1
|
Kanchi S, Meesala G. Pentylenetetrazole-Induced Seizures in Wistar Male Albino Rats with Reference to Glutamate Metabolism. J Epilepsy Res 2024; 14:21-28. [PMID: 38978532 PMCID: PMC11227920 DOI: 10.14581/jer.24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 07/10/2024] Open
Abstract
Background and Purpose Epilepsy is a common and heterogenous neurological disorder characterized by recurrent spontaneous seizures. Animal models like rats play a crucial role in finding of mechanism of epilepsy in different brain regions. i.e., cerebral cortex, cerebellum, hippocampus, and pons medulla. Glutamate is an important excitatory neurotransmitter in the central nervous system and also glutamate plays a vital role in neuronal development and memory. The process of neuronal death evolved by glutamate receptor activation, has been hypothesized in both acute and chronic degenerative disorders including epilepsy. Considering the multifactorial neurochemical and neurophysiological malfunctions consequent to epileptic seizures, a few antiepileptic drugs are designed, to mitigate the debilitating aspects of epilepsy. Methods Rat model, pentylenetetrazole (PTZ), an anticonvulsant drug, was selected for the present study. Induction of epilepsy/convulsions was induced by an intraperitoneal injection of PTZ (60 mg/kg body weight) in saline. Biochemical assays performed through spectrophotometer. Results Glutamine and Glutamine synthetase levels were decreased in the epileptic rats brain regions i.e., hippocampus, cerebellum, cerebral cortex, and pons medulla; glutamate dehydrogenase and glutaminase levels were increased in all the regions of epilepsy induced rats. Highest values are recorded in hippocampus when compared to other brain regions. Conclusion PTZ suppresses the function of Glutamine and Glutamine synthetase activities in selected brain regions of rat and enhances the activities of the glutaminase and glutamate dehydrogenase when compared to control rats.
Collapse
|
2
|
Function Prediction of Peptide Toxins with Sequence-Based Multi-Tasking PU Learning Method. Toxins (Basel) 2022; 14:toxins14110811. [PMID: 36422985 PMCID: PMC9696491 DOI: 10.3390/toxins14110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Peptide toxins generally have extreme pharmacological activities and provide a rich source for the discovery of drug leads. However, determining the optimal activity of a new peptide can be a long and expensive process. In this study, peptide toxins were retrieved from Uniprot; three positive-unlabeled (PU) learning schemes, adaptive basis classifier, two-step method, and PU bagging were adopted to develop models for predicting the biological function of new peptide toxins. All three schemes were embedded with 14 machine learning classifiers. The prediction results of the adaptive base classifier and the two-step method were highly consistent. The models with top comprehensive performances were further optimized by feature selection and hyperparameter tuning, and the models were validated by making predictions for 61 three-finger toxins or the external HemoPI dataset. Biological functions that can be identified by these models include cardiotoxicity, vasoactivity, lipid binding, hemolysis, neurotoxicity, postsynaptic neurotoxicity, hypotension, and cytolysis, with relatively weak predictions for hemostasis and presynaptic neurotoxicity. These models are discovery-prediction tools for active peptide toxins and are expected to accelerate the development of peptide toxins as drugs.
Collapse
|
3
|
Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol Toxicol 2022; 39:53-83. [PMID: 36125599 PMCID: PMC9486770 DOI: 10.1007/s10565-022-09761-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which are essential post-transcriptional gene regulators in various neuronal degenerative diseases and playact a key role in these physiological progresses. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis, and, stroke, are seriously threats to the life and health of all human health and life kind. Recently, various studies have reported that some various miRNAs can regulate the development of neurodegenerative diseases as well as act as biomarkers to predict these neuronal diseases conditions. Endogenic miRNAs such as miR-9, the miR-29 family, miR-15, and the miR-34 family are generally dysregulated in animal and cell models. They are involved in regulating the physiological and biochemical processes in the nervous system by targeting regulating different molecular targets and influencing a variety of pathways. Additionally, exogenous miRNAs derived from homologous plants and defined as botanmin, such as miR2911 and miR168, can be taken up and transferred by other species to be and then act analogously to endogenic miRNAs to regulate the physiological and biochemical processes. This review summarizes the mechanism and principle of miRNAs in the treatment of some neurodegenerative diseases, as well as discusses several types of miRNAs which were the most commonly reported in diseases. These miRNAs could serve as a study provided some potential biomarkers in neurodegenerative diseases might be an ideal and/or therapeutic targets for neurodegenerative diseases. Finally, the role accounted of the prospective exogenous miRNAs involved in mammalian diseases is described.
Collapse
Affiliation(s)
- Shijie Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China. .,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
4
|
Dasgupta A, Das D. Designer Peptide Amphiphiles: Self-Assembly to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10704-10724. [PMID: 31330107 DOI: 10.1021/acs.langmuir.9b01837] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Peptide amphiphiles (PAs) are extremely attractive as molecular building blocks, especially in the bottom-up fabrication of supramolecular soft materials, and have potential in many important applications across various fields of science and technology. In recent years, we have designed and synthesized a large group of peptide amphiphiles. This library of PAs has the ability to self-assemble into a variety of aggregates such as fibers, nanosphere, vesicles, nanosheet, nanocups, nanorings, hydrogels, and so on. The mechanism behind the formation of such a wide range of structures is intriguing. Each system has its individual method of aggregation and results in assemblies with important applications in areas including chemistry, biology, and materials science. The aim of this feature article is to bring together our recent achievements with designer PAs with respect to their self-assembly processes and applications. Emphasis is placed on rational design, mechanistic aspects of the self-assembly processes, and the applications of these PAs. We hope that this article will provide a conceptual demonstration of the different approaches taken toward the construction of these task-specific PAs.
Collapse
Affiliation(s)
- Antara Dasgupta
- Eris Lifesciences , Plot Nos. 30 and 31, Brahmaputra Industrial Park, Amingaon, North Guwahati , Guwahati , Assam 781031 , India
| | - Debapratim Das
- Department of Chemistry , Indian Institute of Technology Guwahati , Assam - 781039 , India
| |
Collapse
|
5
|
Wang XY, Yang HW. Upregulation of CBS/H2S system contributes to asymmetric dimethylarginine-triggered protection against the neurotoxicity of glutamate to PC12 cells by inhibiting NOS/NO pathway. Exp Cell Res 2016; 346:111-8. [PMID: 27321959 DOI: 10.1016/j.yexcr.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/02/2016] [Accepted: 06/14/2016] [Indexed: 11/27/2022]
Abstract
Glutamate-induced neurotoxicity involves in overproduction of nitric oxide (NO) and oxidative stress. Our previous data demonstrated that asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, has a protective effect against glutamate-induced neurotoxicity. Hydrogen sulfide (H2S), the third endogenous gaseous mediator, has potential therapeutic value for oxidative stress-induced neural damage. Therefore, we hypothesized that ADMA provides protection against the neurotoxicity of glutamate by regulating endogenous H2S generation. In the present study, we found that ADMA prevented glutamate-triggered decrease in endogenous H2S generation in PC12 cells and reversed glutamate-induced suppression in the expression and activity of cystathionine-β-synthetase (CBS), the predominant enzymatic source of H2S in PC12 cells. Furthermore, AOAA, a potent inhibitor of CBS, significantly abolished the protective action of ADMA against glutamate-induced neurotoxicity to PC12 cells. We also showed that ADMA suppressed glutamate-elicited NOS excessive activation and NO overproduction in PC12 cells. These data indicate that the protection of ADMA against glutamate-induced neurotoxicity is by promoting endogenous H2S generation, resulting from suppression in NOS excessive activation and NO overproduction. These findings provide a novel mechanism underlying the protection of ADMA against glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiang-Yu Wang
- Department of Neurology, Third Clinical Hospital, China Three Gorges University, 60 Qiaohu 1st Road, 443002 Yichang, PR China; Department of Neurology, Gezhouba Central Hospital, 443002 Yichang, PR China.
| | - Hong-Wei Yang
- Department of Physiology, college of medical sciences, China Three Gorges University, 443002 Yichang, PR China
| |
Collapse
|
6
|
Monge-Fuentes V, Gomes FMM, Campos GAA, Silva JDC, Biolchi AM, Dos Anjos LC, Gonçalves JC, Lopes KS, Mortari MR. Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J Venom Anim Toxins Incl Trop Dis 2015; 21:31. [PMID: 26257776 PMCID: PMC4529710 DOI: 10.1186/s40409-015-0031-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer’s disease, epilepsy, Parkinson’s disease, and pathological anxiety.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Flávia Maria Medeiros Gomes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Gabriel Avohay Alves Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Juliana de Castro Silva
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Andréia Mayer Biolchi
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Lilian Carneiro Dos Anjos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Jacqueline Coimbra Gonçalves
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Kamila Soares Lopes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| |
Collapse
|
7
|
Oliveira KM, Silva CMO, Lavor MSL, Rosado IR, Fukushima FB, Assumpção ALF, Neves SM, Motta GR, Garcia FF, Gomez MV, Melo MM, Melo EG. Systemic effects induced by intralesional injection of ω-conotoxin MVIIC after spinal cord injury in rats. J Venom Anim Toxins Incl Trop Dis 2014; 20:15. [PMID: 24739121 PMCID: PMC4021631 DOI: 10.1186/1678-9199-20-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/09/2014] [Indexed: 01/08/2023] Open
Abstract
Background Calcium channel blockers such as conotoxins have shown a great potential to reduce brain and spinal cord injury. MVIIC neuroprotective effects analyzed in in vitro models of brain and spinal cord ischemia suggest a potential role of this toxin in preventing injury after spinal cord trauma. However, previous clinical studies with MVIIC demonstrated that clinical side effects might limit the usefulness of this drug and there is no research on its systemic effects. Therefore, the present study aimed to investigate the potential toxic effects of MVIIC on organs and to evaluate clinical and blood profiles of rats submitted to spinal cord injury and treated with this marine toxin. Rats were treated with placebo or MVIIC (at doses of 15, 30, 60 or 120 pmol) intralesionally following spinal cord injury. Seven days after the toxin administration, kidney, brain, lung, heart, liver, adrenal, muscles, pancreas, spleen, stomach, and intestine were histopathologically investigated. In addition, blood samples collected from the rats were tested for any hematologic or biochemical changes. Results The clinical, hematologic and biochemical evaluation revealed no significant abnormalities in all groups, even in high doses. There was no significant alteration in organs, except for degenerative changes in kidneys at a dose of 120 pmol. Conclusions These findings suggest that MVIIC at 15, 30 and 60 pmol are safe for intralesional administration after spinal cord injury and could be further investigated in relation to its neuroprotective effects. However, 120 pmol doses of MVIIC may provoke adverse effects on kidney tissue.
Collapse
Affiliation(s)
- Karen M Oliveira
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 30123-970, Brasil
| | - Carla Maria O Silva
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 30123-970, Brasil
| | - Mário Sérgio L Lavor
- Departament of Agrarian and Environmental Sciences, State University of Santa Cruz, Ilhéus, Bahia State, Brazil
| | - Isabel R Rosado
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 30123-970, Brasil
| | - Fabíola B Fukushima
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 30123-970, Brasil
| | - Anna Luiza Fv Assumpção
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 30123-970, Brasil
| | - Saira Mn Neves
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 30123-970, Brasil
| | - Guilherme R Motta
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 30123-970, Brasil
| | - Fernanda F Garcia
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 30123-970, Brasil
| | - Marcus Vinícius Gomez
- National Institute of Sciences and Technology on Molecular Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais State, Brazil
| | - Marília M Melo
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 30123-970, Brasil
| | - Eliane G Melo
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 30123-970, Brasil
| |
Collapse
|
8
|
Crotalus durissus collilineatus Venom Induces TNF- α and IL-10 Production in Human Peripheral Blood Mononuclear Cells. ISRN INFLAMMATION 2014; 2014:563628. [PMID: 24563803 PMCID: PMC3915804 DOI: 10.1155/2014/563628] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/02/2013] [Indexed: 12/03/2022]
Abstract
Snake venom has been the subject of numerous studies in an attempt to find properties and biological effects that may be beneficial to man. In this study we evaluated in vitro the effects of Crotalus durissus terrificus (Cdt) and Crotalus durissus collilineatus (Cdc) venom in human peripheral blood mononuclear cells (PBMCs). At 24 h, a significant decrease of viable cells was observed in cells stimulated with the Cdc venom at 0.0005 mg/mL and 0.005 mg/mL compared to the negative control. At 48 h, a significant decrease of viable cells was observed only in cells stimulated with Cdc venom at 0.005 mg/mL. A significant increase of TNF-α and IL-10 was detected 48 hours after culture of PBMC with Cdc, but not with Cdt venom. The expression of CD69 and PD1 (programmed death-1), activation and regulatory cell markers, on CD8+ and CD8− T cells did not change in the presence of Cdt and Cdc venom. Our results suggest the presence of proinflammatory and anti-inflammatory components in the Cdc venom. Further analysis should be done to identify those Cdc venom components as it has been done for the Cdt venom by other authors, indicating that modulatory components are found in the venom of different species of Crotalus snakes.
Collapse
|
9
|
Wang XY, Zhao J, Yang HW. Asymmetrical dimethylarginine antagonizes glutamate-induced apoptosis in PC12 cells. J Mol Neurosci 2012; 49:89-95. [PMID: 23054590 DOI: 10.1007/s12031-012-9897-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Overproduction of nitric oxide (NO) plays an important role in glutamate-induced excitotoxicity. Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor. The aim of this study is to explore whether ADMA antagonizes the excitotoxicity of glutamate to neuronal cells and the underlying molecular mechanisms. In this work, we investigated the effects of ADMA on glutamate-induced toxicity in neuronal cells by studying PC12 cells, a clonal rat pheochromocytoma cell line. We show that ADMA obviously protects PC12 cells against glutamate-induced cytotoxicity and apoptosis. We also found that ADMA treatment results in prevention of glutamate-induced mitochondrial membrane potential loss and caspase-3 activation. Moreover, ADMA prevents glutamate-caused down-regulation of bcl-2 protein expression. These results indicate that ADMA protects against glutamate-induced apoptosis and excitotoxicity and the underlying mechanism may be involved in preservation of mitochondrial function by up-regulating the expression of bcl-2. Our study suggests a promising future of ADMA-based therapies for neuropathologies associated with an excess of NO.
Collapse
Affiliation(s)
- Xiang-Yu Wang
- Department of Neurology, Third Clinical Hospital, China Three Gorges University, 60 Qiaohu 1st Road, 443002 Yichang, China.
| | | | | |
Collapse
|
10
|
Weon JB, Yang HJ, Lee B, Yun BR, Ahn JH, Lee HY, Ma CJ. Neuroprotective activity of the methanolic extract of Lonicera japonica in glutamate-injured primary rat cortical cells. Pharmacogn Mag 2012; 7:284-8. [PMID: 22262930 PMCID: PMC3261061 DOI: 10.4103/0973-1296.90404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/17/2011] [Accepted: 11/30/2011] [Indexed: 11/21/2022] Open
Abstract
Background: We previously reported that the extracts of several Korean medicinal plants showed neuroprotective activity in glutamate-injured primary culutres of rat cortical cells. Objective: Among them, the effect of the methanolic extract of Lonicera japonica flower on the glutamate-induced neuronal cell death and its potential mechanism of action was investigated. Results: Treatment by the methanolic extract of L. japonica flower significantly protected neuronal cells against glutamate-induced excitotoxicity. It decreased the calcium influx that accompanies the glutamate induced excitotoxicity of neuronal cells, and inhibited the subsequent overproduction of nitric oxide, reactive oxygen species and peroxide to the level of control cells. In addition, it preserved cellular activity of superoxide dismutase, an antioxidative enzyme reduced by glutamate insult. Conclusions: According to this data, the methanolic extract of L. japonica flower significantly protected neuronal cells against glutamate excitotoxicity via antioxidative activity.
Collapse
Affiliation(s)
- Jin Bae Weon
- Department of Biomaterials Engineering, School of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Yoon JS, Sung SH, Kim YC. Neuroprotective limonoids of root bark of Dictamnus dasycarpus. JOURNAL OF NATURAL PRODUCTS 2008; 71:208-211. [PMID: 18198838 DOI: 10.1021/np070588o] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A methanolic extract of Dictamnus dasycarpus root bark afforded four new degraded limonoids, 9alpha-hydroxyfraxinellone-9- O-beta- d-glucoside ( 1), dictamnusine ( 2), dictamdiol A ( 3), and dictamdiol B ( 4), together with eight known compounds, dictamdiol ( 5), fraxinellone ( 6), fraxinellonone ( 7), 9beta-hydroxyfraxinellone ( 8), calodendrolide ( 9), obacunone ( 10), limonin ( 11), and rutaevin ( 12). Compounds, 2, 3, 6, 9, 10, and 11 showed significant neuroprotective activity against glutamate-induced neurotoxicity in primary cultures of rat cortical cells at a concentration of 0.1 microM.
Collapse
Affiliation(s)
- Jeong Seon Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul 151-742, Korea
| | | | | |
Collapse
|
12
|
Karangwa C, Esters V, Tits M, Minet A, Boland A, Seutin V, Noirfalise A, Angenot L, Grisar T, Foidart A. Characterization of the neurotoxicity induced by the extract of Magnistipula butayei (Chrysobalanaceae) in rat: Effects of a new natural convulsive agent. Toxicon 2007; 49:1109-19. [PMID: 17395230 DOI: 10.1016/j.toxicon.2007.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 01/30/2007] [Accepted: 02/01/2007] [Indexed: 11/24/2022]
Abstract
This study was designed to document convulsant and neurotoxic properties of extracts of a tropical tree, Magnistipula butayei subsp. Montana, and to investigate the involvement of the glutamatergic system in these effects. Continuous behavioral observations and electroencephalographic (EEG) records were obtained after per os administration of an aqueous extract of Magnistipula (MBMAE) in rats. MBMAE (800 mg/kg) induced behavioral changes resembling motor limbic seizures: staring and head tremor, automatisms, forelimb clonic movements and violent tonic-clonic seizures leading to death in all animals. Concomitantly, important seizure activity that gradually evolved to epileptiform activity was recorded on the EEG. Moreover, c-Fos immunohistochemistry has revealed an increased c-Fos expression in the dentate gyrus and in piriform, peri- and entorhinal cortices 2 and 4h after treatment. This expression pattern suggested that the mechanism of action for the MBMAE is similar to that observed in glutamate-induced models of epilepsy. The MBMAE increased cell death also in hippocampal cell cultures. Furthermore, the build-up of convulsive activity and epileptic discharges induced by MBMAE in rat were abolished by MK-801, an NMDA receptor antagonist. Our study suggests that MBMAE contains a potent toxin, with a powerful neurotoxic activity in rat, and corresponding to a new natural component(s) that act as an NMDA-mediated convulsant molecule.
Collapse
Affiliation(s)
- Charles Karangwa
- Natural and Synthetic Drugs Research Center (CPSNS), University of Liege, B-4000 Liege, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kaplan N, Morpurgo N, Linial M. Novel families of toxin-like peptides in insects and mammals: a computational approach. J Mol Biol 2007; 369:553-66. [PMID: 17433819 DOI: 10.1016/j.jmb.2007.02.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Revised: 02/14/2007] [Accepted: 02/21/2007] [Indexed: 11/19/2022]
Abstract
Most animal toxins are short proteins that appear in venom and vary in sequence, structure and function. A common characteristic of many such toxins is their apparent structural stability. Sporadic instances of endogenous toxin-like proteins that function in non-venom context have been reported. We have utilized machine learning methodology, based on sequence-derived features and guided by the notion of structural stability, in order to conduct a large-scale search for toxin and toxin-like proteins. Application of the method to insect and mammalian sequences revealed novel families of toxin-like proteins. One of these proteins shows significant similarity to ion channel inhibitors that are expressed in cone snail and assassin bug venom, and is surprisingly expressed in the bee brain. A toxicity assay in which the protein was injected to fish induced a strong yet reversible paralytic effect. We suggest that the protein may function as an endogenous modulator of voltage-gated Ca(2+) channels. Additionally, we have identified a novel mammalian cluster of toxin-like proteins that are expressed in the testis. We suggest that these proteins might be involved in regulation of nicotinic acetylcholine receptors that affect the acrosome reaction and sperm motility. Finally, we highlight a possible evolutionary link between venom toxins and antibacterial proteins. We expect our methodology to enhance the discovery of additional novel protein families.
Collapse
Affiliation(s)
- Noam Kaplan
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| | | | | |
Collapse
|
14
|
Pinheiro ACN, Gomez RS, Massensini AR, Cordeiro MN, Richardson M, Romano-Silva MA, Prado MAM, De Marco L, Gomez MV. Neuroprotective effect on brain injury by neurotoxins from the spider Phoneutria nigriventer. Neurochem Int 2006; 49:543-7. [PMID: 16759753 DOI: 10.1016/j.neuint.2006.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 04/07/2006] [Indexed: 12/13/2022]
Abstract
The role of calcium channels blockers in ischemic condition has been well documented. The PhTx3 neurotoxic fraction of the spider Phoneutria nigriventer venom is a broad-spectrum calcium channel blocker that inhibits glutamate release, calcium uptake and also glutamate uptake in synaptosomes. In the present study we describe the effect of PhTx3 (1.0 microg/mL), omega-conotoxin GVIA (1.0 micromol/L) and omega-conotoxin MVIIC (100 nmol/L) on neuroprotection of hippocampal slices and SN56 cells subjected to ischemia by oxygen deprivation and low glucose insult (ODLG). After the insult, cell viability in the slices and SN56 cells was assessed by confocal microscopy and epifluorescence, using live/dead kit containing calcein-AM and ethidium homodimer. Confocal images of CA1 region of the rat hippocampal slices subjected to ischemia insult and treated with omega-conotoxin GVIA, omega-conotoxin MVIIC and PhTx3 showed a percentage of dead cells of 68%, 54% and 18%, respectively. The SN56 cells subjected to ischemia were almost completely protected from damage by PhTx3 while with omega-conotoxin GVIA or omega-conotoxin MVIIC the cell protection was only partial. Thus, PhTx3 provided robust ischemic neuroprotection showing potential as a novel class of agents that targets multiple components and exerts neuroprotection in in vitro model of brain ischemia.
Collapse
Affiliation(s)
- Ana C N Pinheiro
- Department of Pharmacology, ICB-UFMG, Av. Antonio Carlos 6627, Belo Horizonte 21270-901, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rouault M, Rash LD, Escoubas P, Boilard E, Bollinger J, Lomonte B, Maurin T, Guillaume C, Canaan S, Deregnaucourt C, Schrével J, Doglio A, Gutiérrez JM, Lazdunski M, Gelb MH, Lambeau G. Neurotoxicity and other pharmacological activities of the snake venom phospholipase A2 OS2: the N-terminal region is more important than enzymatic activity. Biochemistry 2006; 45:5800-16. [PMID: 16669624 PMCID: PMC2796912 DOI: 10.1021/bi060217r] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several snake venom secreted phospholipases A2 (sPLA2s) including OS2 exert a variety of pharmacological effects ranging from central neurotoxicity to anti-HIV activity by mechanisms that are not yet fully understood. To conclusively address the role of enzymatic activity and map the key structural elements of OS2 responsible for its pharmacological properties, we have prepared single point OS2 mutants at the catalytic site and large chimeras between OS2 and OS1, a homologous but nontoxic sPLA2. Most importantly, we found that the enzymatic activity of the active site mutant H48Q is 500-fold lower than that of the wild-type protein, while central neurotoxicity is only 16-fold lower, providing convincing evidence that catalytic activity is at most a minor factor that determines central neurotoxicity. The chimera approach has identified the N-terminal region (residues 1-22) of OS2, but not the central one (residues 58-89), as crucial for both enzymatic activity and pharmacological effects. The C-terminal region of OS2 (residues 102-119) was found to be critical for enzymatic activity, but not for central neurotoxicity and anti-HIV activity, allowing us to further dissociate enzymatic activity and pharmacological effects. Finally, direct binding studies with the C-terminal chimera, which poorly binds to phospholipids while it is still neurotoxic, led to the identification of a subset of brain N-type receptors which may be directly involved in central neurotoxicity.
Collapse
Affiliation(s)
- Morgane Rouault
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Lachlan D. Rash
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Pierre Escoubas
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Eric Boilard
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - James Bollinger
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Bruno Lomonte
- Universidad de Costa Rica, Faculdad de Microbiologia, Instituto Clodomiro Picado, San José, Costa Rica
| | - Thomas Maurin
- Laboratoire de Virologie, IFR50, Faculté de Médecine, 06107 Nice cedex 2, France
| | - Carole Guillaume
- USM 0504, Biologie Fonctionnelle des Protozoaires, Laboratoire de Biologie Parasitaire, Museum National d’Histoire Naturelle, 61 rue Buffon, 75231 Paris cedex 05, France
| | - Stéphane Canaan
- Laboratoire d'Enzymologie Interfaciale et de Physiologie de la Lipolyse, CNRS-UPR 9025, 31 Chemin Joseph-Aiguier, 13402 Marseille cedex 20, France
| | - Christiane Deregnaucourt
- USM 0504, Biologie Fonctionnelle des Protozoaires, Laboratoire de Biologie Parasitaire, Museum National d’Histoire Naturelle, 61 rue Buffon, 75231 Paris cedex 05, France
| | - Joseph Schrével
- USM 0504, Biologie Fonctionnelle des Protozoaires, Laboratoire de Biologie Parasitaire, Museum National d’Histoire Naturelle, 61 rue Buffon, 75231 Paris cedex 05, France
| | - Alain Doglio
- Laboratoire de Virologie, IFR50, Faculté de Médecine, 06107 Nice cedex 2, France
| | - José María Gutiérrez
- Universidad de Costa Rica, Faculdad de Microbiologia, Instituto Clodomiro Picado, San José, Costa Rica
| | - Michel Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Michael H. Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
- Address correspondence to: Gérard Lambeau, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France, Tel. +33 (0) 4 93 95 77 33; Fax. +33 (0) 4 93 95 77 08;
| |
Collapse
|
16
|
Ma CJ, Kim SR, Kim J, Kim YC. Meso-dihydroguaiaretic acid and licarin A of Machilus thunbergii protect against glutamate-induced toxicity in primary cultures of a rat cortical cells. Br J Pharmacol 2006; 146:752-9. [PMID: 16151440 PMCID: PMC1751201 DOI: 10.1038/sj.bjp.0706380] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 We previously reported that four lignans isolated from the bark of Machilus thunbergii Sieb. et Zucc. (Lauraceae) protected primary cultures of rat cortical neurons from neurotoxicity induced by glutamate. 2 Among the lignans, meso-dihydroguaiarectic acid (MDGA) and licarin A significantly attenuated glutamate-induced neurotoxicity when added prior to or right after the excitotoxic glutamate challenge. 3 The neuroprotective activities of two lignans appeared to be more effective in protecting neurons against neurotoxicity induced by NMDA than that induced by kainic acid. 4 MDGA and licarin A diminished the calcium influx that routinely accompanies with the glutamate-induced neurotoxicity, and inhibited the subsequent overproduction of cellular nitric oxide and peroxide to the level of control cells. They also preserved cellular activities of antioxidative enzymes such as superoxide dismutase, glutathione peroxidase and glutathione reductase reduced in the glutamate-injured neuronal cells. 5 Thus, our results suggest that MDGA and licarin A significantly protect primary cultured neuronal cells against glutamate-induced oxidative stress, via antioxidative activities.
Collapse
Affiliation(s)
- Choong Je Ma
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, San56-1, Shillim-Dong, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - So Ra Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, San56-1, Shillim-Dong, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, San56-1, Shillim-Dong, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Young Choong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, San56-1, Shillim-Dong, Gwanak-Gu, Seoul 151-742, Republic of Korea
- Author for correspondence:
| |
Collapse
|