenge (ModChD or HiChD, using quinine-alcohol). Many studies have suggested utilization of one of two main strategies, with higher motivation indicated by more bouts, and greater palatability suggested by longer, faster bouts. Instead, ModChD shows decreased variability in many lick measures, which is unexpected but consistent with the suggested importance of automaticity for addiction. Also surprising is that HiChD retains several behavior changes seen with ModChD, reduced tongue variability and earlier bout start, even though intake is otherwise disrupted. Since AIC-related measures are retained under both moderate- and higher-challenge, we propose a novel hypothesis that AIC sustains overall commitment regardless of challenge level, while disordered licking during HiChD mirrors the effects of dMPF inhibition. Thus, while AIC provides overall drive despite challenge, the ability to act is ultimately determined within the dMPF.
Collapse
Affiliation(s)
- Phillip A. Starski
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis IN, USA
| | | | - Frederic W. Hopf
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis IN, USA
- Stark Neurosciences Research Institute, Indianapolis IN, USA
| |
Collapse
|
7
|
Krasko MN, Rudisch DM, Burdick RJ, Schaen-Heacock NE, Broadfoot CK, Nisbet AF, Rogus-Pulia N, Ciucci MR. Dysphagia in Parkinson Disease: Part II-Current Treatment Options and Insights from Animal Research. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2023; 11:188-198. [PMID: 39301152 PMCID: PMC11411792 DOI: 10.1007/s40141-023-00393-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 09/22/2024]
Abstract
Purpose of Review Dysphagia is highly prevalent in Parkinson disease (PD) but is not typically identified nor treated until later in the disease process. This review summarizes current pharmacological, surgical, and behavioral treatments for PD-associated dysphagia and contributions from translational animal research. Recent Findings Swallowing is a complex physiologic process controlled by multiple brain regions and neurotransmitter systems. As such, interventions that target nigrostriatal dopamine dysfunction have limited or detrimental effects on swallowing outcomes. Behavioral interventions can help target PD-associated dysphagia in mid-to-late stages. Animal research is necessary to refine treatments and useful in studying prodromal dysphagia. Summary Dysphagia is an early, common, and debilitating sign of PD. Current pharmacological and surgical interventions are not effective in ameliorating swallowing dysfunction; behavioral intervention remains the most effective approach for dysphagia treatment. Animal research has advanced our understanding of mechanisms underlying PD and PD-associated dysphagia, and continues to show translational promise for the study of dysphagia treatment options.
Collapse
Affiliation(s)
- Maryann N Krasko
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA
| | - Denis Michael Rudisch
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA
| | - Ryan J Burdick
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Nicole E Schaen-Heacock
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Courtney K Broadfoot
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Alex F Nisbet
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Nicole Rogus-Pulia
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA
- Neuroscience Training Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
8
|
De La Crompe B, Schneck M, Steenbergen F, Schneider A, Diester I. FreiBox: A Versatile Open-Source Behavioral Setup for Investigating the Neuronal Correlates of Behavioral Flexibility via 1-Photon Imaging in Freely Moving Mice. eNeuro 2023; 10:10/4/ENEURO.0469-22.2023. [PMID: 37105720 PMCID: PMC10166259 DOI: 10.1523/eneuro.0469-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
To survive in a complex and changing environment, animals must adapt their behavior. This ability is called behavioral flexibility and is classically evaluated by a reversal learning paradigm. During such a paradigm, the animals adapt their behavior according to a change of the reward contingencies. To study these complex cognitive functions (from outcome evaluation to motor adaptation), we developed a versatile, low-cost, open-source platform, allowing us to investigate the neuronal correlates of behavioral flexibility with 1-photon calcium imaging. This platform consists of FreiBox, a novel low-cost Arduino behavioral setup, as well as further open-source tools, which we developed and integrated into our framework. FreiBox is controlled by a custom Python interface and integrates a new licking sensor (strain gauge lickometer) for controlling spatial licking behavioral tasks. In addition to allowing both discriminative and serial reversal learning, the Arduino can track mouse licking behavior in real time to control task events in a submillisecond timescale. To complete our setup, we also developed and validated an affordable commutator, which is crucial for recording calcium imaging with the Miniscope V4 in freely moving mice. Further, we demonstrated that FreiBox can be associated with 1-photon imaging and other open-source initiatives (e.g., Open Ephys) to form a versatile platform for exploring the neuronal substrates of licking-based behavioral flexibility in mice. The combination of the FreiBox behavioral setup and our low-cost commutator represents a highly competitive and complementary addition to the recently emerging battery of open-source initiatives.
Collapse
Affiliation(s)
- Brice De La Crompe
- Optophysiology-Optogenetics and Neurophysiology, University of Freiburg, 79110 Freiburg, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Intelligent Machine-Brain Interfacing Technology (IMBIT)-BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| | - Megan Schneck
- Optophysiology-Optogenetics and Neurophysiology, University of Freiburg, 79110 Freiburg, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Intelligent Machine-Brain Interfacing Technology (IMBIT)-BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Steenbergen
- Optophysiology-Optogenetics and Neurophysiology, University of Freiburg, 79110 Freiburg, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Intelligent Machine-Brain Interfacing Technology (IMBIT)-BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| | - Artur Schneider
- Optophysiology-Optogenetics and Neurophysiology, University of Freiburg, 79110 Freiburg, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Intelligent Machine-Brain Interfacing Technology (IMBIT)-BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| | - Ilka Diester
- Optophysiology-Optogenetics and Neurophysiology, University of Freiburg, 79110 Freiburg, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Intelligent Machine-Brain Interfacing Technology (IMBIT)-BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Bernstein Center for Computational Neuroscience, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Bioenergetic Evaluation of Muscle Fatigue in Murine Tongue. Dysphagia 2022:10.1007/s00455-022-10537-y. [DOI: 10.1007/s00455-022-10537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022]
Abstract
AbstractMuscle fatigue is the diminution of force required for a particular action over time. Fatigue may be particularly pronounced in aging muscles, including those used for swallowing actions. Because risk for swallowing impairment (dysphagia) increases with aging, the contribution of muscle fatigue to age-related dysphagia is an emerging area of interest. The use of animal models, such as mice and rats (murine models) allows experimental paradigms for studying the relationship between muscle fatigue and swallowing function with a high degree of biological precision that is not possible in human studies. The goal of this article is to review basic experimental approaches to the study of murine tongue muscle fatigue related to dysphagia. Traditionally, murine muscle fatigue has been studied in limb muscles through direct muscle stimulation and behavioral exercise paradigms. As such, physiological and bioenergetic markers of muscle fatigue that have been validated in limb muscles may be applicable in studies of cranial muscle fatigue with appropriate modifications to account for differences in muscle architecture, innervation ratio, and skeletal support. Murine exercise paradigms may be used to elicit acute fatigue in tongue muscles, thereby enabling study of putative muscular adaptations. Using these approaches, hypotheses can be developed and tested in mice and rats to allow for future focused studies in human subjects geared toward developing and optimizing treatments for age-related dysphagia.
Collapse
|
10
|
Stanford JA, Pinkston JW, Zarcone TJ. Biophysical analyses of rodent behavior in neuroscience research: A tribute to Dr. Stephen C. Fowler. Brain Res Bull 2022; 186:88-90. [PMID: 35688303 DOI: 10.1016/j.brainresbull.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- John A Stanford
- Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Jonathan W Pinkston
- Department of Psychology, Western New England University, Springfield, MA, USA
| | | |
Collapse
|