1
|
Nemati SS, Sadeghi L, Dehghan G, Sheibani N. Lateralization of the hippocampus: A review of molecular, functional, and physiological properties in health and disease. Behav Brain Res 2023; 454:114657. [PMID: 37683813 DOI: 10.1016/j.bbr.2023.114657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The hippocampus is a part of the brain's medial temporal lobe that is located under the cortex. It belongs to the limbic system and helps to collect and transfer information from short-term to long-term memory, as well as spatial orientation in each mammalian brain hemisphere. After more than two centuries of research in brain asymmetry, the hippocampus has attracted much attention in the study of brain lateralization. The hippocampus is very important in cognitive disorders, related to seizures and dementia, such as epilepsy and Alzheimer's disease. In addition, the motivation to study the hippocampus has increased significantly due to the asymmetry in the activity of the left and right hippocampi in healthy people, and its disruption during some neurological diseases. After a general review of the hippocampal structure and its importance in related diseases, the asymmetry in the brain with a focus on the hippocampus during the growth and maturation of healthy people, as well as the differences created in patients at the molecular, functional, and physiological levels are discussed. Most previous work indicates that the hippocampus is lateralized in healthy people. Also, lateralization at different levels remarkably changes in patients, and it appears that the most complex cognitive disorder is caused by a new dominant asymmetric system.
Collapse
Affiliation(s)
- Seyed Saman Nemati
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Leila Sadeghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
2
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
3
|
Debatisse J, Wateau O, Cho TH, Costes N, Mérida I, Léon C, Langlois JB, Taborik F, Verset M, Portier K, Aggour M, Troalen T, Villien M, Makris N, Tourvieille C, Bars DL, Lancelot S, Confais J, Oudotte A, Nighoghossian N, Ovize M, Vivien D, Contamin H, Agin V, Canet-Soulas E, Eker OF. A non-human primate model of stroke reproducing endovascular thrombectomy and allowing long-term imaging and neurological read-outs. J Cereb Blood Flow Metab 2021; 41:745-760. [PMID: 32428423 PMCID: PMC7983495 DOI: 10.1177/0271678x20921310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022]
Abstract
Stroke is a devastating disease. Endovascular mechanical thrombectomy is dramatically changing the management of acute ischemic stroke, raising new challenges regarding brain outcome and opening up new avenues for brain protection. In this context, relevant experiment models are required for testing new therapies and addressing important questions about infarct progression despite successful recanalization, reversibility of ischemic lesions, blood-brain barrier disruption and reperfusion damage. Here, we developed a minimally invasive non-human primate model of cerebral ischemia (Macaca fascicularis) based on an endovascular transient occlusion and recanalization of the middle cerebral artery (MCA). We evaluated per-occlusion and post-recanalization impairment on PET-MRI, in addition to acute and chronic neuro-functional assessment. Voxel-based analyses between per-occlusion PET-MRI and day-7 MRI showed two different patterns of lesion evolution: "symptomatic salvaged tissue" (SST) and "asymptomatic infarcted tissue" (AIT). Extended SST was present in all cases. AIT, remote from the area at risk, represented 45% of the final lesion. This model also expresses both worsening of fine motor skills and dysexecutive behavior over the chronic post-stroke period, a result in agreement with cortical-subcortical lesions. We thus fully characterized an original translational model of ischemia-reperfusion damage after stroke, with consistent ischemia time, and thrombus retrieval for effective recanalization.
Collapse
Affiliation(s)
- Justine Debatisse
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Siemens-Healthcare SAS., Saint-Denis, France
| | - Océane Wateau
- Cynbiose SAS, Marcy-L’Etoile, France
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S 1237, “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen Normandie, GIP Cyceron, Caen, France
| | - Tae-Hee Cho
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât. Blaise Pascal, Villeurbanne, France
- Hospices Civils of Lyon, Lyon, France
| | | | | | - Christelle Léon
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Karine Portier
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Mohamed Aggour
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | - Nikolaos Makris
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât. Blaise Pascal, Villeurbanne, France
| | | | - Didier Le Bars
- Hospices Civils of Lyon, Lyon, France
- CERMEP – Imagerie du Vivant, Lyon, France
| | - Sophie Lancelot
- Hospices Civils of Lyon, Lyon, France
- CERMEP – Imagerie du Vivant, Lyon, France
| | | | | | - Norbert Nighoghossian
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils of Lyon, Lyon, France
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils of Lyon, Lyon, France
| | - Denis Vivien
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S 1237, “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen Normandie, GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandy Hospital, CHU Caen, Caen, France
| | | | - Véronique Agin
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S 1237, “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen Normandie, GIP Cyceron, Caen, France
| | - Emmanuelle Canet-Soulas
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Omer Faruk Eker
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât. Blaise Pascal, Villeurbanne, France
- Hospices Civils of Lyon, Lyon, France
| |
Collapse
|
4
|
Morandi-Raikova A, Mayer U. Selective activation of the right hippocampus during navigation by spatial cues in domestic chicks (Gallus gallus). Neurobiol Learn Mem 2020; 177:107344. [PMID: 33242588 DOI: 10.1016/j.nlm.2020.107344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022]
Abstract
In different vertebrate species, hippocampus plays a crucial role for spatial orientation. However, even though cognitive lateralization is widespread in the animal kingdom, the lateralization of this hippocampal function has been poorly studied. The aim of the present study was to investigate the lateralization of hippocampal activation in domestic chicks, during spatial navigation in relation to free-standing objects. Two groups of chicks were trained to find food in one of the feeders located in a large circular arena. Chicks of one group solved the task using the relational spatial information provided by free-standing objects present in the arena, while the other group used the local appearance of the baited feeder as a beacon. The immediate early gene product c-Fos was employed to map neural activation of hippocampus and medial striatum of both hemispheres. Chicks that used spatial cues for navigation showed higher activation of the right hippocampus compared to chicks that oriented by local features and compared to the left hippocampus. Such differences between the two groups were not present in the left hippocampus or in the medial striatum. Relational spatial information seems thus to be selectively processed by the right hippocampus in domestic chicks. The results are discussed in light of existing evidence of hippocampal lateralization of spatial processing in chicks, with particular attention to the contrasting evidence found in pigeons.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068 Rovereto (TN), Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068 Rovereto (TN), Italy.
| |
Collapse
|
5
|
Kozhemiako N, Nunes AS, Samal A, Rana KD, Calabro FJ, Hämäläinen MS, Khan S, Vaina LM. Neural activity underlying the detection of an object movement by an observer during forward self-motion: Dynamic decoding and temporal evolution of directional cortical connectivity. Prog Neurobiol 2020; 195:101824. [PMID: 32446882 DOI: 10.1016/j.pneurobio.2020.101824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
Relatively little is known about how the human brain identifies movement of objects while the observer is also moving in the environment. This is, ecologically, one of the most fundamental motion processing problems, critical for survival. To study this problem, we used a task which involved nine textured spheres moving in depth, eight simulating the observer's forward motion while the ninth, the target, moved independently with a different speed towards or away from the observer. Capitalizing on the high temporal resolution of magnetoencephalography (MEG) we trained a Support Vector Classifier (SVC) using the sensor-level data to identify correct and incorrect responses. Using the same MEG data, we addressed the dynamics of cortical processes involved in the detection of the independently moving object and investigated whether we could obtain confirmatory evidence for the brain activity patterns used by the classifier. Our findings indicate that response correctness could be reliably predicted by the SVC, with the highest accuracy during the blank period after motion and preceding the response. The spatial distribution of the areas critical for the correct prediction was similar but not exclusive to areas underlying the evoked activity. Importantly, SVC identified frontal areas otherwise not detected with evoked activity that seem to be important for the successful performance in the task. Dynamic connectivity further supported the involvement of frontal and occipital-temporal areas during the task periods. This is the first study to dynamically map cortical areas using a fully data-driven approach in order to investigate the neural mechanisms involved in the detection of moving objects during observer's self-motion.
Collapse
Affiliation(s)
- N Kozhemiako
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - A S Nunes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - A Samal
- Departments of Biomedical Engineering, Neurology and the Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
| | - K D Rana
- Departments of Biomedical Engineering, Neurology and the Graduate Program for Neuroscience, Boston University, Boston, MA, USA; National Institute of Mental Health, Bethesda, MD, USA.
| | - F J Calabro
- Department of Psychiatry and Biomedical Engineering, University of Pittsburgh, PA, USA.
| | - M S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - S Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - L M Vaina
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Departments of Biomedical Engineering, Neurology and the Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Mayer AR, Hanlon FM, Shaff NA, Stephenson DD, Ling JM, Dodd AB, Hogeveen J, Quinn DK, Ryman SG, Pirio-Richardson S. Evidence for asymmetric inhibitory activity during motor planning phases of sensorimotor synchronization. Cortex 2020; 129:314-328. [PMID: 32554227 DOI: 10.1016/j.cortex.2020.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 01/11/2023]
Abstract
Sensorimotor synchronization (SMS) is frequently dependent on coordination of excitatory and inhibitory activity across hemispheres, as well as the cognitive control over environmental distractors. However, the timing (motor planning versus execution) and cortical regions involved in these processes remain actively debated. Functional magnetic resonance imaging data were therefore analyzed from 34 strongly right-handed healthy adults performing a cued (to initiate motor planning) SMS task with either their right or left hand (motor execution phase) based on spatially congruent or incongruent visual stimuli. Behavioral effects of incongruent stimuli were limited to the first stimulus. Functionally, greater activation was observed in left sensorimotor cortex (SMC) and right cerebellar Lobule V for congruent versus incongruent stimuli. A negative blood-oxygen level dependent response, a putative marker of neural inhibition, was present in bilateral SMC, right supplemental motor area (SMA) and bilateral cerebellar Lobule V during the motor planning, but not execution phase. The magnitude of the inhibitory response was greater in right cortical regions and cerebellar Lobule V. Homologue connectivity was associated with inhibitory activity in the right SMA, suggesting that individual differences in intrinsic connectivity may mediate transcallosal inhibition. In summary, results suggest increased inhibition (i.e., greater negative BOLD response) within the right relative to left hemisphere, which was released once motor programs were executed. Both task and intrinsic functional connectivity results highlight a critical role of the left SMA in interhemispheric inhibition and motor planning.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM, USA; Departments of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurology, University of New Mexico, Albuquerque, NM, USA; Departments of Psychiatry, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | - Jeremy Hogeveen
- Departments of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Davin K Quinn
- Departments of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
7
|
Abstract
In functional laterality research, most ungulate livestock species have until recently been mainly overlooked. However, there are many scientific and practical benefits of studying laterality in ungulate livestock. As social, precocial and domestic species, they may offer insight into the mechanisms involved in the ontogeny and phylogeny of functional laterality and help to better understand the role of laterality in animal welfare. Until now, most studies on ungulate livestock have focused on motor laterality, but interest in other lateralized functions, e.g., cognition and emotions, is growing. Increasingly more studies are also focused on associations with age, sex, personality, health, stress, production and performance. Although the full potential of research on laterality in ungulate livestock is not yet exploited, findings have already shed new light on central issues in cognitive and emotional processing and laid the basis for potentially useful applications in future practice, e.g., stress reduction during human-animal interactions and improved assessments of health, production and welfare. Future research would benefit from further integration of basic laterality methodology (e.g., testing for individual preferences) and applied ethological approaches (e.g., established emotionality tests), which would not only improve our understanding of functional laterality but also benefit the assessment of animal welfare.
Collapse
|
8
|
Gazes RP, Diamond RFL, Hope JM, Caillaud D, Stoinski TS, Hampton RR. Spatial representation of magnitude in gorillas and orangutans. Cognition 2017; 168:312-319. [PMID: 28772188 DOI: 10.1016/j.cognition.2017.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Humans mentally represent magnitudes spatially; we respond faster to one side of space when processing small quantities and to the other side of space when processing large quantities. We determined whether spatial representation of magnitude is a fundamental feature of primate cognition by testing for such space-magnitude correspondence in gorillas and orangutans. Subjects picked the larger quantity in a pair of dot arrays in one condition, and the smaller in another. Response latencies to the left and right sides of the screen were compared across the magnitude range. Apes showed evidence of spatial representation of magnitude. While all subjects did not adopt the same orientation, apes showed consistent tendencies for spatial representations within individuals and systematically reversed these orientations in response to reversal of the task instruction. Results suggest that spatial representation of magnitude is phylogenetically ancient and that consistency in the orientation of these representations in humans is likely culturally mediated.
Collapse
Affiliation(s)
- Regina Paxton Gazes
- Zoo Atlanta, Atlanta, GA, United States; Bucknell University, Lewisburg, PA, United States.
| | - Rachel F L Diamond
- Department of Psychology, Emory University, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Jasmine M Hope
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| | - Damien Caillaud
- Dian Fossey Gorilla Fund International, Atlanta, GA, United States; Department of Anthropology, University of California Davis, Davis, CA, United States
| | - Tara S Stoinski
- Zoo Atlanta, Atlanta, GA, United States; Dian Fossey Gorilla Fund International, Atlanta, GA, United States
| | - Robert R Hampton
- Department of Psychology, Emory University, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
9
|
Wilming N, Kietzmann TC, Jutras M, Xue C, Treue S, Buffalo EA, König P. Differential Contribution of Low- and High-level Image Content to Eye Movements in Monkeys and Humans. Cereb Cortex 2017; 27:279-293. [PMID: 28077512 PMCID: PMC5942390 DOI: 10.1093/cercor/bhw399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
Oculomotor selection exerts a fundamental impact on our experience of the environment. To better understand the underlying principles, researchers typically rely on behavioral data from humans, and electrophysiological recordings in macaque monkeys. This approach rests on the assumption that the same selection processes are at play in both species. To test this assumption, we compared the viewing behavior of 106 humans and 11 macaques in an unconstrained free-viewing task. Our data-driven clustering analyses revealed distinct human and macaque clusters, indicating species-specific selection strategies. Yet, cross-species predictions were found to be above chance, indicating some level of shared behavior. Analyses relying on computational models of visual saliency indicate that such cross-species commonalities in free viewing are largely due to similar low-level selection mechanisms, with only a small contribution by shared higher level selection mechanisms and with consistent viewing behavior of monkeys being a subset of the consistent viewing behavior of humans.
Collapse
Affiliation(s)
- Niklas Wilming
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Yerkes National Primate Research Center, Atlanta, GA 30329, USA.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Washington National Primate Research Center, Seattle, WA 09195, USA
| | - Tim C Kietzmann
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Medical Research Council, Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - Megan Jutras
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Yerkes National Primate Research Center, Atlanta, GA 30329, USA.,Washington National Primate Research Center, Seattle, WA 09195, USA
| | - Cheng Xue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Goettingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Goettingen, Germany.,Faculty of Biology and Psychology, Goettingen University, Goettingen, Germany.,Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Yerkes National Primate Research Center, Atlanta, GA 30329, USA.,Washington National Primate Research Center, Seattle, WA 09195, USA
| | - Peter König
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Visual neglect after left-hemispheric lesions: a voxel-based lesion–symptom mapping study in 121 acute stroke patients. Exp Brain Res 2016; 235:83-95. [DOI: 10.1007/s00221-016-4771-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
|
11
|
Berger B, Minarik T, Griesmayr B, Stelzig-Schoeler R, Aichhorn W, Sauseng P. Brain Oscillatory Correlates of Altered Executive Functioning in Positive and Negative Symptomatic Schizophrenia Patients and Healthy Controls. Front Psychol 2016; 7:705. [PMID: 27242617 PMCID: PMC4861861 DOI: 10.3389/fpsyg.2016.00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/27/2016] [Indexed: 01/22/2023] Open
Abstract
Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups—healthy controls, predominantly negative, and predominantly positive symptomatic schizophrenia patients—when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analyzed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e., executive control network) expressed by interregional phase synchronization are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in a task-specific fronto-posterior connectivity even in the absence of behavioral impairment.
Collapse
Affiliation(s)
- Barbara Berger
- Department of Psychology, Biological Psychology, Ludwig-Maximilians University Munich, Germany
| | - Tamas Minarik
- Department of Psychology, Biological Psychology, Ludwig-Maximilians University Munich, Germany
| | - Birgit Griesmayr
- Department of Psychology, University of Salzburg Salzburg, Austria
| | - Renate Stelzig-Schoeler
- University Clinic for Psychiatry and Psychotherapy, Christian-Doppler-Clinic, Paracelsus-Medical Private University Salzburg, Austria
| | - Wolfgang Aichhorn
- University Clinic for Psychiatry and Psychotherapy, Christian-Doppler-Clinic, Paracelsus-Medical Private University Salzburg, Austria
| | - Paul Sauseng
- Department of Psychology, Biological Psychology, Ludwig-Maximilians University Munich, Germany
| |
Collapse
|
12
|
Atkinson EG, Rogers J, Cheverud JM. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree. Evolution 2016; 70:707-15. [PMID: 26813679 PMCID: PMC4801758 DOI: 10.1111/evo.12867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/26/2015] [Accepted: 01/18/2016] [Indexed: 11/28/2022]
Abstract
Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution, and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function.
Collapse
Affiliation(s)
- Elizabeth G. Atkinson
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - James M. Cheverud
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, 63110
| |
Collapse
|
13
|
Monfardini E, Redouté J, Hadj-Bouziane F, Hynaux C, Fradin J, Huguet P, Costes N, Meunier M. Others' Sheer Presence Boosts Brain Activity in the Attention (But Not the Motivation) Network. Cereb Cortex 2015; 26:2427-2439. [PMID: 25858969 DOI: 10.1093/cercor/bhv067] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sheer presence of another member of the same species affects performance, sometimes impeding it, sometimes enhancing it. For well-learned tasks, the effect is generally positive. This fundamental form of social influence, known as social facilitation, concerns human as well as nonhuman animals and affects many behaviors from food consumption to cognition. In psychology, this phenomenon has been known for over a century. Yet, its underlying mechanism (motivation or attention) remains debated, its relationship to stress unclear, and its neural substrates unknown. To address these issues, we investigated the behavioral, neuronal, and endocrinological markers of social facilitation in monkeys trained to touch images to obtain rewards. When another animal was present, performance was enhanced, but testing-induced stress (i.e., plasma cortisol elevation) was unchanged, as was metabolic activity in the brain motivation network. Rather, task-related activity in the (right) attention frontoparietal network encompassing the lateral prefrontal cortex, ventral premotor cortex, frontal eye field, and intraparietal sulcus was increased when another individual was present compared with when animals were tested alone. These results establish the very first link between the behavioral enhancement produced by the mere presence of a peer and an increase of metabolic activity in those brain structures underpinning attention.
Collapse
Affiliation(s)
- Elisabetta Monfardini
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon F-69000, France.,University of Lyon, Lyon F-69000, France.,Institut de Médecine Environnementale, Paris, France
| | | | - Fadila Hadj-Bouziane
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon F-69000, France.,University of Lyon, Lyon F-69000, France
| | - Clément Hynaux
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon F-69000, France.,University of Lyon, Lyon F-69000, France
| | | | - Pascal Huguet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR 7290-LPC and Fédération de Recherche 3C, Marseille, France
| | | | - Martine Meunier
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon F-69000, France.,University of Lyon, Lyon F-69000, France
| |
Collapse
|
14
|
Moorman S, Nicol AU. Memory-related brain lateralisation in birds and humans. Neurosci Biobehav Rev 2015; 50:86-102. [DOI: 10.1016/j.neubiorev.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 10/25/2022]
|
15
|
Geng JJ, Vossel S. Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci Biobehav Rev 2013; 37:2608-20. [PMID: 23999082 PMCID: PMC3878596 DOI: 10.1016/j.neubiorev.2013.08.010] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 11/04/2022]
Abstract
The right temporo-parietal junction (TPJ) is widely considered as part of a network that reorients attention to task-relevant, but currently unattended stimuli (Corbetta and Shulman, 2002). Despite the prevalence of this theory in cognitive neuroscience, there is little direct evidence for the principal hypothesis that TPJ sends an early reorientation signal that "circuit breaks" attentional processing in regions of the dorsal attentional network (e.g., the frontal eye fields) or is completely right lateralized during attentional processing. In this review, we examine both functional neuroimaging work on TPJ in the attentional literature as well as anatomical findings. We first critically evaluate the idea that TPJ reorients attention and is right lateralized; we then suggest that TPJ signals might rather reflect post-perceptual processes involved in contextual updating and adjustments of top-down expectations; and then finally discuss how these ideas relate to the electrophysiological (P300) literature, and to TPJ findings in other cognitive and social domains. We conclude that while much work is needed to define the computational functions of regions encapsulated as TPJ, there is now substantial evidence that it is not specialized for stimulus-driven attentional reorienting.
Collapse
Affiliation(s)
- Joy J. Geng
- Center for Mind and Brain and Department of Psychology, University of California Davis, 267 Cousteau Pl., Davis, CA, USA
| | - Simone Vossel
- Wellcome Trust Centre for Neuroimaging, University College London, WC1N 3BG London, UK
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Research Centre Juelich, 52425 Juelich, Germany
| |
Collapse
|
16
|
MacNeilage PF. Vertebrate whole-body-action asymmetries and the evolution of right handedness: A comparison between humans and marine mammals. Dev Psychobiol 2013; 55:577-87. [DOI: 10.1002/dev.21114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Peter F. MacNeilage
- Professor Emeritus of Psychology; University of Texas at Austin; 606 Harthan St., Austin, TX; 78712
| |
Collapse
|
17
|
Zhang Y, Whitfield-Gabrieli S, Christodoulou JA, Gabrieli JDE. Atypical balance between occipital and fronto-parietal activation for visual shape extraction in dyslexia. PLoS One 2013; 8:e67331. [PMID: 23825653 PMCID: PMC3692444 DOI: 10.1371/journal.pone.0067331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 05/21/2013] [Indexed: 11/18/2022] Open
Abstract
Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
18
|
Hou G, Yang X, Yuan TF. Hippocampal asymmetry: differences in structures and functions. Neurochem Res 2013; 38:453-60. [PMID: 23283696 DOI: 10.1007/s11064-012-0954-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 12/12/2022]
Abstract
The structural asymmetry of bilateral hippocampus in mammals has been well recognized. Recent findings highlighted the accompanying functional asymmetries, as well as the molecular differences of the hippocampus. The present paper summarized these recent advances in understanding the hippocampal asymmetries at molecular, circuit and functional levels. Additionally, the addition of new neurons to the hippocampal circuit during adulthood is asymmetrical. We conclude that these differences in molecules and structures of bilateral hippocampus determined the variances in functionality between the two sides.
Collapse
Affiliation(s)
- Gonglin Hou
- Centre of Cognitive Research, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | | | | |
Collapse
|