1
|
Gherman LM, Chiroi P, Nuţu A, Bica C, Berindan-Neagoe I. Profiling canine mammary tumors: A potential model for studying human breast cancer. Vet J 2024; 303:106055. [PMID: 38097103 DOI: 10.1016/j.tvjl.2023.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Despite all clinical progress recorded in the last decades, human breast cancer (HBC) remains a major challenge worldwide both in terms of its incidence and its management. Canine mammary tumors (CMTs) share similarities with HBC and represent an alternative model for HBC. The utility of the canine model in studying HBC relies on their common features, include spontaneous development, subtype classification, mutational profile, alterations in gene expression profile, and incidence/prevalence. This review describes the similarities between CMTs and HBC regarding genomic landscape, microRNA expression alteration, methylation, and metabolomic changes occurring during mammary gland carcinogenesis. The primary purpose of this review is to highlight the advantages of using the canine model as a translational animal model for HBC research and to investigate the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Luciana-Madalina Gherman
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; Experimental Center of Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nuţu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
3
|
Jurj A, Zanoaga O, Raduly L, Morhan V, Papi Z, Ciocan C, Pop LA, Berindan-Neagoe I, Braicu C. Discovering the Biological Significance and Therapeutic Potential of miR-29b-3p in Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:5048. [PMID: 36902482 PMCID: PMC10003717 DOI: 10.3390/ijms24055048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023] Open
Abstract
The lack of estrogen or progesterone receptors and absence of HER2 amplification/overexpression in triple-negative breast cancer (TNBC) restricts therapeutic options used in clinical management. MicroRNAs (miRNAs) are small, non-coding transcripts which affect important cellular mechanisms by regulating gene expression at the post-transcriptional level. Among this class, attention was focused on miR-29b-3p with a high profile in TNBC and correlated with the overall survival rates, as TCGA data revealed. This study aims to investigate the implication of the miR-29b-3p inhibitor in TNBC cell lines by identifying a potential therapeutic transcript, improving the clinical outcomes of this disease. The experiments were performed on two TNBC cell lines (MDA-MB-231 and BT549) as in vitro models. An established dose of 50 nM was used for all functional assays performed on the miR-29b-3p inhibitor. A decreased level of miR-29b-3p determined a significant reduction in cell proliferation and colony-forming capacity. At the same time, the changes occurring at the molecular and cellular levels were highlighted. We observed that, when inhibiting the expression level of miR-29b-3p, processes such as apoptosis and autophagy were activated. Further, microarray data revealed that the miRNA expression pattern was altered after miR-29b-3p inhibition, pointing out 8 overexpressed and 11 downregulated miRNAs specific for BT549 cells and 33 upregulated and 10 downregulated miRNAs that were specific for MDA-MB-231 cells. As a common signature for both cell lines, three transcripts were observed, two downregulated, miR-29b-3p and miR-29a, and one upregulated, miR-1229-5p. According to DIANA miRPath, the main predicted targets are related to ECM (extracellular matrix) receptor interaction and TP53 signaling. An additional validation step through qRT-PCR was performed, which showed an upregulation of MCL1 and TGFB1. By inhibiting the expression level of miR-29b-3p, it was shown that complex regulatory pathways targeted this transcript in TNBC cells.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Vlad Morhan
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Zsofia Papi
- Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
5
|
Hlophe YN, Joubert AM. Vascular endothelial growth
factor‐C
in activating vascular endothelial growth factor receptor‐3 and chemokine receptor‐4 in melanoma adhesion. J Cell Mol Med 2022; 26:5743-5754. [DOI: 10.1111/jcmm.17571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yvette N. Hlophe
- Department of Physiology University of Pretoria Pretoria South Africa
| | - Anna M. Joubert
- Department of Physiology University of Pretoria Pretoria South Africa
| |
Collapse
|
6
|
Pruteanu LL, Braicu C, Módos D, Jurj MA, Raduly LZ, Zănoagă O, Magdo L, Cojocneanu R, Paşca S, Moldovan C, Moldovan AI, Ţigu AB, Gurzău E, Jäntschi L, Bender A, Berindan-Neagoe I. Targeting Cell Death Mechanism Specifically in Triple Negative Breast Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23094784. [PMID: 35563174 PMCID: PMC9099741 DOI: 10.3390/ijms23094784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) is currently associated with a lack of treatment options. Arsenic derivatives have shown antitumoral activity both in vitro and in vivo; however, their mode of action is not completely understood. In this work we evaluate the response to arsenate of the double positive MCF-7 breast cancer cell line as well as of two different TNBC cell lines, Hs578T and MDA-MB-231. Multimodal experiments were conducted to this end, using functional assays and microarrays. Arsenate was found to induce cytoskeletal alteration, autophagy and apoptosis in TNBC cells, and moderate effects in MCF-7 cells. Gene expression analysis showed that the TNBC cell lines’ response to arsenate was more prominent in the G2M checkpoint, autophagy and apoptosis compared to the Human Mammary Epithelial Cells (HMEC) and MCF-7 cell lines. We confirmed the downregulation of anti-apoptotic genes (MCL1, BCL2, TGFβ1 and CCND1) by qRT-PCR, and on the protein level, for TGFβ2, by ELISA. Insight into the mode of action of arsenate in TNBC cell lines it is provided, and we concluded that TNBC and non-TNBC cell lines reacted differently to arsenate treatment in this particular experimental setup. We suggest the future research of arsenate as a treatment strategy against TNBC.
Collapse
Affiliation(s)
- Lavinia-Lorena Pruteanu
- Department of Chemistry, Centre for Molecular Science Informatics, University of Cambridge, Cambridge CB2 1EW, UK; (L.-L.P.); (D.M.); (A.B.)
- MedFuture Research Center for Advanced Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400377 Cluj-Napoca, Romania; (C.M.); (A.I.M.); (A.B.Ț.)
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, 4800 Baia Mare, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
- Correspondence:
| | - Dezső Módos
- Department of Chemistry, Centre for Molecular Science Informatics, University of Cambridge, Cambridge CB2 1EW, UK; (L.-L.P.); (D.M.); (A.B.)
| | - Maria-Ancuţa Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Oana Zănoagă
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Lorand Magdo
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Sergiu Paşca
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Cristian Moldovan
- MedFuture Research Center for Advanced Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400377 Cluj-Napoca, Romania; (C.M.); (A.I.M.); (A.B.Ț.)
- Department of Pharmaceutical Physics-Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alin Iulian Moldovan
- MedFuture Research Center for Advanced Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400377 Cluj-Napoca, Romania; (C.M.); (A.I.M.); (A.B.Ț.)
- Department of Pharmaceutical Physics-Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Adrian Bogdan Ţigu
- MedFuture Research Center for Advanced Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400377 Cluj-Napoca, Romania; (C.M.); (A.I.M.); (A.B.Ț.)
| | - Eugen Gurzău
- Environmental Health Center, 400240 Cluj-Napoca, Romania;
| | - Lorentz Jäntschi
- Institute for Doctoral Studies, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Science Informatics, University of Cambridge, Cambridge CB2 1EW, UK; (L.-L.P.); (D.M.); (A.B.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| |
Collapse
|
7
|
Ray SK, Mukherjee S. Epigenetic Reprogramming and Landscape of Transcriptomic Interactions: Impending Therapeutic Interference of Triple-Negative Breast Cancer in Molecular Medicine. Curr Mol Med 2021; 22:835-850. [PMID: 34872474 DOI: 10.2174/1566524021666211206092437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
The mechanisms governing the development and progression of cancers are believed to be the consequence of hereditary deformities and epigenetic modifications. Accordingly, epigenetics has become an incredible and progressively explored field of research to discover better prevention and therapy for neoplasia, especially triple-negative breast cancer (TNBC). It represents 15-20% of all invasive breast cancers and will, in general, have bellicose histological highlights and poor clinical outcomes. In the early phases of triple-negative breast carcinogenesis, epigenetic deregulation modifies chromatin structure and influences the plasticity of cells. It up-keeps the oncogenic reprogramming of malignant progenitor cells with the acquisition of unrestrained selfrenewal capacities. Genomic impulsiveness in TNBC prompts mutations, copy number variations, as well as genetic rearrangements, while epigenetic remodeling includes an amendment by DNA methylation, histone modification, and noncoding RNAs of gene expression profiles. It is currently evident that epigenetic mechanisms assume a significant part in the pathogenesis, maintenance, and therapeutic resistance of TNBC. Although TNBC is a heterogeneous malaise that is perplexing to describe and treat, the ongoing explosion of genetic and epigenetic research will help to expand these endeavors. Latest developments in transcriptome analysis have reformed our understanding of human diseases, including TNBC at the molecular medicine level. It is appealing to envision transcriptomic biomarkers to comprehend tumor behavior more readily regarding its cellular microenvironment. Understanding these essential biomarkers and molecular changes will propel our capability to treat TNBC adequately. This review will depict the different aspects of epigenetics and the landscape of transcriptomics in triple-negative breast carcinogenesis and their impending application for diagnosis, prognosis, and treatment decision with the view of molecular medicine.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
8
|
Sun X, Zhang T, Cai Y, Yang K, Peng T, Liu R, Li XN. Tonkinensine B induces apoptosis through mitochondrial dysfunction and inactivation of the PI3K/AKT pathway in triple-negative breast cancer cells. J Pharm Pharmacol 2021; 73:1397-1404. [PMID: 34313786 DOI: 10.1093/jpp/rgab108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/05/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Tonkinensine B, a novel compound with cytisine-pterocarpan skeleton isolated from the root of Sophora tonkinensis Gagnep, was reported to have a significant antitumor effect. The effect and intrinsic mechanism of tonkinensine B on tumour need to be further investigated. METHODS With the help of cell cytotoxicity, the effect of tonkinensine B on MDA-MB-231 cells was investigated. By observing mitochondrial function changes, the intrinsic mechanism was further studied. The levels of key apoptosis-associated proteins Bcl-2, Bax, caspase-9, caspase-3 and AKT in MDA-MB-231 cells were analysed to determine whether tonkinensine B caused apoptosis via the mitochondrial pathway. KEY FINDINGS After treated with tonkinensine B, MDA-MB-231 cells multiplication was repressed, and the decreased mitochondrial membrane potential, loss of ATP synthesis and elevated ROS generation were detected. Furthermore, the proportions of Bax/Bcl-2, cleaved caspase-3 and caspase-9 proteins production were up-regulated, indicating that tonkinensine B acted on intrinsic mitochondrial-mediated apoptosis pathway. In addition, tonkinensine B also reduced phosphorylation levels of AKT, and thus the activation of apoptosis might likewise be correlated with the inhibition of the PI3K/AKT pathway. CONCLUSIONS Tonkinensine B may be a hopeful candidate for human triple-negative breast cancer, and further structural optimization is expected to improve its anti-tumour activity.
Collapse
Affiliation(s)
- Xuanrong Sun
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Tianwei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yue Cai
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Ke Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Tingting Peng
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Renhao Liu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Immunomodulation: An immune regulatory mechanism in carcinoma therapeutics. Int Immunopharmacol 2021; 99:107984. [PMID: 34303999 DOI: 10.1016/j.intimp.2021.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 01/01/2023]
Abstract
Cancer has been generally related to the possession of numerous mutations which interrupt important signaling pathways. Nevertheless, deregulated immunological signaling is considered as one of the key factors associated with the development and progression of cancer. The signaling pathways operate as modular network with different components interacting in a switch-like fashion with two proteins interplaying between each other leading to direct or indirect inhibition or stimulation of down-stream factors. Genetic, epigenetic, and transcriptomic alterations maintain the pathological conduit of different signaling pathways via affecting diverse mechanisms including cell destiny. At present, immunotherapy is one of the best therapies opted for cancer treatment. The cancer immunotherapy strategy includes harnessing the specificity and killing mechanisms of the immunological system to target and eradicate malignant cells. Targeted therapies utilizing several little molecules including Galunisertib, Astragaloside-IV, Melatonin, and Jervine capable of regulating key signaling pathways can effectively help in the management of different carcinomas.
Collapse
|
10
|
Kaleem M, Perwaiz M, Nur SM, Abdulrahman AO, Ahmad W, Al-Abbasi FA, Kumar V, Kamal MA, Anwar F. Epigenetics of Triple-negative breast cancer via natural compounds. Curr Med Chem 2021; 29:1436-1458. [PMID: 34238140 DOI: 10.2174/0929867328666210707165530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly resistant, lethal, and metastatic sub-division of breast carcinoma, characterized by the deficiency of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In women, TNBC shows a higher aggressive behavior with poor patient prognosis and a higher recurrence rate during reproductive age. TNBC is defined by the presence of epithelial-to-mesenchymal-transition (EMT), which shows a significant role in cancer progression. At the epigenetic level, TNBC is characterized by epigenetic signatures, such as DNA methylation, histone remodeling, and a host of miRNA, MiR-193, LncRNA, HIF-2α, eEF2K, LIN9/NEK2, IMP3, LISCH7/TGF-β1, GD3s and KLK12 mediated regulation. These modifications either are silenced or activate the necessary genes that are prevalent in TNBC. The review is based on epigenetic mediated mechanistic changes in TNBC. Furthermore, Thymoquinone (TQ), Regorafenib, Fangjihuangqi decoction, Saikosaponin A, and Huaier, etc., are potent antitumor natural compounds extensively reported in the literature. Further, the review emphasizes the role of these natural compounds in TNBC and their possible epigenetic targets, which can be utilized as a potential therapeutic strategy in treatment of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Maryam Perwaiz
- Department of Sciences, University of Toronto. Mississauga. Canada
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Wasim Ahmad
- Department of Kuliyate Tib, National Institute of Unani Medicine, Kottigepalya, Bengaluru, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences. SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Chappell K, Manna K, Washam CL, Graw S, Alkam D, Thompson MD, Zafar MK, Hazeslip L, Randolph C, Gies A, Bird JT, Byrd AK, Miah S, Byrum SD. Multi-omics data integration reveals correlated regulatory features of triple negative breast cancer. Mol Omics 2021; 17:677-691. [PMID: 34142686 PMCID: PMC8504614 DOI: 10.1039/d1mo00117e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive type of breast cancer with very little treatment options. TNBC is very heterogeneous with large alterations in the genomic, transcriptomic, and proteomic landscapes leading to various subtypes with differing responses to therapeutic treatments. We applied a multi-omics data integration method to evaluate the correlation of important regulatory features in TNBC BRCA1 wild-type MDA-MB-231 and TNBC BRCA1 5382insC mutated HCC1937 cells compared with non-tumorigenic epithelial breast MCF10A cells. The data includes DNA methylation, RNAseq, protein, phosphoproteomics, and histone post-translational modification. Data integration methods identified regulatory features from each omics method that had greater than 80% positive correlation within each TNBC subtype. Key regulatory features at each omics level were identified distinguishing the three cell lines and were involved in important cancer related pathways such as TGFβ signaling, PI3K/AKT/mTOR, and Wnt/beta-catenin signaling. We observed overexpression of PTEN, which antagonizes the PI3K/AKT/mTOR pathway, and MYC, which downregulates the same pathway in the HCC1937 cells relative to the MDA-MB-231 cells. The PI3K/AKT/mTOR and Wnt/beta-catenin pathways are both downregulated in HCC1937 cells relative to MDA-MB-231 cells, which likely explains the divergent sensitivities of these cell lines to inhibitors of downstream signaling pathways. The DNA methylation and RNAseq data is freely available via GEO GSE171958 and the proteomics data is available via the ProteomeXchange PXD025238.
Collapse
Affiliation(s)
- Kevin Chappell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Kanishka Manna
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| | - Stefan Graw
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA and Emory University, Atlanta, GA, USA
| | - Duah Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Matthew D Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Lindsey Hazeslip
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Christopher Randolph
- Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| | - Allen Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Jordan T Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Winthrop P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, AR 72205, USA
| | - Sayem Miah
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Winthrop P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA and Winthrop P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, AR 72205, USA
| |
Collapse
|
12
|
Hoang VT, Matossian MD, La J, Hoang K, Ucar DA, Elliott S, Burks HE, Wright TD, Patel S, Bhatt A, Phamduy T, Chrisey D, Buechlein A, Rusch DB, Nephew KP, Anbalagan M, Rowan B, Cavanaugh JE, Flaherty PT, Miele L, Collins-Burow BM, Burow ME. Dual inhibition of MEK1/2 and MEK5 suppresses the EMT/migration axis in triple-negative breast cancer through FRA-1 regulation. J Cell Biochem 2021; 122:835-850. [PMID: 33876843 DOI: 10.1002/jcb.29916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/03/2023]
Abstract
Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT) when cells adopt a motile and invasive phenotype through loss of epithelial markers (CDH1), and acquisition of mesenchymal markers (VIM, CDH2). Although MAPK/ERK1/2 kinase inhibitors (MEKi) are useful antitumor agents in a clinical setting, including the Food and Drug Administration (FDA)-approved MEK1,2 dual inhibitors cobimetinib and trametinib, there are limitations to their clinical utility, primarily adaptation of the BRAF pathway and ocular toxicities. The MEK5 (HGNC: MAP2K5) pathway has important roles in metastatic progression of various cancer types, including those of the prostate, colon, bone and breast, and elevated levels of ERK5 expression in breast carcinomas are linked to a worse prognoses in TNBC patients. The purpose of this study is to explore MEK5 regulation of the EMT axis and to evaluate a novel pan-MEK inhibitor on clinically aggressive TNBC cells. Our results show a distinction between the MEK1/2 and MEK5 cascades in maintenance of the mesenchymal phenotype, suggesting that the MEK5 pathway may be necessary and sufficient in EMT regulation while MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Furthermore, additive effects on MET induction are evident through the inhibition of both MEK1/2 and MEK5. Taken together, these data demonstrate the need for a better understanding of the individual roles of MEK1/2 and MEK5 signaling in breast cancer and provide a rationale for the combined targeting of these pathways to circumvent compensatory signaling and subsequent therapeutic resistance.
Collapse
Affiliation(s)
- Van T Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Margarite D Matossian
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jacqueline La
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Kristine Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Deniz A Ucar
- Department of Genetics and Stanley S. Scott Cancer Center, LSUHSC, New Orleans, Louisiana, USA
| | - Steven Elliott
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Hope E Burks
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Thomas D Wright
- Department of Pharmacology, Duquesne University, School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Saloni Patel
- Department of Pharmacology, Duquesne University, School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Akshita Bhatt
- Department of Pharmacology, Duquesne University, School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Theresa Phamduy
- Department of Physics, Tulane University, New Orleans, Louisiana, USA
| | - Douglas Chrisey
- Department of Physics, Tulane University, New Orleans, Louisiana, USA
| | - Aaron Buechlein
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, Indiana, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Kenneth P Nephew
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, Indiana, USA
| | - Murali Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Brian Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jane E Cavanaugh
- Department of Pharmacology, Duquesne University, School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Patrick T Flaherty
- Department of Medicinal Chemistry, Duquesne University, School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, LSUHSC, New Orleans, Louisiana, USA
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
13
|
Jalalirad M, Haddad TC, Salisbury JL, Radisky D, Zhang M, Schroeder M, Tuma A, Leof E, Carter JM, Degnim AC, Boughey JC, Sarkaria J, Yu J, Wang L, Liu MC, Zammataro L, Malatino L, Galanis E, Ingle JN, Goetz MP, D'Assoro AB. Aurora-A kinase oncogenic signaling mediates TGF-β-induced triple-negative breast cancer plasticity and chemoresistance. Oncogene 2021; 40:2509-2523. [PMID: 33674749 PMCID: PMC8032554 DOI: 10.1038/s41388-021-01711-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBCs) account for 15–20% of all breast cancers and represent the most aggressive subtype of this malignancy. Early tumor relapse and progression are linked to the enrichment of a sub-fraction of cancer cells, termed breast tumor-initiating cells (BTICs), that undergo epithelial to mesenchymal transition (EMT) and typically exhibit a basal-like CD44high/CD24low and/or ALDH1high phenotype with critical cancer stem-like features such as high self-renewal capacity and intrinsic (de novo) resistance to standard of care chemotherapy. One of the major mechanisms responsible for the intrinsic drug resistance of BTICs is their high ALDH1 activity leading to inhibition of chemotherapy-induced apoptosis. In this study, we demonstrated that aurora-A kinase (AURKA) is required to mediate TGF-β-induced expression of the SNAI1 gene, enrichment of ALDH1high BTICs, self-renewal capacity, and chemoresistance in TNBC experimental models. Significantly, the combination of docetaxel (DTX) with dual TGF-β and AURKA pharmacologic targeting impaired tumor relapse and the emergence of distant metastasis. We also showed in unique chemoresistant TNBC cells isolated from patient-derived TNBC brain metastasis that dual TGF-β and AURKA pharmacologic targeting reversed cancer plasticity and enhanced the sensitivity of TNBC cells to DTX-based-chemotherapy. Taken together, these findings reveal for the first time the critical role of AURKA oncogenic signaling in mediating TGF-β-induced TNBC plasticity, chemoresistance, and tumor progression.
Collapse
Affiliation(s)
- Mohammad Jalalirad
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tufia C Haddad
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jeffrey L Salisbury
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Derek Radisky
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Minzhi Zhang
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mark Schroeder
- Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ann Tuma
- Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eduard Leof
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amy C Degnim
- Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jia Yu
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Liewei Wang
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Minetta C Liu
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Luca Zammataro
- Department of Oncology, Yale University, New Heaven, CT, USA
| | - Lorenzo Malatino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Evanthia Galanis
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Matthew P Goetz
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Antonino B D'Assoro
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
14
|
Dass SA, Tan KL, Selva Rajan R, Mokhtar NF, Mohd Adzmi ER, Wan Abdul Rahman WF, Tengku Din TADAA, Balakrishnan V. Triple Negative Breast Cancer: A Review of Present and Future Diagnostic Modalities. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:62. [PMID: 33445543 PMCID: PMC7826673 DOI: 10.3390/medicina57010062] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast type of cancer with no expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). It is a highly metastasized, heterogeneous disease that accounts for 10-15% of total breast cancer cases with a poor prognosis and high relapse rate within five years after treatment compared to non-TNBC cases. The diagnostic and subtyping of TNBC tumors are essential to determine the treatment alternatives and establish personalized, targeted medications for every TNBC individual. Currently, TNBC is diagnosed via a two-step procedure of imaging and immunohistochemistry (IHC), which are operator-dependent and potentially time-consuming. Therefore, there is a crucial need for the development of rapid and advanced technologies to enhance the diagnostic efficiency of TNBC. This review discusses the overview of breast cancer with emphasis on TNBC subtypes and the current diagnostic approaches of TNBC along with its challenges. Most importantly, we have presented several promising strategies that can be utilized as future TNBC diagnostic modalities and simultaneously enhance the efficacy of TNBC diagnostic.
Collapse
Affiliation(s)
- Sylvia Annabel Dass
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; (S.A.D.); (K.L.T.); (R.S.R.)
| | - Kim Liu Tan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; (S.A.D.); (K.L.T.); (R.S.R.)
| | - Rehasri Selva Rajan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; (S.A.D.); (K.L.T.); (R.S.R.)
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (N.F.M.); (E.R.M.A.)
| | - Elis Rosliza Mohd Adzmi
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (N.F.M.); (E.R.M.A.)
| | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Sciences, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia;
- Breast Cancer Awareness & Research Unit, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
| | - Tengku Ahmad Damitri Al-Astani Tengku Din
- Breast Cancer Awareness & Research Unit, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
- Chemical Pathology Department, School of Medical Sciences, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; (S.A.D.); (K.L.T.); (R.S.R.)
| |
Collapse
|
15
|
Ciocan-Cartita CA, Jurj A, Zanoaga O, Cojocneanu R, Pop LA, Moldovan A, Moldovan C, Zimta AA, Raduly L, Pop-Bica C, Buse M, Budisan L, Virag P, Irimie A, Diaz SMG, Berindan-Neagoe I, Braicu C. New insights in gene expression alteration as effect of doxorubicin drug resistance in triple negative breast cancer cells. J Exp Clin Cancer Res 2020; 39:241. [PMID: 33187552 PMCID: PMC7664031 DOI: 10.1186/s13046-020-01736-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a heterogeneous disease with aggressive behavior and an unfavorable prognosis rate. Due to the lack of surface receptors, TNBC must be intensely investigated in order to establish a suitable treatment for patients with this pathology. Chemoresistance is an important reason for therapeutic failure in TNBC. METHOD The aim of this study was to investigate the effect of doxorubicin in TNBC cell lines and to highlight cellular and molecular alterations after a long exposure to doxorubicin. RESULTS The results revealed that doxorubicin significantly increased the half maximal inhibitory concentration (IC50) values at P12 and P24 compared to parenteral cells P0. Modifications in gene expression were investigated through microarray technique, and for detection of mutational pattern was used Next Generation Sequencing (NGS). 196 upregulated and 115 downregulated genes were observed as effect of multiple dose exposure, and 15 overexpressed genes were found to be involved in drug resistance. Also, the presence of some additional mutations in both cell lines was observed. CONCLUSION The outcomes of this research may provide novel biomarkers for drug resistance in TNBC. Also, this activity can highlight the potential mechanisms associated with drug resistance, as well as the potential therapies to counteract these mechanisms.
Collapse
Affiliation(s)
- Cristina Alexandra Ciocan-Cartita
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alin Moldovan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Moldovan
- MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Andreea Zimta
- MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihail Buse
- MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Piroska Virag
- Laboratory of Radiotherapy, Radiobiology and Tumor Biology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Surgical Oncology and Gynecological Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Surgery, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Sandra Martha Gomez Diaz
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Ciocan-Cȃrtiţă CA, Jurj A, Raduly L, Cojocneanu R, Moldovan A, Pileczki V, Pop LA, Budişan L, Braicu C, Korban SS, Berindan-Neagoe I. New perspectives in triple-negative breast cancer therapy based on treatments with TGFβ1 siRNA and doxorubicin. Mol Cell Biochem 2020; 475:285-299. [PMID: 32888160 DOI: 10.1007/s11010-020-03881-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Triple-negative breast cancer (TNBC), which accounts for 10-20% of all breast cancers, has the worst prognosis. Although chemotherapy treatment is a standard for TNBC, it lacks a specific target. Therefore, new therapeutic strategies are required to be investigated. In this study, a combined doxorubicin (DOX) and small interfering RNA (siRNA) therapy is proposed as therapeutic strategy for targeting TGFβ1 gene. Hs578T cell line is used as in vitro model for TNBC, wherein TGFβ1siRNA therapy is employed to enhance therapeutic effects. Cell proliferation rate is measured using an MTT test, and morphological alterations are assed using microscopically approached, while gene expression is determined by qRT-PCR analysis. The combined treatment of TGFβ1siRNA and DOX reduced levels of cell proliferation and mitochondrial activity and promoted the alteration of cell morphology (dark-field microscopy). DOX treatment caused downregulation of six genes and upregulation of another six genes. The combined effects of DOX and TGFβ1siRNA resulted in upregulation of 13 genes and downregulation of four genes. Silencing of TGFβ1 resulted in activation of cell death mechanisms in Hs578T cells, to potentiate the effects of DOX, but not in an additive manner, due to the activation of genes involved in resistance to therapy (ABCB1 and IL-6).
Collapse
Affiliation(s)
- Cristina Alexandra Ciocan-Cȃrtiţă
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Ancuţa Jurj
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Alin Moldovan
- MedFuture Research Center for Advanced Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Valentina Pileczki
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Liviuţa Budişan
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
| | - Schuyler S Korban
- Department of Natural and Environmental Sciences, University of Illinois At Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania. .,Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuţă" Oncology Institute, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| |
Collapse
|
17
|
Arif T, Anwar N. Promoter Hypermethylation and Expression Changes of BRCA1 Gene in a Cohort of Sporadic Breast Cancer Cases among Pakistani Population. Asian Pac J Cancer Prev 2020; 21:2395-2401. [PMID: 32856871 PMCID: PMC7771953 DOI: 10.31557/apjcp.2020.21.8.2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: The purpose of our study was to determine the frequency of BRCA1 promoter hypermethylation and its association with expression changes of BRCA1 and main morphological features in sporadic breast cancer. Methods: A retrospective review of cases was performed to select those with specific morphological features suggestive of breast cancer. BRCA1 promoter hypermethylation and changes in protein expression were evaluated in 30 cancerous and 30 non-cancerous tissue samples. A tissue microarray containing samples from normal and tumor tissue was prepared and stained for BRCA1 protein expression using a commercially available monoclonal antibody against BRCA1 (Ab-1) clone MS110 (mAb). DNA was extracted using modified protocol of Qiagen minikit. DNA was modified using a Bisulfite conversion kit and BRCA1 hypermethylation was detected using a methylation specific PCR. Results: Promoter hypermethylation was negative in 30 non-cancerous samples with retained BRCA1 protein expression. Methylation was positive in 82.6% (n=19/23) of the sporadic cancer samples that had loss of BRCA1 expression and 50% (n=2/4) of the samples with equivocal protein expression. Methylation was negative in all the sporadic breast cancer samples (n=3/3) with retained protein expression. Chi-square analysis showed significant association of BRCA1 promoter methylation with decreased protein expression (P=0.016) and co-existence of loss of BRCA1 and Her2neu at chromosome 17 (P=0.026) respectively. There was no significant association of BRCA1 methylation with morphological features excluding necrosis (P=0.035). Promoter hypermethylation was found to be most common (68.75%) among Triple Negative Breast Cancer (TNBC) females less than 45 years old. Conclusion: Our study suggests that BRCA1 promoter hypermethylation has significant contribution in sporadic breast carcinogenesis. This was our preliminary study in Pakistan. Further studies aimed to determine the in-depth mechanisms of BRCA1 epigenetics in TNBC. BRCAness enriched phenotype in TNBC might be used as a biomarker for the exploitation of therapeutic and clinical implications.
Collapse
Affiliation(s)
- Taqdees Arif
- MPhil Molecular Pathology and Genomics, Department of Biological Sciences, Forman Christian College, Lahore, Pakistan
| | - Natasha Anwar
- Consultant Molecular Pathologist, Agha Khan University Hospital Lahore Stat Lab, Lahore, Pakistan
| |
Collapse
|
18
|
Ma Y, Yu J, Li Q, Su Q, Cao B. Addition of docosahexaenoic acid synergistically enhances the efficacy of apatinib for triple-negative breast cancer therapy. Biosci Biotechnol Biochem 2019; 84:743-756. [PMID: 31889475 DOI: 10.1080/09168451.2019.1709789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current study aimed to investigate the antitumor and antiangiogenesis effects of apatinib in triple-negative breast cancer in vitro and also whether the combination of docosahexaenoic acid (DHA) and apatinib is more effective than apatinib monotherapy. The cell counting kit-8 assay was used to measure cell proliferation. Flow cytometry was utilized to determine the cell apoptosis rate. A wound healing assay was utilized to assess cell migration. Western blot analysis was carried out to determine the effects of apatinib and DHA on Bcl-2, BAX, cleaved caspase-3, caspase-3, phosphorylated protein kinase B (p-Akt), and Akt expression. DHA in combination with apatinib showed enhanced inhibitory effects on cell proliferation and migration compared with apatinib or DHA monotherapy. Meanwhile, DHA combined with apatinib strongly increased the cell apoptosis percentage. DHA was observed to enhance the antitumor and antiangiogenesis effects of apatinib via further downregulation of p-Akt expression.Abbreviations: FITC: fluorescein isothiocyanate; PI: propidium iodide.
Collapse
Affiliation(s)
- Yingjie Ma
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Junxian Yu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Qin Li
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Qiang Su
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Bangwei Cao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
19
|
Zimta AA, Schitcu V, Gurzau E, Stavaru C, Manda G, Szedlacsek S, Berindan-Neagoe I. Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development. ENVIRONMENTAL RESEARCH 2019; 178:108700. [PMID: 31520827 DOI: 10.1016/j.envres.2019.108700] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Breast and prostate cancer are two of the most common malignancies worldwide. Both cancers can develop into hormone -dependent or -independent subtypes and are associated to environmental exposure in the context of an inherited predisposition. As and Cd have been linked to the onset of both cancers, with the exception of As, which lacks a definitive association with breast carcinogenesis. The two elements exert an opposite effect dependent on acute versus chronic exposure. High doses of As or Cd were shown to induce cell death in acute experimental exposure, while chronic exposure triggers cell proliferation and viability, which is no longer limited by telomere shortening and apoptosis. The chronically exposed cells also increase their invasion capacity and tumorigenic potential. At molecular level, malignant transformation is evidenced mainly by up-regulation of BCL-2, MMP-2, MMP-9, VIM, Snail, Twist, MT, MLH and down-regulation of Casp-3, PTEN, E-CAD, and BAX. The signaling pathways most commonly activated are KRAS, p53, TGF-β, TNF-α, WNT, NRF2 and AKT. This knowledge could potentially raise public awareness over the health risks faced by the human population living or working in a polluted environment and smokers. Human exposure to As and Cd should be minimize as much as possible. Healthcare policies targeting people belonging to these risk categories should include analysis of: DNA damage, oxidative stress, molecular alterations, and systemic level of heavy metals and of essential minerals. In this review, we present the literature regarding cellular and molecular alterations caused by exposure to As or Cd, focusing on the malignant transformation of normal epithelial cells after long-term intoxication with these two carcinogens.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Vlad Schitcu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34-36 Street, 400015, Cluj-Napoca, Romania; "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
| | - Eugen Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240, Cluj-Napoca, Romania; Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, Cluj- Napoca, Romania
| | - Crina Stavaru
- Cantacuzino National Institute of Research and Development for Microbiology, 103 Splaiul Independentei Street, Bucharest, 050096, Romania
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei Street, 050096, Bucharest, Romania
| | - Stefan Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei Street, Bucharest, 060031, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34-36 Street, Cluj-Napoca, Romania.
| |
Collapse
|
20
|
Zimta AA, Tigu AB, Muntean M, Cenariu D, Slaby O, Berindan-Neagoe I. Molecular Links between Central Obesity and Breast Cancer. Int J Mol Sci 2019; 20:ijms20215364. [PMID: 31661891 PMCID: PMC6862548 DOI: 10.3390/ijms20215364] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Worldwide, breast cancer (BC) is the most common malignancy in women, in regard to incidence and mortality. In recent years, the negative role of obesity during BC development and progression has been made abundantly clear in several studies. However, the distribution of body fat may be more important to analyze than the overall body weight. In our review of literature, we reported some key findings regarding the role of obesity in BC development, but focused more on central adiposity. Firstly, the adipose microenvironment in obese people bears many similarities with the tumor microenvironment, in respect to associated cellular composition, chronic low-grade inflammation, and high ratio of reactive oxygen species to antioxidants. Secondly, the adipose tissue functions as an endocrine organ, which in obese people produces a high level of tumor-promoting hormones, such as leptin and estrogen, and a low level of the tumor suppressor hormone, adiponectin. As follows, in BC this leads to the activation of oncogenic signaling pathways: NFκB, JAK, STAT3, AKT. Moreover, overall obesity, but especially central obesity, promotes a systemic and local low grade chronic inflammation that further stimulates the increase of tumor-promoting oxidative stress. Lastly, there is a constant exchange of information between BC cells and adipocytes, mediated especially by extracellular vesicles, and which changes the transcription profile of both cell types to an oncogenic one with the help of regulatory non-coding RNAs.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Adrian Bogdan Tigu
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Babeș-Bolyai University, Faculty of Biology, and Geology, 42 Republicii Street, 400015 Cluj-Napoca, Romania.
| | - Maximilian Muntean
- Department of Plastic Surgery, University of Medicine and Pharmacy "Iuliu Hatieganu", 400337 Cluj-Napoca, Romania.
| | - Diana Cenariu
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 62100 Brno, Czech Republic.
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, 60200 Brno, Czech Republic.
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine, and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Department of Functional Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34th street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
21
|
Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C, Berindan-Neagoe I. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2019; 11:cancers11101618. [PMID: 31652660 PMCID: PMC6827047 DOI: 10.3390/cancers11101618] [Citation(s) in RCA: 540] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important bridge in the switch from extracellular signals to intracellular responses. Alterations of signaling cascades are found in various diseases, including cancer, as a result of genetic and epigenetic changes. Numerous studies focused on both the homeostatic and the pathologic conduct of MAPK signaling; however, there is still much to be deciphered in terms of regulation and action models in both preclinical and clinical research. MAPK has implications in the response to cancer therapy, particularly the activation of the compensatory pathways in response to experimental MAPK inhibition. The present paper discusses new insights into MAPK as a complex cell signaling pathway with roles in the sustenance of cellular normal conduit, response to cancer therapy, and activation of compensatory pathways. Unfortunately, most MAPK inhibitors trigger resistance due to the activation of compensatory feed-back loops in tumor cells and tumor microenvironment components. Therefore, novel combinatorial therapies have to be implemented for cancer management in order to restrict the possibility of alternative pathway activation, as a perspective for developing novel therapies based on integration in translational studies.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Mihail Buse
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Constantin Busuioc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Rares Drula
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | | | - Alexandru Irimie
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 40015 Cluj-Napoca, Romania.
- Department of Surgical Oncology and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 601 77 Brno, Czech Republic.
| | - Calin Ionescu
- th Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania.
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Republicii 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
22
|
Groza M, Zimta AA, Irimie A, Achimas-Cadariu P, Cenariu D, Stanta G, Berindan-Neagoe I. Recent advancements in the study of breast cancer exosomes as mediators of intratumoral communication. J Cell Physiol 2019; 235:691-705. [PMID: 31328284 DOI: 10.1002/jcp.29096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer is a heterogeneous disease, with a morbidity rate of 27.8% and a mortality rate of 15% among women population worldwide. Understanding how this cancer develops and the mechanisms behind tumor progression and chemoresistance is of utmost importance. Exosomes mediate communication in a population of heterogeneous tumoral cells. They have a cargo composed of oncogenes and oncomiRs which change the transcriptomic scenario of their targeted cells and activate numerous tumor-promoting signaling pathways. Exosomes secreted by breast cancer cells lead to enhanced cell proliferation, replicative immortality, angiogenesis, invasion, migration, and chemoresistance. Studying exosomes from this perspective offers more in depth understanding of breast malignancy and may aid in the future development of early diagnostic, prognostic and therapeutic options. We present the latest findings in this area and offer practical solutions which may further stimulate the much-needed research of exosome in breast cancer.
Collapse
Affiliation(s)
- Monica Groza
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Patriciu Achimas-Cadariu
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Diana Cenariu
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Giorgio Stanta
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, uliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
23
|
Ling T, Lang WH, Martinez-Montemayor MM, Rivas F. Development of ergosterol peroxide probes for cellular localisation studies. Org Biomol Chem 2019; 17:5223-5229. [PMID: 31025693 PMCID: PMC6541511 DOI: 10.1039/c9ob00145j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ergosterol peroxide selectively exhibits biological activity against a wide range of diseases; however, its mode of action remains unknown. Here, we present an efficient synthesis of ergosterol peroxide chemical probes for in vitro anticancer evaluation, live cell studies and proteomic profiling. Ergosterol peroxide analogues show promising anti-proliferation activity against triple negative breast cancer cellular models, revealing information on the structure-activity relationship of this natural product in order to develop superior analogues. The combined cellular studies demonstrate that ergosterol peroxide is distributed across the cytosol with significant accumulation in the endoplasmic reticulum (ER). These chemical probes support our efforts towards uncovering the potential target(s) of ergosterol peroxide against triple negative breast cancer cell lines.
Collapse
Affiliation(s)
- Taotao Ling
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-3678 USA
| | - Walter H. Lang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-3678 USA
| | | | - Fatima Rivas
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-3678 USA
| |
Collapse
|
24
|
Ciocan-Cartita CA, Jurj A, Buse M, Gulei D, Braicu C, Raduly L, Cojocneanu R, Pruteanu LL, Iuga CA, Coza O, Berindan-Neagoe I. The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer "Omics". Int J Mol Sci 2019; 20:ijms20102576. [PMID: 31130665 PMCID: PMC6567119 DOI: 10.3390/ijms20102576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Mass spectrometry (MS) is an essential analytical technology on which the emerging omics domains; such as genomics; transcriptomics; proteomics and metabolomics; are based. This quantifiable technique allows for the identification of thousands of proteins from cell culture; bodily fluids or tissue using either global or targeted strategies; or detection of biologically active metabolites in ultra amounts. The routine performance of MS technology in the oncological field provides a better understanding of human diseases in terms of pathophysiology; prevention; diagnosis and treatment; as well as development of new biomarkers; drugs targets and therapies. In this review; we argue that the recent; successful advances in MS technologies towards cancer omics studies provides a strong rationale for its implementation in biomedicine as a whole.
Collapse
Affiliation(s)
- Cristina Alexandra Ciocan-Cartita
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Ancuța Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Mihail Buse
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Lavinia Lorena Pruteanu
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Cristina Adela Iuga
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca.
| | - Ovidiu Coza
- Department of Oncology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
- Department of Radiotherapy with High Energies and Brachytherapy, Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca.
| | - Ioana Berindan-Neagoe
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuțǎ Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca.
| |
Collapse
|
25
|
Aberrant miRNAs expressed in HER-2 negative breast cancers patient. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:257. [PMID: 30342533 PMCID: PMC6196003 DOI: 10.1186/s13046-018-0920-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
Abstract
Background Breast cancer is a highly heterogeneous pathology, exhibiting a number of subtypes commonly associated with a poor outcome. Due to their high stability, microRNAs are often regarded as non-invasive cancer biomarkers, having an expression pattern specific for their ‘cell of origin’. Method Triple negative breast cancer (TNBC: ER-, PR-, Her-2-) and double positive breast cancer (DPBC: ER+, PR+, Her-2) miRNA expression patterns were obtained by analysis of the TCGA (The Cancer Genome Atlas) data, followed by PCR-array analysis on plasma samples from 20 TNBC patients, 14 DPBC patients and 11 controls. Results Three downregulated and nine upregulated miRNAs were obtained from the TNBC analysis. Five overexpressed miRNAs were identified in the DPBC group. Four of the dysregulated miRNAs (miR-10a, miR-125b, miR-210 and miR-489) were common for both groups. The cluster miR-17-92 (miR-17, miR-20a, miR-20b, and miR-93), along with miR-130, miR-22 and miR-29a/c, were found to differentiate between TNBC and DPBC. A panel of five transcripts (miR-10a, miR-125, miR-193b, miR-200b and miR-489) was validated in a new set of plasma samples. The overlapping of TCGA and plasma profiling data revealed miR-200b, miR-200c, miR-210 and miR-29c as common signature. MiR-200b was validated on additional normal and tumor tissue samples. The expression level of this transcript from the TCGA data was correlated with lung and bone metastatic genes. Conclusion The miR-200b presents a great potential for the future advancements in the diagnostic/prognostic and therapeutic approach of TNBC, along with other coding or non-coding transcripts. However, this needs to be further integrated in a regulatory network that acts in conjunction with other markers that affect the patients’ prognosis or response to therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0920-2) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Temian DC, Pop LA, Irimie AI, Berindan-Neagoe I. The Epigenetics of Triple-Negative and Basal-Like Breast Cancer: Current Knowledge. J Breast Cancer 2018; 21:233-243. [PMID: 30275851 PMCID: PMC6158152 DOI: 10.4048/jbc.2018.21.e41] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer has the highest incidence among all malignancies diagnosed in women. Therapies have significantly improved over the years due to extensive molecular and clinical research; in a large number of cases, targeted therapies have provided better prognosis. However, one specific subtype remains elusive to targeted therapies–the triple-negative breast cancer. This immunohistochemically defined subtype is resistant to both endocrine and targeted therapies, leading to its poor prognosis. A field that is of great promise in current cancer research is epigenetics. By studying the epigenetic mechanisms underlying tumorigenesis–DNA methylation, histone modifications, and noncoding RNAs–advances in cancer treatment, diagnosis, and prevention are possible. This review aims to synthesize the epigenetic discoveries that have been made related to the triple-negative breast cancer.
Collapse
Affiliation(s)
- Daiana Cosmina Temian
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Division of Dental Propaedeutics, Aesthetic, Department of Prosthetic Dentistry and Dental Materials, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MedFUTURE Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. I Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
27
|
Hessel H, Poignée-Heger M, Lohmann S, Hirscher B, Herold A, Assmann G, Budczies J, Sotlar K, Kirchner T. Subtyping Of Triple Negative Breast Carcinoma On The Basis Of RTK Expression. J Cancer 2018; 9:2589-2602. [PMID: 30087699 PMCID: PMC6072816 DOI: 10.7150/jca.23023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background: "Triple-negative breast cancers" (TNBC) comprise a heterogeneous group of about 15% of invasive BCs lacking the expression of estrogen and progesterone receptors (ER, PR) and the expression of HER2 (ERBB2) and are therefore no established candidates for targeted treatment options in BC, i.e., endocrine and anti-HER2 therapy. The aim of the present study was to use gene expression profiling and immunohistochemical (IHC) characterization to identify receptor tyrosine kinase (RTK) profiles that would allow patient stratification for the purposes of target-oriented personalized tumor therapy in TNBC. Methods: Twenty-nine cases of TNBC selected according to routine diagnostic IHC/cytogenetic criteria were examined by reverse transcription polymerase chain reaction (RT-PCR). RTK mRNA expression profiles were generated for a total of 31 tumor-relevant biomarkers, mainly belonging to the IGF- and EGF-receptor families but also including biomarkers related to downstream signaling. Protein expression of selected biomarkers was investigated by IHC. Results: Hierarchical cluster analysis revealed a dichotomous differentiation pattern amongst TNBCs. A significant difference in gene expression was observed for 16 of the 31 RTK-associated tumor relevant biomarkers between the two newly identified TNBC subgroups. The findings were verified at the posttranslational level by the IHC data. The RTKs HER4, IGF-1R and IGF-2R and the hormone receptors ER and PR below the IHC detection limit play a central role in the differentiation of the two TNBC subgroups. Observed survival was reported as Kaplan-Meier estimates and point towards an improved survival of patients with RTK-high with superior three-year survival rate of 100% compared to RTK-low gene signatures with superior three-year survival rate of 60% (log-rank test, p-value = 0.022). Conclusion: Gene-expression and IHC analysis of the EGF and IGF receptor families and biomarkers associated with downstream signaling point to the existence of two distinct TNBC subtypes. The RTKs HER4, IGF-1R, IGF-2R and the hormone receptors ER and PR appear to be of particular importance here. Based on survival analysis the differentiation of TNBC with RTK-high and RTK-low gene signatures seems to be of prognostic relevance. Additionally, correlation analysis of the relationship between RTKs and ER suggests co-regulatory mechanisms that may have potential significance in new therapeutic approaches.
Collapse
Affiliation(s)
- Harald Hessel
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | | | | | | | | | - Gerald Assmann
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
- Pathologiepraxis München, Germany
| | - Jan Budczies
- Institute of Pathology, Charité University Hospital, Berlin, Germany
| | - Karl Sotlar
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
- University Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Austria
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| |
Collapse
|
28
|
Guney Eskiler G, Cecener G, Egeli U, Tunca B. Triple negative breast cancer: new therapeutic approaches andBRCAstatus. APMIS 2018; 126:371-379. [DOI: 10.1111/apm.12836] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/28/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Gamze Guney Eskiler
- Deparment of Medical Biology; Faculty of Medicine; Sakarya University; Sakarya Turkey
| | - Gulsah Cecener
- Deparment of Medical Biology; Faculty of Medicine; Uludag University; Bursa Turkey
| | - Unal Egeli
- Deparment of Medical Biology; Faculty of Medicine; Uludag University; Bursa Turkey
| | - Berrin Tunca
- Deparment of Medical Biology; Faculty of Medicine; Uludag University; Bursa Turkey
| |
Collapse
|
29
|
Association of multiple genetic variants with breast cancer susceptibility in the Han Chinese population. Oncotarget 2018; 7:85483-85491. [PMID: 27863437 PMCID: PMC5356751 DOI: 10.18632/oncotarget.13402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
We selected 13 tag single nucleotide polymorphisms (tSNPs) to investigate whether they were associated with breast cancer risk in the Chinese Han population. Upon statistical analyses of clinical data from 551 patients and 577 controls, we found that six of the 13 SNPs were associated with breast cancer; namely, rs4973768(Odds ratio (OR) = 1.30, 95% confidence interval (CI) =1.01-1.67), rs981782(OR =1.30, 95% CI=1.01-1.66), rs1432679(OR =0.84, 95% CI=0.70-0.99), rs10759243(OR=1.30, 95%CI=1.09-1.55), rs10822013(OR =1.18, 95% CI=1.00-1.39) and rs704010(OR =1.63, 95% CI=1.04-2.56). When stratified based on breast cancer subtype, our analyses revealed that three SNPs (rs981782, rs10759243 and rs704010) correlated with ER+ breast cancer, while another three (rs4973768, rs1432679 and rs10822013) correlated with ER- breast cancer. We obtained similar results while investigating the correlation of SNPs with PR status or clinical stage. Our results suggest that associations identified between SNPs and breast cancer through genome-wide association studies (GWAS) may not always be generalizable across races.
Collapse
|
30
|
H-Ferritin-nanocaged olaparib: a promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Sci Rep 2017; 7:7505. [PMID: 28790402 PMCID: PMC5548799 DOI: 10.1038/s41598-017-07617-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors represent a promising strategy toward the treatment of triple-negative breast cancer (TNBC), which is often associated to genomic instability and/or BRCA mutations. However, clinical outcome is controversial and no benefits have been demonstrated in wild type BRCA cancers, possibly due to poor drug bioavailability and low nuclear delivery. In the attempt to overcome these limitations, we have developed H-Ferritin nanoformulated olaparib (HOla) and assessed its anticancer efficacy on both BRCA-mutated and non-mutated TNBC cells. We exploited the natural tumor targeting of H-Ferritin, which is mediated by the transferrin receptor-1 (TfR1), and its physiological tropism toward cell nucleus. TNBC cell lines over-expressing TfR-1 were successfully recognized by H-Ferritin, displaying a fast internalization into the cells. HOla induced remarkable cytotoxic effect in cancer cells, exhibiting 1000-fold higher anticancer activity compared to free olaparib (Ola). Accordingly, HOla treatment enhanced PARP-1 cleavage, DNA double strand breaks and Ola delivery into the nuclear compartment. Our findings suggest that H-Ferritin nanoformulation strongly enhances cytotoxic efficacy of Ola as a stand-alone therapy in both BRCA-mutated and wild type TNBC cells, by promoting targeted nuclear delivery.
Collapse
|
31
|
Mocanu MM, Nagy P, Szöllősi J. Chemoprevention of Breast Cancer by Dietary Polyphenols. Molecules 2015; 20:22578-620. [PMID: 26694341 PMCID: PMC6332464 DOI: 10.3390/molecules201219864] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023] Open
Abstract
The review will discuss in detail the effects of polyphenols on breast cancer, including both the advantages and disadvantages of the applications of these natural compounds. First, we focus on the characterization of the main classes of polyphenols and then on in vitro and in vivo experiments carried out in breast cancer models. Since the therapeutic effects of the administration of a single type of polyphenol might be limited because of the reduced bioavailability of these drugs, investigations on combination of several polyphenols or polyphenols with conventional therapy will also be discussed. In addition, we present recent data focusing on clinical trials with polyphenols and new approaches with nanoparticles in breast cancer. Besides the clinical and translational findings this review systematically summarizes our current knowledge about the molecular mechanisms of anti-cancer effects of polyphenols, which are related to apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways and epigenetic mechanisms. At the same time the effects of polyphenols on primary tumor, metastasis and angiogenesis in breast cancer are discussed. The increasing enthusiasm regarding the combination of polyphenols and conventional therapy in breast cancer might lead to additional efforts to motivate further research in this field.
Collapse
Affiliation(s)
- Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
32
|
Amin R, Morita-Fujimura Y, Tawarayama H, Semba K, Chiba N, Fukumoto M, Ikawa S. ΔNp63α induces quiescence and downregulates the BRCA1 pathway in estrogen receptor-positive luminal breast cancer cell line MCF7 but not in other breast cancer cell lines. Mol Oncol 2015; 10:575-93. [PMID: 26704768 DOI: 10.1016/j.molonc.2015.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/10/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022] Open
Abstract
Despite apparent resection of tumors, breast cancer patients often suffer relapse due to remnant dormant tumor cells. Although quiescence of cancer stem cells is thought as one of the mechanisms regulating dormancy, the mechanism underlying quiescence is unclear. Since ΔNp63α, an isoform of p51/p63, is crucial in the maintenance of stem cells within mammary epithelium, we investigated its roles in the regulation of dormancy in normal and malignant breast cells. Inducible expression of ΔNp63α in MCF7 estrogen receptor positive (ER+) luminal breast cancer cells led to quiescence and acquisition of progenitor-like properties. Judging from mRNA-microRNA microarray analysis, activation of bone morphogenetic protein (BMP) signaling and inhibition of Wnt signaling emerged as prominent mechanisms underlying ΔNp63α-dependent induction of quiescence and acquisition of stemness in MCF7. More interestingly, through Ingenuity Pathway analysis, we found for the first time that BRCA1 pathway was the most significantly downregulated pathway by ΔNp63α expression in quiescent MCF7 cells, where miR-205 was a downstream mediator. Furthermore, ΔNp63α-expressing MCF7 cells exhibited resistance to paclitaxel and doxorubicin. Expression of ΔNp63α in normal MCF10A basal cells increased proliferation and stemness, but did not affect more aggressive luminal (T47D) and basal (MDA-MB-231) cells with p53 mutation. Gene expression datasets analyses suggested that ΔNp63 expression is associated with relapse-free survival of luminal A/B-type patients, but not of the other subtypes. Our results established a cell type-specific function of ΔNp63α in induction of quiescence and downregulation of the BRCA1 pathway which suggested a role of ΔNp63α in the dormancy of luminal breast cancers.
Collapse
Affiliation(s)
- Ruhul Amin
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan; Department of Pathology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yuiko Morita-Fujimura
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
| | - Hiroshi Tawarayama
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Shuntaro Ikawa
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.
| |
Collapse
|
33
|
Ramalho SD, Sharma R, White JK, Aggarwal N, Chalasani A, Sameni M, Moin K, Vieira PC, Turro C, Kodanko JJ, Sloane BF. Imaging Sites of Inhibition of Proteolysis in Pathomimetic Human Breast Cancer Cultures by Light-Activated Ruthenium Compound. PLoS One 2015; 10:e0142527. [PMID: 26562785 PMCID: PMC4643019 DOI: 10.1371/journal.pone.0142527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/22/2015] [Indexed: 11/21/2022] Open
Abstract
The cysteine protease cathepsin B has been causally linked to progression and metastasis of breast cancers. We demonstrate inhibition by a dipeptidyl nitrile inhibitor (compound 1) of cathepsin B activity and also of pericellular degradation of dye-quenched collagen IV by living breast cancer cells. To image, localize and quantify collagen IV degradation in real-time we used 3D pathomimetic breast cancer models designed to mimic the in vivo microenvironment of breast cancers. We further report the synthesis and characterization of a caged version of compound 1, [Ru(bpy)2(1)2](BF4)2 (compound 2), which can be photoactivated with visible light. Upon light activation, compound 2, like compound 1, inhibited cathepsin B activity and pericellular collagen IV degradation by the 3D pathomimetic models of living breast cancer cells, without causing toxicity. We suggest that caged inhibitor 2 is a prototype for cathepsin B inhibitors that can control both the site and timing of inhibition in cancer.
Collapse
Affiliation(s)
- Suelem D. Ramalho
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Rajgopal Sharma
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - Jessica K. White
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Neha Aggarwal
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Anita Chalasani
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Mansoureh Sameni
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Kamiar Moin
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Paulo C. Vieira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (BFS); (JJK)
| | - Bonnie F. Sloane
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (BFS); (JJK)
| |
Collapse
|
34
|
Abstract
This Review assesses the relevant data and controversies regarding the use of radiotherapy for, and locoregional management of, women with triple-negative breast cancer (TNBC). In view of the strong association between BRCA1 and TNBC, knowledge of baseline mutation status can be useful to guide locoregional treatment decisions. TNBC is not a contraindication for breast conservation therapy because data suggest increased locoregional recurrence risks (relative to luminal subtypes) with breast conservation therapy or mastectomy. Although a boost to the tumour bed should routinely be considered after whole breast radiation therapy, TNBC should not be the sole indication for post-mastectomy radiation, and accelerated delivery methods for TNBC should be offered on clinical trials. Preliminary data implying a relative radioresistance for TNBC do not imply radiation omission because radiation provides an absolute locoregional risk reduction. At present, the integration of subtypes in locoregional management decisions is still in its infancy. Until level 1 data supporting treatment decisions based on subtypes are available, standard locoregional management principles should be adhered to.
Collapse
|
35
|
Braicu C, Pileczki V, Pop L, Petric RC, Chira S, Pointiere E, Achimas-Cadariu P, Berindan-Neagoe I. Dual targeted therapy with p53 siRNA and Epigallocatechingallate in a triple negative breast cancer cell model. PLoS One 2015; 10:e0120936. [PMID: 25849487 PMCID: PMC4388814 DOI: 10.1371/journal.pone.0120936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive phenotype that is resistant to standard therapy. Thus, the development of alternative therapeutic strategies for TNBC is essential. The purpose of our in vitro study was to evaluate the impact of p53 gene silencing in conjunction with the administration of a natural compound, epigallocatechingallate (EGCG). RT2Profiler PCR Array technology was used to evaluate the impact of dual treatment on the main genes involved in apoptosis in the Hs578T cell culture model of TNBC. Gene expression analysis revealed 28 genes were significantly altered (16 upregulated and 12 downregulated) in response to combined p53 siRNA and EGCG treatment. Further analysis revealed that p53 siRNA and EGCG dual therapy leads to the activation of pro-apoptotic genes and the inhibition of pro-survival genes, autophagy, and cell network formation. These results indicate that this dual therapy targets both the apoptotic and angiogenic pathways, which may improve treatment effectiveness for tumors resistant to conventional treatment.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Valentina Pileczki
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana Cojocneanu Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Patriciu Achimas-Cadariu
- Department of Surgery, The Oncology Institute " Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania
- Department of Surgical Oncology and Gynaecological Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- * E-mail: (IBN); (PAC)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute " Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania
- Department of Experimental Therapeutics M.D. Anderson Cancer Center Houston, Texas, United States of America
- * E-mail: (IBN); (PAC)
| |
Collapse
|
36
|
The protein tyrosine phosphatase DEP-1/PTPRJ promotes breast cancer cell invasion and metastasis. Oncogene 2015; 34:5536-47. [DOI: 10.1038/onc.2015.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
|
37
|
Morales P, Blasco-Benito S, Andradas C, Gómez-Cañas M, Flores JM, Goya P, Fernández-Ruiz J, Sánchez C, Jagerovic N. Selective, nontoxic CB(2) cannabinoid o-quinone with in vivo activity against triple-negative breast cancer. J Med Chem 2015; 58:2256-64. [PMID: 25671648 DOI: 10.1021/acs.jmedchem.5b00078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Triple-negative breast cancer (TNBC) represents a subtype of breast cancer characterized by high aggressiveness. There is no current targeted therapy for these patients whose prognosis, as a group, is very poor. Here, we report the synthesis and evaluation of a potent antitumor agent in vivo for this type of breast cancer designed as a combination of quinone/cannabinoid pharmacophores. This new compound (10) has been selected from a series of chromenopyrazolediones with full selectivity for the nonpsychotropic CB2 cannabinoid receptor and with efficacy in inducing death of human TNBC cell lines. The dual concept quinone/cannabinoid was supported by the fact that compound 10 exerts antitumor effect by inducing cell apoptosis through activation of CB2 receptors and through oxidative stress. Notably, it did not show either cytotoxicity on noncancerous human mammary epithelial cells nor toxic effects in vivo, suggesting that it may be a new therapeutic tool for the management of TNBC.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, CSIC , Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Thulasiraman P, McAndrews DJ, Mohiudddin IQ. Curcumin restores sensitivity to retinoic acid in triple negative breast cancer cells. BMC Cancer 2014; 14:724. [PMID: 25260874 PMCID: PMC4192446 DOI: 10.1186/1471-2407-14-724] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2022] Open
Abstract
Background A major obstacle in the use of retinoid therapy in cancer is the resistance to this agent in tumors. Retinoic acid facilitates the growth of mammary carcinoma cells which express high levels of fatty acid-binding protein 5 (FABP5). This protein delivers retinoic acid to peroxisome proliferator-activated receptor β/δ (PPARβ/δ) that targets genes involved in cell proliferation and survival. One approach to overcome resistance of mammary carcinoma cells to retinoic acid is to target and suppress the FABP5/ PPARβ/δ pathway. The objective of this research was to investigate the effect of curcumin, a polyphenol extract from the plant Curcuma longa, on the FABP5/ PPARβ/δ pathway in retinoic acid resistant triple negative breast cancer cells. Methods Cell viability and proliferation of triple negative breast cancer cell lines (MDA-MB-231 and MD-MB-468) treated with curcumin and/or retinoic was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2’-deoxyuridine (BrdU). Expression level of FABP5 and PPARβ/δ in these cells treated with curcumin was examined by Western Blotting analysis and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Effect of curcumin and retinoic acid on PPARβ/δ target genes, PDK1and VEGF-A were also examined using qRT-PCR. Western Blotting was utilized to examine the protein expression level of the p65 subunit of NF-κB. Results Treatment of retinoic acid resistant triple negative breast cancer cells with curcumin sensitized these cells to retinoic acid mediated growth suppression, as well as suppressed incorporation of BrdU. Further studies demonstrated that curcumin showed a marked reduction in the expression level of FABP5 and PPARβ/δ. We provide evidence that curcumin suppresses p65, a transcription factor known to regulate FABP5. The combination of curcumin with retinoic acid suppressed PPARβ/δ target genes, VEGF-A and PDK1. Conclusions Curcumin suppresses the expression level of FABP5 and PPARβ/δ in triple negative mammary carcinoma cells. By targeting the FABP5/PPARβ/δ pathway, curcumin prevents the delivery of retinoic acid to PPARβ/δ and suppresses retinoic acid-induced PPARβ/δ target gene, VEGF-A. Our data demonstrates that suppression of the FABP5/ PPARβ/δ pathway by curcumin sensitizes retinoic acid resistant triple negative breast cancer cells to retinoic acid mediated growth suppression.
Collapse
Affiliation(s)
- Padmamalini Thulasiraman
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama, Mobile, Al, USA.
| | | | | |
Collapse
|
39
|
Differential peripheral blood gene expression profile based on Her2 expression on primary tumors of breast cancer patients. PLoS One 2014; 9:e102764. [PMID: 25068292 PMCID: PMC4113305 DOI: 10.1371/journal.pone.0102764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
Breast cancer prognosis and treatment is highly dependent on the molecular features of the primary tumors. These tumors release specific molecules into the environment that trigger characteristic responses into the circulatory cells. In this study we investigated the expression pattern of 84 genes known to be involved in breast cancer signaling in the peripheral blood of breast cancer patients with ER-, PR- primary tumors. The patients were grouped according to Her2 expression on the primary tumors in Her2+ and Her2- cohorts. Transcriptional analysis revealed 15 genes to be differentially expressed between the two groups highlighting that Her2 signaling in primary tumors could be associated with specific blood gene expression. We found CCNA1 to be up-regulated, while ERBB2, RASSF1, CDH1, MKI67, GATA3, GLI1, SFN, PTGS2, JUN, NOTCH1, CTNNB1, KRT8, SRC, and HIC1 genes were down-regulated in the blood of triple negative breast cancer patients compared to Her2+ cohort. IPA network analysis predicts that the identified genes are interconnected and regulate each other. These genes code for cell cycle regulators, cell adhesion molecules, transcription factors or signal transducers that modulate immune signaling, several genes being also associated with cancer progression and treatment response. These results indicate an altered immune signaling in the peripheral blood of triple negative breast cancer patients. The involvement of the immune system is necessary in favorable treatment response, therefore these results could explain the low response rates observed for triple negative breast cancer patients.
Collapse
|
40
|
Karra H, Repo H, Ahonen I, Löyttyniemi E, Pitkänen R, Lintunen M, Kuopio T, Söderström M, Kronqvist P. Cdc20 and securin overexpression predict short-term breast cancer survival. Br J Cancer 2014; 110:2905-13. [PMID: 24853182 PMCID: PMC4056061 DOI: 10.1038/bjc.2014.252] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2014] [Accepted: 04/08/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cdc20 is an essential component of cell division and responsible for anaphase initiation regulated by securin degradation. Cdc20 function is strongly regulated by the spindle assembly checkpoint to ensure the timely separation of sister chromatids and integrity of the genome. We present the first results on Cdc20 in a large clinical breast cancer material. METHODS The study was based on 445 breast cancer patients with up to 20 years of follow-up (mean 10.0 years). DNA content was determined by image cytometry on cell imprints, and Cdc20 and securin immunohistochemistry on tissue microarrays of breast cancer tissue. RESULTS In our results, high Cdc20 and securin expression was associated with aneuploid DNA content. In prognostic analyses, high Cdc20 immunoexpression alone and in combination with high securin immunoexpression indicated aggressive course of disease and up to 6.8-fold (P<0.001) risk of breast cancer death. Particularly, high Cdc20 and securin immunoexpression identified a patient subgroup with extremely short, on average 2.4 years, breast cancer survival and triple-negative breast cancer (TNBC) subtype. CONCLUSIONS We report for the first time the association of high Cdc20 and securin immunoexpression with extremely poor outcome of breast cancer patients. Our experience indicates that Cdc20 and securin are promising candidates for clinical applications in breast cancer prognostication, especially in the challenging prognostic decisions of TNBC.
Collapse
Affiliation(s)
- H Karra
- Department of Pathology, University of Turku and Turku University Central Hospital, Turku, Finland
| | - H Repo
- Department of Pathology, University of Turku and Turku University Central Hospital, Turku, Finland
| | - I Ahonen
- Department of Medical Statistics, Medical Faculty, University of Turku, Turku, Finland
| | - E Löyttyniemi
- Department of Medical Statistics, Medical Faculty, University of Turku, Turku, Finland
| | - R Pitkänen
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - M Lintunen
- Department of Pathology, University of Turku and Turku University Central Hospital, Turku, Finland
| | - T Kuopio
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - M Söderström
- Department of Pathology, University of Turku and Turku University Central Hospital, Turku, Finland
| | - P Kronqvist
- Department of Pathology, University of Turku and Turku University Central Hospital, Turku, Finland
| |
Collapse
|