1
|
He R, Shi X, Jiang L, Zhu Y, Pei Z, Zhu L, Su X, Yao D, Xu P, Guo Y, Li F. Prediction of rTMS Efficacy in Patients With Essential Tremor: Biomarkers From Individual Resting-State EEG Network. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3719-3728. [PMID: 39331541 DOI: 10.1109/tnsre.2024.3469576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The pathogenesis of essential tremor (ET) remains unclear, and the efficacy of related drug treatment is inadequate for proper tremor control. Hence, in the current study, consecutive low-frequency repetitive transcranial magnetic stimulation (rTMS) modulation on cerebellum was accomplished in a population of ET patients, along with pre- and post-treatment resting-state electroencephalogram (EEG) networks being constructed. The results primarily clarified the decreasing of resting-state network interactions occurring in ET, especially the weaker frontal-parietal connectivity, compared to healthy individuals. While after the rTMS stimulation, promotions in both network connectivity and properties, as well as clinical scales, were identified. Furthermore, significant correlations between network characteristics and clinical scale scores enabled the development of predictive models for assessing rTMS intervention efficacy. Using a multivariable linear model, clinical scales after one-month rTMS treatment were accurately predicted, underscoring the potential of brain networks in evaluating rTMS effectiveness for ET. The findings consistently demonstrated that repetitive low-frequency rTMS neuromodulation on cerebellum can significantly improve the manifestations of ET, and individual networks will be reliable tools for evaluating the rTMS efficacy, thereby guiding personalized treatment strategies for ET patients.
Collapse
|
2
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
3
|
Zeng Y, Ye Z, Zheng W, Wang J. Efficacy of Cerebellar Transcranial Magnetic Stimulation for Post-stroke Balance and Limb Motor Function Impairments: Meta-analyses of Random Controlled Trials and Resting-State fMRI Studies. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1678-1696. [PMID: 38280142 DOI: 10.1007/s12311-024-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
This study aimed to investigate the potential therapeutic effects of cerebellar transcranial magnetic stimulation (TMS) on balance and limb motor impairments in stroke patients. A meta-analysis of randomized controlled trials was conducted to assess the effects of cerebellar TMS on balance and motor impairments in stroke patients. Additionally, an activation likelihood estimation (ALE) meta-analysis was performed on resting-state functional magnetic resonance imaging (fMRI) studies to compare spontaneous neural activity differences between stroke patients and healthy controls using measures including the amplitude of low frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo). The analysis included 10 cerebellar TMS studies and 18 fMRI studies. Cerebellar TMS treatment demonstrated significant improvements in the Berg Balance Scale score (p < 0.0001) and the Fugl-Meyer Assessment lower extremity score (p < 0.0001) compared to the control group in stroke patients. Additionally, spontaneous neural activity alterations were identified in motor-related regions after stroke, including the precentral gyrus, putamen, thalamus, and paracentral lobule. Cerebellar TMS shows promise as a therapeutic intervention to enhance balance and lower limb motor function in stroke patients. It is easy for clinical application and addresses the limitations of insufficient direct stimulation depth on the leg area of the cortex. However, further research combining neuroimaging outcomes with clinical measurements is necessary to validate these findings.
Collapse
Affiliation(s)
- Yuheng Zeng
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China.
| | - Zujuan Ye
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Wanxin Zheng
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Jue Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| |
Collapse
|
4
|
Siva K, Ponnusamy P, Ramanathan M. Disrupted Brain Network Measures in Parkinson's Disease Patients with Severe Hyposmia and Cognitively Normal Ability. Brain Sci 2024; 14:685. [PMID: 39061425 PMCID: PMC11274763 DOI: 10.3390/brainsci14070685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Neuroscience has revolved around brain structural changes, functional activity, and connectivity alteration in Parkinson's Disease (PD); however, how the network topology organization becomes altered is still unclear, specifically in Parkinson's patients with severe hyposmia. In this study, we have examined the functional network topological alteration in patients affected by Parkinson's Disease with normal cognitive ability (ODN), Parkinson's Disease with severe hyposmia (ODP), and healthy controls (HCs) using resting-state functional magnetic resonance imaging (rsfMRI) data. We have analyzed brain topological organization using popular graph measures such as network segregation (clustering coefficient, modularity), network integration (participation coefficient, path length), small-worldness, efficiency, centrality, and assortativity. Then, we used a feature ranking approach based on the diagonal adaptation of neighborhood component analysis, aiming to determine a graph measure that is sensitive enough to distinguish between these three different groups. We noted significantly lower segregation and local efficiency and small-worldness in ODP compared to ODN and HCs. On the contrary, we did not find differences in network integration in ODP compared to ODN and HCs, which indicates that the brain network becomes fragmented in ODP. At the brain network level, a progressive increase in the DMN (Default Mode Network) was observed from healthy controls to ODN to ODP, and a continuous decrease in the cingulo-opercular network was observed from healthy controls to ODN to ODP. Further, the feature ranking approach has shown that the whole-brain clustering coefficient and small-worldness are sensitive measures to classify ODP vs. ODN, as well as HCs. Looking at the brain regional network segregation, we have found that the cerebellum and limbic, fronto-parietal, and occipital lobes have higher ODP reductions than ODN and HCs. Our results suggest network topological measures, specifically whole-brain segregation and small-worldness decreases. At the network level, an increase in DMN and a decrease in the cingulo-opercular network could be used as biomarkers to characterize ODN and ODP.
Collapse
Affiliation(s)
| | | | - Malmathanraj Ramanathan
- Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli 620015, India; (K.S.); (P.P.)
| |
Collapse
|
5
|
Fenoy AJ, Chu ZD, Ritter RJ, Conner CR, Kralik SF. Evaluating functional connectivity differences between DBS ON/OFF states in essential tremor. Neurotherapeutics 2024; 21:e00375. [PMID: 38824101 PMCID: PMC11301224 DOI: 10.1016/j.neurot.2024.e00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Deep brain stimulation (DBS) targeting the ventral intermediate (Vim) nucleus of the thalamus is an effective treatment for essential tremor (ET). We studied 15 ET patients undergoing DBS to a major input/output tract of the Vim, the dentato-rubro-thalamic tract (DRTt), using resting state functional MRI (rsfMRI) to evaluate connectivity differences between DBS ON and OFF and elucidate significant regions most influential in impacting tremor control and/or concomitant gait ataxia. Anatomical/functional 1.5T MRIs were acquired and replicated for each DBS state. Tremor severity and gait ataxia severity were scored with DBS ON at optimal stimulation parameters and immediately upon DBS OFF. Whole brain analysis was performed using dual regression analysis followed by randomized permutation testing for multiple correction comparison. Regions of interest (ROI) analysis was also performed. All 15 patients had tremor improvement between DBS ON/OFF (p < 0.001). Whole brain analysis revealed significant connectivity changes between states in the left pre-central gyrus and left supplemental motor area. Group analysis of ROIs revealed that, with threshold p < 0.05, in DBS ON vs. OFF both tremor duration and tremor improvement were significantly correlated to changes in connectivity. A sub-group analysis of patients with greater ataxia had significantly decreased functional connectivity between multiple ROIs in the cortex and cerebellum when DBS was ON compared to OFF. Stimulation of the DRTt and concordant improvement of tremor resulted in connectivity changes seen in multiple regions outside the motor network; when combined with both structural and electrophysiologic connectivity, this may help to serve as a biomarker to improve DBS targeting and possibly predict outcome.
Collapse
Affiliation(s)
- Albert J Fenoy
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Departments of Neurosurgery and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Zili D Chu
- Edward B. Singleton Department of Radiology, Baylor College of Medicine at Texas Children's Hospital, Houston, TX, USA
| | - Robert J Ritter
- Department of Neurosurgery, McGovern School of Medicine, UTHealth Houston, Houston, TX, USA
| | - Christopher R Conner
- Division of Neurosurgery, Dept. of Surgery, University of Connecticut, Hartford, CT, USA
| | - Stephen F Kralik
- Edward B. Singleton Department of Radiology, Baylor College of Medicine at Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
6
|
El-Adawy AFI, Reda MABMG, Ahmed AM, Rashad MH, Zaki MA, Mohamed MET, Hassan MAS, Abdulsalam MF, Hassan AM, Mohamed AF, Fayed AGI, Meshref M, Mansour FM, Sarhan AE, Elsheshiny AH, Abed E. Efficacy of Cerebellar Transcranial Magnetic Stimulation in Treating Essential Tremor: A Randomized, Sham-Controlled Trial. J Clin Neurol 2024; 20:378-384. [PMID: 38951972 PMCID: PMC11220355 DOI: 10.3988/jcn.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Repetitive transcranial magnetic stimulation (rTMS) of the cerebellar hemisphere represents a new option in treating essential tremor (ET) patients. We aimed to determine the efficacy of cerebellar rTMS in treating ET using different protocols regarding the number of sessions, exposure duration, and follow-up duration. METHODS A randomized sham-controlled trial was conducted, in which 45 recruit patients were randomly allocated to 2 groups. The first (active group) comprised 23 patients who were exposed to 12 sessions of active rTMS with 900 pulses of 1-Hz rTMS at 90% of the resting motor threshold daily on each side of the cerebellar hemispheres over 4 weeks. The second group (sham group) comprised 22 patients who were exposed to 12 sessions of sham rTMS. Both groups were reassessed at baseline and after 1 day, 1 month, 2 months, and 3 months using the Fahn-Tolosa-Marin tremor-rating scale (FTM). RESULTS Demographic characteristics did no differ between the two groups. There were significant reductions both in FTM subscores A and B and in the FTM total score in the active-rTMS group during the period of assessment and after 3 months (p=0.031 and 0.011, respectively). However, subscore C did not change significantly from baseline when assessed at 2 and 3 months (p=0.073 and 0.236, respectively). Furthermore, the global assessment score was significantly higher in the active-rTMS group (p>0.001). CONCLUSIONS Low-frequency rTMS over the cerebellar cortex for 1 month showed relative safety and long-lasting efficacy in patients with ET. Further large-sample clinical trials are needed that include different sites of stimulation and longer follow-ups.
Collapse
Affiliation(s)
| | | | - Ali Mahmoud Ahmed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Neurology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK.
| | | | - Mohamed Ahmed Zaki
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Abdelmonem M Hassan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Fathy Mohamed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed E Sarhan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Elsayed Abed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Liu Q, Liu Y, Zhang Y. Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines 2024; 12:1348. [PMID: 38927555 PMCID: PMC11201496 DOI: 10.3390/biomedicines12061348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The cerebellum is emerging as a promising target for noninvasive brain stimulation (NIBS). A systematic review was conducted to evaluate the effects of cerebellar NIBS on both motor and other symptoms in stroke rehabilitation, its impact on functional ability, and potential side effects (PROSPERO number: CRD42022365697). A systematic electronic database search was performed by using PubMed Central (PMC), EMBASE, and Web of Science, with a cutoff date of November 2023. Data extracted included study details, NIBS methodology, outcome measures, and results. The risk of bias in eligible studies was also assessed. Twenty-two clinical studies involving 1016 participants were finally included, with a focus on outcomes related to post-stroke motor recovery (gait and balance, muscle spasticity, and upper limb dexterity) and other functions (dysphagia and aphasia). Positive effects were observed, especially on motor functions like gait and balance. Some efficiency was also observed in dysphagia rehabilitation. However, findings on language recovery were preliminary and inconsistent. A slight improvement in functional ability was noted, with no serious adverse effects reported. Further studies are needed to explore the effects of cerebellar NIBS on post-stroke non-motor deficits and to understand how cerebellar engagement can facilitate more precise treatment strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
8
|
Bian L, Zhang L, Huang G, Song D, Zheng K, Xu X, Dai W, Ren C, Shen Y. Effects of Priming Intermittent Theta Burst Stimulation With High-Definition tDCS on Upper Limb Function in Hemiparetic Patients With Stroke: A Randomized Controlled Study. Neurorehabil Neural Repair 2024:15459683241233259. [PMID: 38357884 DOI: 10.1177/15459683241233259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
BACKGROUND Preconditioning with cathodal high-definition transcranial direct current stimulation (HD-tDCS) can potentiate cortical plasticity induced by intermittent theta burst stimulation (iTBS) and enhance the after-effects of iTBS in healthy people. However, it is unclear whether this multi-modal protocol can enhance upper limb function in patients with stroke. OBJECTIVE The aim of this study was to investigate whether priming iTBS with cathodal HD-tDCS over the ipsilesional M1 can augment upper limb motor recovery in poststroke patients. METHODS A total of 66 patients with subacute stroke were randomly allocated into 3 groups. Group 1 received priming iTBS with HD-tDCS (referred to as the tDCS + iTBS group), Group 2 received non-priming iTBS (the iTBS group), and Group 3 received sham stimulation applied to the ipsilesional M1. One session was performed per day, 5 days per week, for 3 consecutive weeks. In Group 1, iTBS was preceded by a 20-minute session of cathodal HD-tDCS at a 10-minute interval. The primary outcome measure was the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score. Moreover, the secondary outcome measures for muscle strength and spasticity were the Motricity Index-Upper Extremity (MI-UE) and the Modified Ashworth Scale Upper-Extremity (MAS-UE), respectively, and the Hong Kong Version of the Functional Test for the Hemiplegic Upper Extremity (FTHUE-HK) and the Modified Barthel Index (MBI) for activity and participation. RESULTS Significant differences were detected in the changes in FMA-UE, MI-UE, and MBI scores between the 3 groups from baseline to post-intervention (χ2FMA-UE = 10.856, P = .004; χ2MI-UE = 6.783, P = .034; χ2MBI = 9.608, P = .008). Post hoc comparisons revealed that the priming iTBS group demonstrated substantial improvements in FMA-UE (P = .004), MI-UE (P = .028), and MBI (P = 0.006) compared with those in the sham group. However, no significant difference was observed between the iTBS group and the sham group. Moreover, no significant differences were found in the changes in MAS-UE or FTHUE-HK between the groups. CONCLUSIONS Priming iTBS with HD-tDCS over the ipsilesional M1 cortex had beneficial effects on augmenting upper limb motor recovery and enhancing daily participation among subacute stroke patients.
Collapse
Affiliation(s)
- Li Bian
- Department of Rehabilitation Medicine, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Li Zhang
- Department of Rehabilitation Medicine, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Guilan Huang
- Department of Rehabilitation Medicine, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Da Song
- Department of Rehabilitation Medicine, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Zheng
- Department of Rehabilitation Medicine, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Xinlei Xu
- Department of Rehabilitation Medicine, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Wenjun Dai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caili Ren
- Department of Rehabilitation Medicine, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
El-Adawy AFI, Reda MABMG, Ahmed AM, Rashad MH, Zaki MA, Mohamed MET, Hassan MAS, Abdulsalam MF, Hassan AM, Mohamed AF, Fayed AGI, Meshref M, Mansour FM, Sarhan AE, Elsheshiny AH, Abed E. Efficacy of Cerebellar Transcranial Magnetic Stimulation in Treating Essential Tremor: A Randomized, Sham-Controlled Trial. J Clin Neurol 2024; 20. [DOI: https:/doi.org/10.3988/jcn.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 05/31/2024] Open
Affiliation(s)
| | | | - Ali Mahmoud Ahmed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Neurology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | | | - Mohamed Ahmed Zaki
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Abdelmonem M Hassan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Fathy Mohamed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed E. Sarhan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Elsayed Abed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Sharifi S, Buijink AWG, Luft F, Scheijbeler EP, Potters WV, van Wingen G, Heida T, Bour LJ, van Rootselaar AF. Differences in Olivo-Cerebellar Circuit and Cerebellar Network Connectivity in Essential Tremor: a Resting State fMRI Study. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1123-1136. [PMID: 36214998 PMCID: PMC10657290 DOI: 10.1007/s12311-022-01486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
The olivo-cerebellar circuit is thought to play a crucial role in the pathophysiology of essential tremor (ET). Whether olivo-cerebellar circuit dysfunction is also present at rest, in the absence of clinical tremor and linked voluntary movement, remains unclear. Assessing this network in detail with fMRI is challenging, considering the brainstem is close to major arteries and pulsatile cerebrospinal fluid-filled spaces obscuring signals of interest. Here, we used methods tailored to the analysis of infratentorial structures. We hypothesize that the olivo-cerebellar circuit shows altered intra-network connectivity at rest and decreased functional coupling with other parts of the motor network in ET. In 17 ET patients and 19 healthy controls, we investigated using resting state fMRI intracerebellar functional and effective connectivity on a dedicated cerebellar atlas. With independent component analysis, we investigated data-driven cerebellar motor network activations during rest. Finally, whole-brain connectivity of cerebellar motor structures was investigated using identified components. In ET, olivo-cerebellar pathways show decreased functional connectivity compared with healthy controls. Effective connectivity analysis showed an increased inhibitory influence of the dentate nucleus towards the inferior olive. Cerebellar independent component analyses showed motor resting state networks are less strongly connected to the cerebral cortex compared to controls. Our results indicate the olivo-cerebellar circuit to be affected at rest. Also, the cerebellum is "disconnected" from the rest of the motor network. Aberrant activity, generated within the olivo-cerebellar circuit could, during action, spread towards other parts of the motor circuit and potentially underlie the characteristic tremor of this patient group.
Collapse
Affiliation(s)
- Sarvi Sharifi
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands.
| | - Arthur W G Buijink
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Frauke Luft
- Department of Biomedical Signals and Systems, University of Twente, TechMed Centre, Enschede, The Netherlands
| | - Elliz P Scheijbeler
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - Wouter V Potters
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tjitske Heida
- Department of Biomedical Signals and Systems, University of Twente, TechMed Centre, Enschede, The Netherlands
| | - Lo J Bour
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Xia Y, Wang M, Zhu Y. The Effect of Cerebellar rTMS on Modulating Motor Dysfunction in Neurological Disorders: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:954-972. [PMID: 36018543 DOI: 10.1007/s12311-022-01465-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The effectiveness of cerebellar repetitive transcranial magnetic stimulation (rTMS) on motor dysfunction in patients with neurological disorders has received increasing attention because of its potential for neuromodulation. However, studies on the neuromodulatory effects, parameters, and safety of rTMS implementation in the cerebellum to alleviate motor dysfunction are limited. This systematic review aimed to evaluate the effectiveness and safety of cerebellar rTMS treatment for motor dysfunction caused by neurological disorders and to review popular stimulation parameters. Five electronic databases-Medline, Web of Science, Scopus, Cochrane Library, and Embase-were searched for relevant research published from inception to July 2022. All randomized controlled trials (RCTs) that reported the effects of cerebellar rTMS combined with behavioral rating scales on motor dysfunction were eligible for enrollment. Additionally, reference lists of the enrolled studies were manually checked. Among 1156 articles screened, 21 RCTs with 666 subjects were included. rTMS conducted on the cerebellum showed an improvement in stroke (spasticity, balance, and gait), cervical dystonia, Parkinson's disease (tremor), cerebellar ataxia, and essential tremor but not in multiple sclerosis. The 8-shaped coil with a diameter of 70 mm was determined as the most common therapeutic choice. None of the studies reported severe adverse events except mild side effects in three. Therefore, rTMS appears to be a promising and safe technique for the treatment of motor dysfunction, targeting the cerebellum to induce motor behavioral improvement. Further rigorous RCTs, including more samples and longer follow-up periods, are required to precisely explore the effective stimulation parameters and possible mechanisms.
Collapse
Affiliation(s)
- Yifei Xia
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Mingqi Wang
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Yulian Zhu
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Jing'an District, No. 12 Wulumuqi road, Shanghai, 200040, China.
| |
Collapse
|
12
|
Yao J, Song B, Shi J, Yin K, Du W. Effects of Repetitive Transcranial Magnetic Stimulation at the Cerebellum on Working Memory. Brain Sci 2023; 13:1158. [PMID: 37626514 PMCID: PMC10452734 DOI: 10.3390/brainsci13081158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Transcranial magnetic stimulation is a widely used brain intervention technique in clinical settings. In recent years, the role of the cerebellum in learning and memory has become one of the hotspots in the field of cognitive neuroscience. In this study, we recruited 36 healthy college or graduate students as subjects and divided them into groups, with 10 to 14 subjects in each group. We performed 5 Hz and 20 Hz repeated transcranial magnetic stimulation and sham stimulation on the Crus II subregion of the cerebellum in different groups, then let them complete the 2-back working memory task before and after the stimulation. We simultaneously recorded the electroencephalogram in the experiment and analyzed the data. We found that after repeated transcranial magnetic stimulation of the cerebellum at 5 Hz and 20 Hz, the N170 and P300 event-related potential components in the prefrontal cortex showed significant differences compared to those in the sham stimulation group. Using phase-locked values to construct brain networks and conduct further analysis, we discovered that stimulation frequencies of 5 Hz and 20 Hz had significant effects on the local and global efficiency of brain networks in comparison to the sham stimulation group. The results showed that repeated transcranial magnetic stimulation on cerebellar targets can effectively affect the subjects' working memory tasks. Repeated transcranial magnetic stimulation at 5 Hz and 20 Hz could enhance the excitatory responses of the frontal lobes. After stimulation at 5 Hz and 20 Hz, the efficiency of the brain network significantly improved.
Collapse
Affiliation(s)
- Jiangnan Yao
- Nanjing Research Institute of Electronic Technology, Nanjing 210019, China
| | - Bo Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronic Technology, Nanjing 210019, China
| | - Wentao Du
- Nanjing Research Institute of Electronic Technology, Nanjing 210019, China
| |
Collapse
|
13
|
Olivier C, Lamy JC, Kosutzka Z, Van Hamme A, Cherif S, Lau B, Vidailhet M, Karachi C, Welter ML. Cerebellar Transcranial Alternating Current Stimulation in Essential Tremor Patients with Thalamic Stimulation: A Proof-of-Concept Study. Neurotherapeutics 2023; 20:1109-1119. [PMID: 37097344 PMCID: PMC10457262 DOI: 10.1007/s13311-023-01372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 04/26/2023] Open
Abstract
Essential tremor (ET) is a disabling condition resulting from a dysfunction of cerebello-thalamo-cortical circuitry. Deep brain stimulation (DBS) or lesion of the ventral-intermediate thalamic nucleus (VIM) is an effective treatment for severe ET. Transcranial cerebellar brain stimulation has recently emerged as a non-invasive potential therapeutic option. Here, we aim to investigate the effects of high-frequency non-invasive cerebellar transcranial alternating current stimulation (tACS) in severe ET patients already operated for VIM-DBS. Eleven ET patients with VIM-DBS, and 10 ET patients without VIM-DBS and matched for tremor severity, were included in this double-blind proof-of-concept controlled study. All patients received unilateral cerebellar sham-tACS and active-tACS for 10 min. Tremor severity was blindly assessed at baseline, without VIM-DBS, during sham-tACS, during and at 0, 20, 40 min after active-tACS, using kinetic recordings during holding posture and action ('nose-to-target') task and videorecorded Fahn-Tolosa-Marin (FTM) clinical scales. In the VIM-DBS group, active-tACS significantly improved both postural and action tremor amplitude and clinical (FTM scales) severity, relative to baseline, whereas sham-tACS did not, with a predominant effect for the ipsilateral arm. Tremor amplitude and clinical severity were also not significantly different between ON VIM-DBS and active-tACS conditions. In the non-VIM-DBS group, we also observed significant improvements in ipsilateral action tremor amplitude, and clinical severity after cerebellar active-tACS, with a trend for improved postural tremor amplitude. In non-VIM-DBS group, sham- active-tACS also decreased clinical scores. These data support the safety and potential efficacy of high-frequency cerebellar-tACS to reduce ET amplitude and severity.
Collapse
Affiliation(s)
- Claire Olivier
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France
| | - Jean-Charles Lamy
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France
- Department of Neurology, AP-HP, Hôpital Salpetriere, DMU Neuroscience 6, Paris, France
| | - Zuzana Kosutzka
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- Department of Neurology, AP-HP, Hôpital Salpetriere, DMU Neuroscience 6, Paris, France
| | - Angèle Van Hamme
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France
| | - Saoussen Cherif
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
| | - Brian Lau
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
| | - Marie Vidailhet
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- Department of Neurology, AP-HP, Hôpital Salpetriere, DMU Neuroscience 6, Paris, France
| | - Carine Karachi
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- Department of Neurosurgery, AP-HP, Hôpital Salpetriere, Paris, France
| | - Marie-Laure Welter
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France.
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France.
- Clinical Investigation Center, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France.
- Department of Neurophysiology, Rouen University Hospital, University of Rouen, Rouen, France.
| |
Collapse
|
14
|
Lv Y, Wang M, Yang J, Shi J, Xuan T, Zhang J, Du D, Cheng J, Li H. Cerebellar repetitive transcranial magnetic stimulation versus propranolol for essential tremor. Brain Behav 2023; 13:e2926. [PMID: 36806734 PMCID: PMC10013940 DOI: 10.1002/brb3.2926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Propranolol, a nonselective beta-adrenergic blocker, has long been used as one of the standard treatments for essential tremor (ET). Repetitive transcranial magnetic stimulation (rTMS) has also been used for a long time as a substitution therapy for ET patients. OBJECTIVE The main aim of this study was to evaluate the antitremor effect of 1-Hz (low-frequency) cerebellar rTMS and compare it to the use of propranolol in ET patients. METHODS In this single-blinded, randomized, controlled pilot study, a total of 38 patients with ET were randomized into two groups. One group (n = 20) received 1200 pulses of 1-Hz rTMS at an intensity of 90% of the resting motor threshold to the bilateral cerebellar region for 10 days. Another group (n = 18) received oral propranolol for 30 days. The initial dose was 30 mg/day, which was increased to 60 mg/day after 5 days, then to 90 mg/day on the 11th day, and continued thereafter for 20 days. The Fahn-Tolosa-Marin (FTM) clinical scale was assessed at baseline and at days 5, 10, and 30 to evaluate tremor severity, specific motor tasks, and functional disability. RESULTS Low-frequency rTMS of the cerebellum significantly improved tremor severity, specific motor tasks (writing, spiral drawing, and pouring), and FTM total scores on days 10 and 30. Nevertheless, we found no significant difference in functional disability at any point in time (p > .05). There were no statistically significant differences in FTM Part A, Part B, Part C scores and total scores of patients in propranolol group on days 5 and 10 compared with before treatment (p > .05). However, FTM total scores and FTM Part A, Part B, and Part C scores were significantly improved for patients when the dose of propranolol was 90 mg/day on day 30. Our study showed that there was no statistically significant difference in the total FTM scores and FTM Part A, Part B, and Part C scores between rTMS and propranolol on days 5, 10, and 30 (p > .05). CONCLUSION We conclude that both cerebellar low-frequency rTMS and propranolol could be effective treatment options for patients with ET, but it is not clear which method is more effective.
Collapse
Affiliation(s)
- Yue Lv
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Mengran Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Juan Yang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin Shi
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Tingting Xuan
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Junmei Zhang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Dandan Du
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Haining Li
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
15
|
Kato S, Maesawa S, Bagarinao E, Nakatsubo D, Tsugawa T, Mizuno S, Kawabata K, Tsuboi T, Suzuki M, Shibata M, Takai S, Ishizaki T, Torii J, Mutoh M, Saito R, Wakabayashi T, Katsuno M, Ozaki N, Watanabe H, Sobue G. Magnetic resonance-guided focused ultrasound thalamotomy restored distinctive resting-state networks in patients with essential tremor. J Neurosurg 2023; 138:306-317. [PMID: 35901706 DOI: 10.3171/2022.5.jns22411] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy ameliorates symptoms in patients with essential tremor (ET). How this treatment affects canonical brain networks has not been elucidated. The purpose of this study was to clarify changes of brain networks after MRgFUS thalamotomy in ET patients by analyzing resting-state networks (RSNs). METHODS Fifteen patients with ET were included in this study. Left MRgFUS thalamotomy was performed in all cases, and MR images, including resting-state functional MRI (rsfMRI), were taken before and after surgery. MR images of 15 age- and sex-matched healthy controls (HCs) were also used for analysis. Using rsfMRI data, canonical RSNs were extracted by performing dual regression analysis, and the functional connectivity (FC) within respective networks was compared among pre-MRgFUS patients, post-MRgFUS patients, and HCs. The severity of tremor was evaluated using the Clinical Rating Scale for Tremor (CRST) score pre- and postoperatively, and its correlation with RSNs was examined. RESULTS Preoperatively, ET patients showed a significant decrease in FC in the sensorimotor network (SMN), primary visual network (VN), and visuospatial network (VSN) compared with HCs. The decrease in FC in the SMN correlated with the severity of tremor. After MRgFUS thalamotomy, ET patients still exhibited a significant decrease in FC in a small area of the SMN, but they exhibited an increase in the cerebellar network (CN). In comparison between pre- and post-MRgFUS patients, the FC in the SMN and the VSN significantly increased after treatment. Quantitative evaluation of the FCs in these three groups showed that the SMN and VSN increased postoperatively and demonstrated a trend toward those of HCs. CONCLUSIONS The SMN and CN, which are considered to be associated with the cerebello-thalamo-cortical loop, exhibited increased connectivity after MRgFUS thalamotomy. In addition, the FC of the visual network, which declined in ET patients compared with HCs, tended to normalize postoperatively. This could be related to the hypothesis that visual feedback is involved in tremor severity in ET patients. Overall, the analysis of the RSNs by rsfMRI reflected the pathophysiology with the intervention of MRgFUS thalamotomy in ET patients and demonstrated a possibility of a biomarker for successful treatment.
Collapse
Affiliation(s)
- Sachiko Kato
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya.,2Focused Ultrasound Therapy Center, Nagoya Kyoritsu Hospital, Nakagawa, Nagoya
| | - Satoshi Maesawa
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya.,3Brain and Mind Research Center, Nagoya University, Showa, Nagoya
| | | | - Daisuke Nakatsubo
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya.,2Focused Ultrasound Therapy Center, Nagoya Kyoritsu Hospital, Nakagawa, Nagoya
| | - Takahiko Tsugawa
- 2Focused Ultrasound Therapy Center, Nagoya Kyoritsu Hospital, Nakagawa, Nagoya
| | - Satomi Mizuno
- 4Department of Rehabilitation, National Hospital Organization, Nagoya Medical Center, Naka, Nagoya
| | - Kazuya Kawabata
- 5Department of Neurology, Nagoya University Graduate School of Medicine, Showa, Nagoya
| | - Takashi Tsuboi
- 5Department of Neurology, Nagoya University Graduate School of Medicine, Showa, Nagoya
| | - Masashi Suzuki
- 5Department of Neurology, Nagoya University Graduate School of Medicine, Showa, Nagoya
| | - Masashi Shibata
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Sou Takai
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Tomotaka Ishizaki
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Jun Torii
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Manabu Mutoh
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Ryuta Saito
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | | | - Masahisa Katsuno
- 5Department of Neurology, Nagoya University Graduate School of Medicine, Showa, Nagoya
| | - Norio Ozaki
- 3Brain and Mind Research Center, Nagoya University, Showa, Nagoya.,6Department of Psychiatry, Nagoya University Graduate School of Medicine, Showa, Nagoya; and
| | - Hirohisa Watanabe
- 3Brain and Mind Research Center, Nagoya University, Showa, Nagoya.,7Department of Neurology, Fujita Medical University, Kutsukake, Toyoake; and
| | - Gen Sobue
- 3Brain and Mind Research Center, Nagoya University, Showa, Nagoya.,8Aichi Medical University, Karimata, Nagakute, Aichi, Japan
| |
Collapse
|
16
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
Affiliation(s)
- Ramesh S Marapin
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Harm J van der Horn
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - A M Madelein van der Stouwe
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jelle R Dalenberg
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Bauke M de Jong
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Marina A J Tijssen
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
17
|
Xia Y, Tang X, Hu R, Liu J, Zhang Q, Tian S, Wang W, Li C, Zhu Y. Cerebellum-Cerebrum paired target magnetic stimulation on balance function and brain network of patients with stroke: A functional near-infrared spectroscopy pilot study. Front Neurol 2022; 13:1071328. [PMID: 36619935 PMCID: PMC9813387 DOI: 10.3389/fneur.2022.1071328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) modulation over the cerebellum, primary motor cortex, and supplementary motor cortex individually can improve the balance function of patients with stroke. However, whether their combination could have a better balance modulation effect is uncertain. Therefore, we hypothesized that performing TMS over a combination of these targets can regulate the balance function of patients with stroke. We compared the effects of one-session TMS on eye-open and eye-closed balance conditions in patients with stroke, using different target pairs of unilateral cerebellar (CB-single), cerebellar-primary motor cortex (CB-M1), and cerebellar-supplementary motor area (CB-SMA) targets. A total of 31 patients with stroke were enrolled and randomly divided into three groups to receive single sessions of intermittent theta burst stimulation each. Functional near-infrared spectrum data on resting and standing task states (eye-open and eye-closed) and center of pressure parameters (eye-open and eye-closed) were collected before and after the intervention. Compared with the results in the CB-single group, five intergroup differences in the changes in the center of pressure parameters in the CB-M1 group and two significant differences in the CB-SMA group were observed after one session of intermittent theta burst stimulation. In the CB-SMA group, 12 out of the 14 parameters improved significantly in the EC condition after the intervention. Meanwhile, the functional near-infrared spectrum results showed that the CB-SMA group exhibited a significant inhibitory pattern in the resting-state functional connectivity, which was not observed in the other two groups. In conclusion, we believe that paired targeting of the CB-SMA can reshape the brain network and improve the balance function of patients with stroke.
Collapse
|
18
|
Abram SV, Hua JPY, Ford JM. Consider the pons: bridging the gap on sensory prediction abnormalities in schizophrenia. Trends Neurosci 2022; 45:798-808. [PMID: 36123224 PMCID: PMC9588719 DOI: 10.1016/j.tins.2022.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
A shared mechanism across species heralds the arrival of self-generated sensations, helping the brain to anticipate, and therefore distinguish, self-generated from externally generated sensations. In mammals, this sensory prediction mechanism is supported by communication within a cortico-ponto-cerebellar-thalamo-cortical loop. Schizophrenia is associated with impaired sensory prediction as well as abnormal structural and functional connections between nodes in this circuit. Despite the pons' principal role in relaying and processing sensory information passed from the cortex to cerebellum, few studies have examined pons connectivity in schizophrenia. Here, we first briefly describe how the pons contributes to sensory prediction. We then summarize schizophrenia-related abnormalities in the cortico-ponto-cerebellar-thalamo-cortical loop, emphasizing the dearth of research on the pons relative to thalamic and cerebellar connections. We conclude with recommendations for advancing our understanding of how the pons relates to sensory prediction failures in schizophrenia.
Collapse
Affiliation(s)
- Samantha V Abram
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Jessica P Y Hua
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, The University of California, San Francisco, CA, USA
| | - Judith M Ford
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA.
| |
Collapse
|
19
|
Khatoun A, Asamoah B, Boogers A, Mc Laughlin M. Epicranial Direct Current Stimulation Suppresses Harmaline Tremor in Rats. Neuromodulation 2022:S1094-7159(22)01223-5. [DOI: 10.1016/j.neurom.2022.08.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
|
20
|
Ponce GV, Klaus J, Schutter DJLG. A Brief History of Cerebellar Neurostimulation. CEREBELLUM (LONDON, ENGLAND) 2022; 21:715-730. [PMID: 34403075 PMCID: PMC9325826 DOI: 10.1007/s12311-021-01310-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/28/2022]
Abstract
The first attempts at using electric stimulation to study human brain functions followed the experiments of Luigi Galvani and Giovanni Aldini on animal electricity during the eighteenth century. Since then, the cerebellum has been among the areas that have been studied by invasive and non-invasive forms of electrical and magnetic stimulation. During the nineteenth century, animal experiments were conducted to map the motor-related regions of cerebellar cortex by means of direct electric stimulation. As electric stimulation research on the cerebellum moved into the twentieth century, systematic research of electric cerebellar stimulation led to a better understanding of its effects and mechanism of action. In addition, the clinical potential of cerebellar stimulation in the treatment of motor diseases started to be explored. With the introduction of transcranial electric and magnetic stimulation, cerebellar research moved to non-invasive techniques. During the twenty-first century, following on groundbreaking research that linked the cerebellum to non-motor functions, non-invasive techniques have facilitated research into different aspects of cerebellar functioning. The present review provides a brief historical account of cerebellar neurostimulation and discusses current challenges and future direction in this field of research.
Collapse
Affiliation(s)
- Gustavo V Ponce
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Aceves-Serrano L, Neva JL, Doudet DJ. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review. Front Neurosci 2022; 16:787403. [PMID: 35264923 PMCID: PMC8899094 DOI: 10.3389/fnins.2022.787403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a therapeutic tool to alleviate symptoms for neurological and psychiatric diseases such as chronic pain, stroke, Parkinson’s disease, major depressive disorder, and others. Although the therapeutic potential of rTMS has been widely explored, the neurological basis of its effects is still not fully understood. Fortunately, the continuous development of imaging techniques has advanced our understanding of rTMS neurobiological underpinnings on the healthy and diseased brain. The objective of the current work is to summarize relevant findings from positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques evaluating rTMS effects. We included studies that investigated the modulation of neurotransmission (evaluated with PET and magnetic resonance spectroscopy), brain activity (evaluated with PET), resting-state connectivity (evaluated with resting-state functional MRI), and microstructure (diffusion tensor imaging). Overall, results from imaging studies suggest that the effects of rTMS are complex and involve multiple neurotransmission systems, regions, and networks. The effects of stimulation seem to not only be dependent in the frequency used, but also in the participants characteristics such as disease progression. In patient populations, pre-stimulation evaluation was reported to predict responsiveness to stimulation, while post-stimulation neuroimaging measurements showed to be correlated with symptomatic improvement. These studies demonstrate the complexity of rTMS effects and highlight the relevance of imaging techniques.
Collapse
Affiliation(s)
- Lucero Aceves-Serrano
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Lucero Aceves-Serrano,
| | - Jason L. Neva
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Doris J. Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Gironell A. Is essential tremor a disorder of primary GABA dysfunction? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:259-284. [PMID: 35750365 PMCID: PMC9446196 DOI: 10.1016/bs.irn.2022.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dysfunction in gamma-aminobutyric acid (GABA) neurotransmission has emerged as a prime suspect for the underlying neurochemical dysfunction in essential tremor (ET). This dysfunction has been termed the GABA hypothesis. We review findings to date supporting the 4 steps in this hypothesis in studies of cerebrospinal fluid, pathology, genetics, animal models, imaging, computational models, and human drugs, while not overlooking the evidence of negative studies and controversies. It remains to be elucidated whether reduced GABAergic tone is a primary contributing factor to ET pathophysiology, a consequence of altered Purkinje cell function, or even a result of Purkinje cell death. More studies are clearly needed to confirm both the neurodegenerative nature of ET and the reduction in GABA activity in the cerebellum. Also necessary is to test further therapies to enhance GABA transmission specifically focused on the cerebellar area.
Collapse
Affiliation(s)
- Alexandre Gironell
- Movement Disorders Unit, Department of Neurology, Sant Pau Hospital, Autonomous University of Barcelona, Catalonia, Spain.
| |
Collapse
|
23
|
Kosmowska B, Wardas J. The Pathophysiology and Treatment of Essential Tremor: The Role of Adenosine and Dopamine Receptors in Animal Models. Biomolecules 2021; 11:1813. [PMID: 34944457 PMCID: PMC8698799 DOI: 10.3390/biom11121813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Essential tremor (ET) is one of the most common neurological disorders that often affects people in the prime of their lives, leading to a significant reduction in their quality of life, gradually making them unable to independently perform the simplest activities. Here we show that current ET pharmacotherapy often does not sufficiently alleviate disease symptoms and is completely ineffective in more than 30% of patients. At present, deep brain stimulation of the motor thalamus is the most effective ET treatment. However, like any brain surgery, it can cause many undesirable side effects; thus, it is only performed in patients with an advanced disease who are not responsive to drugs. Therefore, it seems extremely important to look for new strategies for treating ET. The purpose of this review is to summarize the current knowledge on the pathomechanism of ET based on studies in animal models of the disease, as well as to present and discuss the results of research available to date on various substances affecting dopamine (mainly D3) or adenosine A1 receptors, which, due to their ability to modulate harmaline-induced tremor, may provide the basis for the development of new potential therapies for ET in the future.
Collapse
Affiliation(s)
| | - Jadwiga Wardas
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Kraków, Poland;
| |
Collapse
|
24
|
Batra D, Kamble N, Bhattacharya A, Sahoo L, Yadav R, Pal PK. Modulatory effect of continuous theta burst stimulation in patients with essential tremor. Parkinsonism Relat Disord 2021; 94:62-66. [PMID: 34890877 DOI: 10.1016/j.parkreldis.2021.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION We aimed to study the cortical and intracortical functions in patients of ET using transcranial magnetic stimulation (TMS) and to evaluate the effect of continuous theta burst stimulation (cTBS) on the tremor characteristics. METHODS Ten ET and 20 healthy controls were included in the study. All the participants were evaluated with TMS with recording of resting motor threshold (RMT), central motor conduction time, contralateral silent period (cSP), short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Subsequently only ET patients underwent cTBS of the motor cortex (M1) followed by repeat TMS. RESULTS The mean age of the patients (46.5 ± 17.2 years) was comparable to healthy controls (55.4 ± 9.2 years; p = 0.16). There was a non-significant increase in RMT in ET patients (44 ± 12.5%) when compared to healthy controls (40.9 ± 6.9%; p = 0.48). There was a significant reduction of cSP in the ET group (102.03 ± 15.26 msec) compared to healthy controls (116.1 ± 15.2, p = 0.03). In addition, a significant reduction in ICF was observed in ET patients (0.9 ± 0.7) compared to healthy controls (1.8 ± 0.8, p = 0.01). Following cTBS there was a significant reduction in the tremor scores [FTMRS (Pre-cTBS: 29.3 ± 18.7, Post-cTBS: 25.3 ± 16.8; p < 0.001) and TETRAS (pre-cTBS: 34.4 ± 16.2, post-cTBS: 29.8 ± 12.1; p = 0.01)] and improvement (increase) of the duration of cSP (pre-cTBS: 102.03 ± 15.3 msec., post-cTBS: 119.4 ± 12.03 msec; p = 0.05). CONCLUSIONS Patients with ET have GABAergic and glutaminergic dysfunction as demonstrated by reduced cSP and ICF. However, only the cSP improved following cTBS of M1 region, with a corresponding improvement of tremor severity suggesting the effect of cTBS on the cerebello-thalamo-cortical network.
Collapse
Affiliation(s)
- Dhruv Batra
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Lulup Sahoo
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
25
|
Pateraki G, Anargyros K, Aloizou AM, Siokas V, Bakirtzis C, Liampas I, Tsouris Z, Ziogka P, Sgantzos M, Folia V, Peristeri E, Dardiotis E. Therapeutic application of rTMS in neurodegenerative and movement disorders: A review. J Electromyogr Kinesiol 2021; 62:102622. [PMID: 34890834 DOI: 10.1016/j.jelekin.2021.102622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive form of brain stimulation that makes use of the magnetic field generated when an electric current passes through a magnetic coil placed over the scalp. It can be applied as a single stimulus at a time, in pairs of stimuli, or repetitively in trains of stimuli (repetitive TMS, rTMS). RTMS can induce changes in brain activity, whose after-effects reflect the processes of long-term potentiation and long-term depression, as certain protocols, namely those using low frequencies (≤1 Hz) seem to suppress cortical excitability, while those using high frequencies (>1 Hz) seem to enhance it. It is a technique with very few and mostly mild side-effects, whose effects can persist for long time periods, and as such, it has been studied as a potential treatment option in a multitude of neurodegenerative diseases, including those affecting movement. Although rTMS has received approval as a treatment strategy of only a few aspects in movement disorders in the latest guidelines, its further use seems to also be promising in their context. In this review, we gathered the available literature on the therapeutic application of rTMS in movement disorders, namely Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Dystonia, Tic disorders and Essential Tremor.
Collapse
Affiliation(s)
- Georgia Pateraki
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos Anargyros
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Pinelopi Ziogka
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Markos Sgantzos
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Vasiliki Folia
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
26
|
Chen Y, Wei QC, Zhang MZ, Xie YJ, Liao LY, Tan HX, Guo QF, Gao Q. Cerebellar Intermittent Theta-Burst Stimulation Reduces Upper Limb Spasticity After Subacute Stroke: A Randomized Controlled Trial. Front Neural Circuits 2021; 15:655502. [PMID: 34776874 PMCID: PMC8578104 DOI: 10.3389/fncir.2021.655502] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: This study aims to explore the efficacy of cerebellar intermittent theta-burst stimulation (iTBS) on upper limb spasticity in subacute stroke patients. Methods: A total of 32 patients with upper limb spasticity were enrolled and randomly assigned to treatment with cerebellar iTBS or sham stimulation before conventional physical therapy daily for 2 weeks. The primary outcomes included the modified Ashworth scale (MAS), the modified Tardieu scale (MTS), and the shear wave velocity (SWV). The secondary outcomes were the H-maximum wave/M-maximum wave amplitude ratio (Hmax/Mmax ratio), motor-evoked potential (MEP) latency and amplitude, central motor conduction time (CMCT), and the Barthel Index (BI). All outcomes were evaluated at baseline and after 10 sessions of intervention. Results: After the intervention, both groups showed significant improvements in the MAS, MTS, SWV, and BI. In addition, patients treated with cerebellar iTBS had a significant increase in MEP amplitude, and patients treated with sham stimulation had a significant decrease in Hmax/Mmax ratio. Compared with the sham stimulation group, the MAS, MTS, and SWV decreased more in the cerebellar iTBS group. Conclusion: Cerebellar iTBS is a promising adjuvant tool to reinforce the therapeutic effect of conventional physical therapy in upper limb spasticity management after subacute stroke (Chinese Clinical Trial Registry: ChiCTR1900026516).
Collapse
Affiliation(s)
- Yi Chen
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Qing-Chuan Wei
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Ming-Zhi Zhang
- Department of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Juan Xie
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China.,Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hui-Xin Tan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Qi-Fan Guo
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| |
Collapse
|
27
|
Abstract
Essential tremor (ET) is one of the most common movement disorders, with a reported >60 million affected individuals worldwide. The definition and underlying pathophysiology of ET are contentious. Patients present primarily with motor features such as postural and action tremors, but may also have other non-motor features, including cognitive impairment and neuropsychiatric symptoms. Genetics account for most of the ET risk but environmental factors may also be involved. However, the variable penetrance and challenges in validating data make gene-environment analysis difficult. Structural changes in cerebellar Purkinje cells and neighbouring neuronal populations have been observed in post-mortem studies, and other studies have found GABAergic dysfunction and dysregulation of the cerebellar-thalamic-cortical circuitry. Commonly prescribed medications include propranolol and primidone. Deep brain stimulation and ultrasound thalamotomy are surgical options in patients with medically intractable ET. Further research in post-mortem studies, and animal and cell-based models may help identify new pathophysiological clues and therapeutic targets and, together with advances in omics and machine learning, may facilitate the development of precision medicine for patients with ET.
Collapse
|
28
|
Frey J, Hess CW, Kugler L, Wajid M, Wagle Shukla A. Transcranial Magnetic Stimulation in Tremor Syndromes: Pathophysiologic Insights and Therapeutic Role. Front Neurol 2021; 12:700026. [PMID: 34512517 PMCID: PMC8426899 DOI: 10.3389/fneur.2021.700026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a painless, non-invasive, and established brain stimulation technique to investigate human brain function. Over the last three decades, TMS has shed insight into the pathophysiology of many neurological disorders. Tremor is an involuntary, rhythmic oscillatory movement disorder commonly related to pathological oscillations propagated via the cerebello-thalamo-cortical pathway. Although tremor is the most common movement disorder and recent imaging studies have enhanced our understanding of the critical pathogenic networks, the underlying pathophysiology of different tremor syndromes is complex and still not fully understood. TMS has been used as a tool to further our understanding of tremor pathophysiology. In addition, repetitive TMS (rTMS) that can modulate brain functions through plasticity effects has been targeted to the tremor network to gain potential therapeutic benefits. However, evidence is available for only a few studies that included small patient samples with limited clinical follow-up. This review aims to discuss the role of TMS in advancing the pathophysiological understanding as well as emerging applications of rTMS for treating individual tremor syndromes. The review will focus on essential tremor, Parkinson's disease tremor, dystonic tremor syndrome, orthostatic tremor, and functional tremor.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Christopher W Hess
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Liam Kugler
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Manahil Wajid
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
29
|
Godeiro C, França C, Carra RB, Saba F, Saba R, Maia D, Brandão P, Allam N, Rieder CRM, Freitas FC, Capato T, Spitz M, Faria DDD, Cordellini M, Veiga BAAG, Rocha MSG, Maciel R, Melo LBD, Möller PDS, R R Júnior M, Fornari LHT, Mantese CE, Barbosa ER, Munhoz RP, Coletta MVD, Cury RG. Use of non-invasive stimulation in movement disorders: a critical review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:630-646. [PMID: 34468499 DOI: 10.1590/0004-282x-anp-2020-0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noninvasive stimulation has been widely used in the past 30 years to study and treat a large number of neurological diseases, including movement disorders. OBJECTIVE In this critical review, we illustrate the rationale for use of these techniques in movement disorders and summarize the best medical evidence based on the main clinical trials performed to date. METHODS A nationally representative group of experts performed a comprehensive review of the literature in order to analyze the key clinical decision-making factors driving transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in movement disorders. Classes of evidence and recommendations were described for each disease. RESULTS Despite unavoidable heterogeneities and low effect size, TMS is likely to be effective for treating motor symptoms and depression in Parkinson's disease (PD). The efficacy in other movement disorders is unclear. TMS is possibly effective for focal hand dystonia, essential tremor and cerebellar ataxia. Additionally, it is likely to be ineffective in reducing tics in Tourette syndrome. Lastly, tDCS is likely to be effective in improving gait in PD. CONCLUSIONS There is encouraging evidence for the use of noninvasive stimulation on a subset of symptoms in selected movement disorders, although the means to optimize protocols for improving positive outcomes in routine clinical practice remain undetermined. Similarly, the best stimulation paradigms and responder profile need to be investigated in large clinical trials with established therapeutic and assessment paradigms that could also allow genuine long-term benefits to be determined.
Collapse
Affiliation(s)
- Clecio Godeiro
- Universidade Federal do Rio Grande do Norte, Departamento de Medicina Integrada, Natal RN, Brazil
| | - Carina França
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Rafael Bernhart Carra
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Felipe Saba
- Universidade Estadual de Campinas, São Paulo SP, Brazil
| | - Roberta Saba
- Hospital do Servidor Público Estadual, São Paulo SP, Brazil.,Universidade Federal de São Paulo, São Paulo SP, Brazil
| | - Débora Maia
- Universidade Federal de Minas Gerais, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Belo Horizonte MG, Brazil
| | - Pedro Brandão
- Universidade de Brasília, Laboratório de Neurociências e Comportamento, Brasília DF, Brazil
| | - Nasser Allam
- Universidade de Brasília, Laboratório de Neurociências e Comportamento, Brasília DF, Brazil
| | - Carlos R M Rieder
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre RS, Brazil
| | | | - Tamine Capato
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Nijmegen, Netherlands
| | - Mariana Spitz
- Universidade do Estado do Rio de Janeiro, Unidade de Distúrbios do Movimento, Rio de Janeiro RJ, Brazil
| | - Danilo Donizete de Faria
- Hospital do Servidor Público Estadual, São Paulo SP, Brazil.,Universidade Federal de São Paulo, São Paulo SP, Brazil
| | | | | | - Maria Sheila G Rocha
- Hospital Santa Marcelina, Departamento de Neurologia e Neurocirurgia Funcional, São Paulo SP, Brazil
| | - Ricardo Maciel
- Universidade Federal de Minas Gerais, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Belo Horizonte MG, Brazil
| | - Lucio B De Melo
- Universidade Estadual de Londrina, Serviço de Neurologia, Londrina PR, Brazil
| | - Patricia D S Möller
- Hospital da Criança de Brasília José Alencar, Unidade Pediátrica de Distúrbios do Movimento, Brasília DF, Brazil
| | - Magno R R Júnior
- Universidade Federal do Maranhão, Hospital Universitário, São Luís MA, Brazil
| | - Luís H T Fornari
- Santa Casa de Misericórdia de Porto Alegre, Departamento de Neurologia, Porto Alegre RS, Brazil
| | - Carlos E Mantese
- Hospital Mãe de Deus, Serviço de Neurologia, Porto Alegre RS, Brazil
| | - Egberto Reis Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Renato P Munhoz
- University of Toronto, Toronto Western Hospital - UHN, Division of Neurology, Morton and Gloria Shulman Movement Disorders Centre and Edmond J. Safra Program in Parkinson's Disease, Toronto ON, Canada.,Krembil Brain Institute, Toronto ON, Canada
| | | | - Rubens Gisbert Cury
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| |
Collapse
|
30
|
Novaes NP, Balardin JB, Hirata FC, Melo L, Amaro E, Barbosa ER, Sato JR, Cardoso EF. Global efficiency of the motor network is decreased in Parkinson's disease in comparison with essential tremor and healthy controls. Brain Behav 2021; 11:e02178. [PMID: 34302446 PMCID: PMC8413813 DOI: 10.1002/brb3.2178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/19/2021] [Accepted: 04/17/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Graph theory (GT) is a mathematical field that analyses complex networks that can be applied to neuroimaging to quantify brain's functional systems in Parkinson's disease (PD) and essential tremor (ET). OBJECTIVES To evaluate the functional connectivity (FC) measured by the global efficiency (GE) of the motor network in PD and compare it to ET and healthy controls (HC), and correlate it to clinical parameters. METHODS 103 subjects (54PD, 18ET, 31HC) were submitted to structural and functional MRI. A network was designed with regions of interest (ROIs) involved in motor function, and GT was applied to determine its GE. Clinical parameters were analyzed as covariates to estimate the impact of disease severity and medication on GE. RESULTS GE of the motor circuit was reduced in PD in comparison with HC (p .042). Areas that most contributed to it were left supplementary motor area (SMA) and bilateral postcentral gyrus. Tremor scores correlated positively with GE of the motor network in PD subgroups. For ET, there was an increase in the connectivity of the anterior cerebellar network to the other ROIs of the motor circuit in comparison with PD. CONCLUSIONS FC measured by the GE of the motor network is diminished in PD in comparison with HC, especially due to decreased connectivity of left SMA and bilateral postcentral gyrus. This finding supports the theory that there is a global impairment of the motor network in PD, and it does not affect just the basal ganglia, but also areas associated with movement modulation. The ET group presented an increased connectivity of the anterior cerebellar network to the other ROIs of the motor circuit when compared to PD, which reinforces what it is known about its role in this pathology.
Collapse
Affiliation(s)
- Natalia Pelizari Novaes
- Neurology, Universidade de São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil.,Radiology, Universidade de São Paulo, São Paulo, Brazil.,Hôpital du Valais, Sion, Switzerland
| | | | - Fabiana Campos Hirata
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Radiology, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano Melo
- Neurology, Universidade de São Paulo, São Paulo, Brazil
| | - Edson Amaro
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Radiology, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Ellison Fernando Cardoso
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Radiology, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Abbasi A, Danielsen NP, Leung J, Muhammad AKMG, Patel S, Gulati T. Epidural cerebellar stimulation drives widespread neural synchrony in the intact and stroke perilesional cortex. J Neuroeng Rehabil 2021; 18:89. [PMID: 34039346 PMCID: PMC8157634 DOI: 10.1186/s12984-021-00881-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebellar electrical stimulation has shown promise in improving motor recovery post-stroke in both rodent and human studies. Past studies have used motor evoked potentials (MEPs) to evaluate how cerebellar stimulation modulates ongoing activity in the cortex, but the underlying mechanisms are incompletely understood. Here we used invasive electrophysiological recordings from the intact and stroke-injured rodent primary motor cortex (M1) to assess how epidural cerebellar stimulation modulates neural dynamics at the level of single neurons as well as at the level of mesoscale dynamics. METHODS We recorded single unit spiking and local field potentials (LFPs) in both the intact and acutely stroke-injured M1 contralateral to the stimulated cerebellum in adult Long-Evans rats under anesthesia. We analyzed changes in the firing rates of single units, the extent of synchronous spiking and power spectral density (PSD) changes in LFPs during and post-stimulation. RESULTS Our results show that post-stimulation, the firing rates of a majority of M1 neurons changed significantly with respect to their baseline rates. These firing rate changes were diverse in character, as the firing rate of some neurons increased while others decreased. Additionally, these changes started to set in during stimulation. Furthermore, cross-correlation analysis showed a significant increase in coincident firing amongst neuronal pairs. Interestingly, this increase in synchrony was unrelated to the direction of firing rate change. We also found that neuronal ensembles derived through principal component analysis were more active post-stimulation. Lastly, these changes occurred without a significant change in the overall spectral power of LFPs post-stimulation. CONCLUSIONS Our results show that cerebellar stimulation caused significant, long-lasting changes in the activity patterns of M1 neurons by altering firing rates, boosting neural synchrony and increasing neuronal assemblies' activation strength. Our study provides evidence that cerebellar stimulation can directly modulate cortical dynamics. Since these results are present in the perilesional cortex, our data might also help explain the facilitatory effects of cerebellar stimulation post-stroke.
Collapse
Affiliation(s)
- Aamir Abbasi
- Center for Neural Science and Medicine, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nathan P Danielsen
- Center for Neural Science and Medicine, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer Leung
- PhD Program in Biomedical Sciences, Graduate School of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - A K M G Muhammad
- Center for Neural Science and Medicine, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saahil Patel
- Center for Neural Science and Medicine, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tanuj Gulati
- Center for Neural Science and Medicine, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA. .,Department of Bioengineering, Henri Samueli School of Engineering, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Shukla S, Thirugnanasambandam N. Tapping the Potential of Multimodal Non-invasive Brain Stimulation to Elucidate the Pathophysiology of Movement Disorders. Front Hum Neurosci 2021; 15:661396. [PMID: 34054449 PMCID: PMC8149895 DOI: 10.3389/fnhum.2021.661396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
This mini-review provides a detailed outline of studies that have used multimodal approaches in non-invasive brain stimulation to investigate the pathophysiology of the three common movement disorders, namely, essential tremor, Parkinson’s disease, and dystonia. Using specific search terms and filters in the PubMed® database, we finally shortlisted 27 studies in total that were relevant to this review. While two-thirds (Brittain et al., 2013) of these studies were performed on Parkinson’s disease patients, we could find only three studies that were conducted in patients with essential tremor. We clearly show that although multimodal non-invasive brain stimulation holds immense potential in unraveling the physiological mechanisms that are disrupted in movement disorders, the technical challenges and pitfalls of combining these methods may hinder their widespread application by movement disorder specialists. A multidisciplinary team with clinical and technical expertise may be crucial in reaping the fullest benefits from such novel multimodal approaches.
Collapse
Affiliation(s)
- Sakshi Shukla
- National Brain Research Centre (NBRC), Manesar, India
| | | |
Collapse
|
33
|
Lan H, Suo X, Li W, Li N, Li J, Peng J, Lei D, Sweeney JA, Kemp GJ, Peng R, Gong Q. Abnormalities of intrinsic brain activity in essential tremor: A meta-analysis of resting-state functional imaging. Hum Brain Mapp 2021; 42:3156-3167. [PMID: 33769638 PMCID: PMC8193520 DOI: 10.1002/hbm.25425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroimaging studies using a variety of techniques have demonstrated abnormal patterns of spontaneous brain activity in patients with essential tremor (ET). However, the findings are variable and inconsistent, hindering understanding of underlying neuropathology. We conducted a meta‐analysis of whole‐brain resting‐state functional neuroimaging studies in ET compared to healthy controls (HC), using anisotropic effect‐size seed‐based d mapping, to identify the most consistent brain activity alterations and their relation to clinical features. After systematic literature search, we included 13 studies reporting 14 comparisons, describing 286 ET patients and 254 HC. Subgroup analyses were conducted considering medication status, head tremor status, and methodological factors. Brain activity in ET is altered not only in the cerebellum and cerebral motor cortex, but also in nonmotor cortical regions including prefrontal cortex and insula. Most of the results remained unchanged in subgroup analyses of patients with head tremor, medication‐naive patients, studies with statistical threshold correction, and the large subgroup of studies using functional magnetic resonance imaging. These findings not only show consistent and robust abnormalities in specific brain regions but also provide new information on the biology of patient heterogeneity, and thus help to elucidate the pathophysiology of ET.
Collapse
Affiliation(s)
- Huan Lan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Nannan Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junying Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiaxin Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rong Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Billeri L, Naro A. A narrative review on non-invasive stimulation of the cerebellum in neurological diseases. Neurol Sci 2021; 42:2191-2209. [PMID: 33759055 DOI: 10.1007/s10072-021-05187-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
IMPORTANCE The cerebellum plays an important role in motor, cognitive, and affective functions owing to its dense interconnections with basal ganglia and cerebral cortex. This review aimed at summarizing the non-invasive cerebellar stimulation (NICS) approaches used to modulate cerebellar output and treat cerebellar dysfunction in the motor domain. OBSERVATION The utility of NICS in the treatment of cerebellar and non-cerebellar neurological diseases (including Parkinson's disease, dementia, cerebellar ataxia, and stroke) is discussed. NICS induces meaningful clinical effects from repeated sessions alone in both cerebellar and non-cerebellar diseases. However, there are no conclusive data on this issue and several concerns need to be still addressed before NICS could be considered a valuable, standard therapeutic tool. CONCLUSIONS AND RELEVANCE Even though some challenges must be overcome to adopt NICS in a wider clinical setting, this tool might become a useful strategy to help patients with lesions in the cerebellum and cerebral areas that are connected with the cerebellum whether one could enhance cerebellar activity with the intention of facilitating the cerebellum and the entire, related network, rather than attempting to facilitate a partially damaged cortical region or inhibiting the homologs' contralateral area. The different outcome of each approach would depend on the residual functional reserve of the cerebellum, which is confirmed as a critical element to be probed preliminary in order to define the best patient-tailored NICS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy.
| |
Collapse
|
35
|
Little Brain, Big Expectations. Brain Sci 2020; 10:brainsci10120944. [PMID: 33297358 PMCID: PMC7762222 DOI: 10.3390/brainsci10120944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 01/17/2023] Open
Abstract
The cerebellum has been implicated in the mechanisms of several movement disorders. With the recent reports of successful modulation of its functioning, this highly connected structure has emerged as a promising way to provide symptomatic relief not yet obtained by usual treatments. Here we review the most relevant papers published to date, the limitations and gaps in literature, discuss why several papers have failed in showing efficacy, and present a new way of stimulating the cerebellum. References for this critique review were identified by searches on PubMed for the terms “Parkinson’s disease”, “ataxia”, “dystonia”, “tremor”, and “dyskinesias” in combination with the type of stimulation and the stimulation site. Studies conducted thus far have shed light on the potential of cerebellar neuromodulation for attenuating symptoms in patients with some forms of isolated and combined dystonia, dyskinesia in Parkinson’s disease, and neurodegenerative ataxia. However, there is still a high heterogeneity of results and uncertainty about the possibility of maintaining long-term benefits. Because of the complicated architecture of the cerebellum, the modulation techniques employed may have to focus on targeting the activity of the cerebellar nuclei rather than the cerebellar cortex. Measures of cerebellar activity may reduce the variability in outcomes.
Collapse
|
36
|
Ibrahim MF, Beevis JC, Empson RM. Essential Tremor - A Cerebellar Driven Disorder? Neuroscience 2020; 462:262-273. [PMID: 33212218 DOI: 10.1016/j.neuroscience.2020.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Abnormal tremors are the most common of all movement disorders. In this review we focus on the role of the cerebellum in Essential Tremor, a highly debilitating but poorly treated movement disorder. We propose a variety of mechanisms driving abnormal burst firing of deep cerebellar nuclei neurons as a key initiator of tremorgenesis in Essential Tremor. Targetting these mechanisms may generate more effective treatments for Essential Tremor.
Collapse
Affiliation(s)
- Mohamed Fasil Ibrahim
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand.
| | - Jessica C Beevis
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Ruth M Empson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
37
|
Handforth A, Lang EJ. Increased Purkinje Cell Complex Spike and Deep Cerebellar Nucleus Synchrony as a Potential Basis for Syndromic Essential Tremor. A Review and Synthesis of the Literature. THE CEREBELLUM 2020; 20:266-281. [PMID: 33048308 DOI: 10.1007/s12311-020-01197-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
We review advances in understanding Purkinje cell (PC) complex spike (CS) physiology that suggest increased CS synchrony underlies syndromic essential tremor (ET). We searched PubMed for papers describing factors that affect CS synchrony or cerebellar circuits potentially related to tremor. Inferior olivary (IO) neurons are electrically coupled, with the degree of coupling controlled by excitatory and GABAergic inputs. Clusters of coupled IO neurons synchronize CSs within parasagittal bands via climbing fibers (Cfs). When motor cortex is stimulated in rats at varying frequencies, whisker movement occurs at ~10 Hz, correlated with synchronous CSs, indicating that the IO/CS oscillatory rhythm gates movement frequency. Intra-IO injection of the GABAA receptor antagonist picrotoxin increases CS synchrony, increases whisker movement amplitude, and induces tremor. Harmaline and 5-HT2a receptor activation also increase IO coupling and CS synchrony and induce tremor. The hotfoot17 mouse displays features found in ET brains, including cerebellar GluRδ2 deficiency and abnormal PC Cf innervation, with IO- and PC-dependent cerebellar oscillations and tremor likely due to enhanced CS synchrony. Heightened coupling within the IO oscillator leads, through its dynamic control of CS synchrony, to increased movement amplitude and, when sufficiently intense, action tremor. Increased CS synchrony secondary to aberrant Cf innervation of multiple PCs likely also underlies hotfoot17 tremor. Deep cerebellar nucleus (DCN) hypersynchrony may occur secondary to increased CS synchrony but might also occur from PC axonal terminal sprouting during partial PC loss. Through these combined mechanisms, increased CS/DCN synchrony may plausibly underlie syndromic ET.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University, School of Medicine, New York, NY, USA
| |
Collapse
|
38
|
Qi S, Cao H, Wang R, Jian Z, Bian Y, Yang J. Relative increase in cerebellar gray matter in young onset essential tremor: Evidence from voxel-based morphometry analysis. J Clin Neurosci 2020; 79:251-256. [PMID: 33070906 DOI: 10.1016/j.jocn.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/02/2020] [Indexed: 02/01/2023]
Abstract
This study is to investigate the presence of brain gray matter abnormalities in young onset essential tremor (ET) patients with arm tremor. Thirty ET patients together with 30 healthy volunteers were taken as candidates. Magnetic resonance imaging (MRI) was performed and voxel-based morphometry was used to compare gray matter density between the patients and volunteers. Washington Heights-Inwood Genetic Study of Essential Tremor (WHIGET) rating scale was applied to assess tremor severity in the patients. Eventually Twenty-Seven ET patients and Twenty-Seven volunteers were enrolled in the study. Voxel-based morphometry showed significant expansion of the bilateral cerebellum, occipital fusiform cortices, right inferior temporal gyrus, and precentral lobes (P < 0.05, TFCE corrected). Decrease in gray matter was detected only in the left parietal lobe. Region of interest analysis showed volume enlargement in thalamus, midbrain, and precuneus (P < 0.05, TFCE corrected). Importantly, significant negative correlation was found between the lateralized index of cerebellum and the tremor score which might implicate that the altered rightward lateralization in the cerebellum is possibly a response of the tremor effects in ET patients. Cerebellar gray matter expansion in young onset ET patients with arm tremor might be the result of compensation towards decline of cerebellar function.
Collapse
Affiliation(s)
- Shun Qi
- Department of Radiology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, PR China; Center for Brain Science and Intelligence Technology, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Hongmei Cao
- Department of Neurology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Rong Wang
- Department of Radiology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zhijie Jian
- Department of Radiology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yitong Bian
- Department of Radiology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
39
|
Louis ED, Faust PL. Essential tremor: the most common form of cerebellar degeneration? CEREBELLUM & ATAXIAS 2020; 7:12. [PMID: 32922824 PMCID: PMC7427947 DOI: 10.1186/s40673-020-00121-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Background The degenerative cerebellar ataxias comprise a large and heterogeneous group of neurological diseases whose hallmark clinical feature is ataxia, and which are accompanied, to variable degrees, by other features that are attributable to cerebellar dysfunction. Essential tremor (ET) is an exceptionally common neurological disease whose primary motor feature is action tremor, although patients often manifest intention tremor, mild gait ataxia and several other features of cerebellar dysfunction. Main Body In this paper, we review the abundant evidence derived from clinical, neuroimaging and postmortem studies, linking ET to cerebellar dysfunction. Furthermore, we review the combination of clinical, natural history and postmortem features suggesting that ET is neurodegenerative. We then compare the prevalence of ET (400 – 900 cases per 100,000) to that of the other cerebellar degenerations (ranging from <0.5 – 9 cases per 100,000, and in composite likely to be on the order of 20 cases per 100,000) and conclude that ET is 20 to 45 times more prevalent than all other forms of cerebellar degeneration combined. Conclusion Given the data we present, it is logical to conclude that ET is, by far, the most common form of cerebellar degeneration.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology and Therapeutics, University of Texas Southwestern, Dallas, TX USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY USA
| |
Collapse
|
40
|
Altered spontaneous brain activity in essential tremor with and without resting tremor: a resting-state fMRI study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:201-212. [PMID: 32661843 DOI: 10.1007/s10334-020-00865-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Essential tremor with resting tremor (rET) often exhibits severer clinical features and more extensive functional impairment than essential tremor without resting tremor (ETwr). However, the pathophysiology of rET is still unclear. This study aims to use resting-state functional magnetic resonance imaging (rs-fMRI) to explore the alterations of brain activity between the drug-naïve patients of rET and ETwr. METHODS We recruited 19 patients with rET, 31 patients with ETwr and 25 healthy controls (HCs) to undergo a 3.0-T rs-fMRI examination. The differences of regional brain spontaneous activity between the rET, ETwr and HCs, as well as between total ET (rET + ETwr) and HCs were measured by amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). The relationships between the altered brain measurements and the clinical scores were analyzed. RESULTS Compared with HCs, both ET subgroups showed significantly decreased ALFF or fALFF values in the basal ganglia, inferior orbitofrontal gyrus and insula. The rET group specifically showed decreased ALFF values in the hippocampus and motor cortices, while the ETwr group specifically evidenced increased ALFF and fALFF values in the cerebellum. DISCUSSION Regional spontaneous activity in rET and ETwr share common changes and have differences, which may suggest that the functional activities in the limbic system and cerebellum are different between the two subtypes. Improved insights into rET and ETwr subtypes and the different brain spontaneous activity will be valuable for improving our understanding of the pathophysiology of the disease.
Collapse
|
41
|
Beynel L, Powers JP, Appelbaum LG. Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: A systematic review. Neuroimage 2020; 211:116596. [PMID: 32014552 PMCID: PMC7571509 DOI: 10.1016/j.neuroimage.2020.116596] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/17/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
The brain is organized into networks that reorganize dynamically in response to cognitive demands and exogenous stimuli. In recent years, repetitive transcranial magnetic stimulation (rTMS) has gained increasing use as a noninvasive means to modulate cortical physiology, with effects both proximal to the stimulation site and in distal areas that are intrinsically connected to the proximal target. In light of these network-level neuromodulatory effects, there has been a rapid growth in studies attempting to leverage information about network connectivity to improve neuromodulatory control and intervention outcomes. However, the mechanisms-of-action of rTMS on network-level effects remain poorly understood and is based primarily on heuristics from proximal stimulation findings. To help bridge this gap, the current paper presents a systematic review of 33 rTMS studies with baseline and post-rTMS measures of fMRI resting-state functional connectivity (RSFC). Literature synthesis revealed variability across studies in stimulation parameters, studied populations, and connectivity analysis methodology. Despite this variability, it is observed that active rTMS induces significant changes on RSFC, but the prevalent low-frequency-inhibition/high-frequency-facilitation heuristic endorsed for proximal rTMS effects does not fully describe distal connectivity findings. This review also points towards other important considerations, including that the majority of rTMS-induced changes were found outside the stimulated functional network, suggesting that rTMS effects tend to spread across networks. Future studies may therefore wish to adopt conventions and systematic frameworks, such as the Yeo functional connectivity parcellation atlas adopted here, to better characterize network-level effect that contribute to the efficacy of these rapidly developing noninvasive interventions.
Collapse
Affiliation(s)
- Lysianne Beynel
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, United States.
| | - John Paul Powers
- Department of Psychology and Neuroscience, Duke University, United States
| | - Lawrence Gregory Appelbaum
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, United States; Center for Cognitive Neuroscience, Duke University, United States
| |
Collapse
|
42
|
Awad A, Blomstedt P, Westling G, Eriksson J. Deep brain stimulation in the caudal zona incerta modulates the sensorimotor cerebello-cerebral circuit in essential tremor. Neuroimage 2019; 209:116511. [PMID: 31901420 DOI: 10.1016/j.neuroimage.2019.116511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 12/30/2019] [Indexed: 01/25/2023] Open
Abstract
Essential tremor is effectively treated with deep brain stimulation (DBS), but the neural mechanisms underlying the treatment effect are poorly understood. Essential tremor is driven by a dysfunctional cerebello-thalamo-cerebral circuit resulting in pathological tremor oscillations. DBS is hypothesised to interfere with these oscillations at the stimulated target level, but it is unknown whether the stimulation modulates the activity of the cerebello-thalamo-cerebral circuit during different task states (with and without tremor) in awake essential tremor patients. To address this issue, we used functional MRI in 16 essential tremor patients chronically implanted with DBS in the caudal zona incerta. During scanning, the patients performed unilateral tremor-inducing postural holding and pointing tasks as well as rest, with contralateral stimulation turned On and Off. We show that DBS exerts both task-dependent as well as task-independent modulation of the sensorimotor cerebello-cerebral regions (p ≤ 0.05, FWE cluster-corrected for multiple comparisons). Task-dependent modulation (DBS × task interaction) resulted in two patterns of stimulation effects. Firstly, activity decreases (blood oxygen level-dependent signal) during tremor-inducing postural holding in the primary sensorimotor cortex and cerebellar lobule VIII, and activity increases in the supplementary motor area and cerebellar lobule V during rest (p ≤ 0.05, post hoc two-tailed t-test). These effects represent differences at the effector level and may reflect DBS-induced tremor reduction since the primary sensorimotor cortex, cerebellum and supplementary motor area exhibit less motor task-activity as compared to the resting condition during On stimulation. Secondly, task-independent modulation (main effect of DBS) was observed as activity increase in the lateral premotor cortex during all motor tasks, and also during rest (p ≤ 0.05, post hoc two-tailed t-test). This task-independent effect may mediate the therapeutic effects of DBS through the facilitation of the premotor control over the sensorimotor circuit, making it less susceptible to tremor entrainment. Our findings support the notion that DBS in essential tremor is modulating the sensorimotor cerebello-cerebral circuit, distant to the stimulated target, and illustrate the complexity of stimulation mechanisms by demonstrating task-dependent as well as task-independent actions in cerebello-cerebral regions.
Collapse
Affiliation(s)
- Amar Awad
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden; Department of Integrative Medical Biology, Physiology Section, Umeå University, Sweden.
| | - Patric Blomstedt
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden
| | - Göran Westling
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Sweden
| | - Johan Eriksson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden; Department of Integrative Medical Biology, Physiology Section, Umeå University, Sweden
| |
Collapse
|
43
|
Maas RPPWM, Helmich RCG, van de Warrenburg BPC. The role of the cerebellum in degenerative ataxias and essential tremor: Insights from noninvasive modulation of cerebellar activity. Mov Disord 2019; 35:215-227. [PMID: 31820832 PMCID: PMC7027854 DOI: 10.1002/mds.27919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Over the last three decades, measuring and modulating cerebellar activity and its connectivity with other brain regions has become an emerging research topic in clinical neuroscience. The most important connection is the cerebellothalamocortical pathway, which can be functionally interrogated using a paired‐pulse transcranial magnetic stimulation paradigm. Cerebellar brain inhibition reflects the magnitude of suppression of motor cortex excitability after stimulating the contralateral cerebellar hemisphere and therefore represents a neurophysiological marker of the integrity of the efferent cerebellar tract. Observations that cerebellar noninvasive stimulation techniques enhanced performance of certain motor and cognitive tasks in healthy individuals have inspired attempts to modulate cerebellar activity and connectivity in patients with cerebellar diseases in order to achieve clinical benefit. We here comprehensively explore the therapeutic potential of these techniques in two movement disorders characterized by prominent cerebellar involvement, namely the degenerative ataxias and essential tremor. The article aims to illustrate the (patho)physiological insights obtained from these studies and how these translate into clinical practice, where possible by addressing the association with cerebellar brain inhibition. Finally, possible explanations for some discordant interstudy findings, shortcomings in our current understanding, and recommendations for future research will be provided. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick C G Helmich
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
44
|
Olfati N, Shoeibi A, Abdollahian E, Ahmadi H, Hoseini A, Akhlaghi S, Vakili V, Foroughipour M, Rezaeitalab F, Farzadfard MT, Layegh P, Naseri S. Cerebellar repetitive transcranial magnetic stimulation (rTMS) for essential tremor: A double-blind, sham-controlled, crossover, add-on clinical trial. Brain Stimul 2019; 13:190-196. [PMID: 31624048 DOI: 10.1016/j.brs.2019.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND There is controversial evidence about the effect of cerebellar low-frequency stimulation in patients with essential tremor (ET). OBJECTIVES In this study we assessed safety and effectiveness of 1 Hz (low-frequency) cerebellar repetitive transcranial magnetic stimulation (rTMS) on tremor severity in patients with essential tremor in a sham-controlled crossover trial. METHODS A total of 23 patients assigned into two groups to receive either sham (n = 10) or rTMS (n = 13) treatment, with crossing over after a two-month washout period. Intervention consisted of 900 pulses of 1 Hz rTMS at 90% resting motor threshold or the same protocol of sham stimulation over each cerebellar hemisphere for 5 consecutive days. Tremor severity was assessed by Fahn-Tolosa-Marin (FTM) scale at baseline and at days 5, 12 and 30 after intervention. The FTM consists of 3 subscales including tremor severity rating, performance of motor tasks, and functional disability. Carry-over and treatment effects were analyzed using independent samples t-test. RESULTS There was no significant improvement in the total FTM scores in rTMS compared to the sham stimulation on day 5 (p = 0.132), day 12 (p = 0.574), or day 30 (p = 0.382). Similarly, FTM subscales, including tremor severity rating, motor tasks, and functional disability did not improve significantly after rTMS treatment. Mild headache and local pain were the most frequent adverse events. CONCLUSION Although cerebellar rTMS seems to have acceptable safety when used in ET patients, this study could not prove any efficacy for it in reduction of tremor in these patients. Larger studies are needed to evaluate efficacy of this therapeutic intervention and to provide evidence about the optimal stimulation parameters.
Collapse
Affiliation(s)
- Nahid Olfati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Ali Shoeibi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Ebrahim Abdollahian
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Psychiatry and Behavioral Sciences Research Center, Ibn-Sina Medical Center, Mashhad, Iran.
| | - Hamideh Ahmadi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Alireza Hoseini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saeed Akhlaghi
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Psychiatry and Behavioral Sciences Research Center, Ibn-Sina Medical Center, Mashhad, Iran.
| | - Vida Vakili
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Foroughipour
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Fariborz Rezaeitalab
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Mohammad-Taghi Farzadfard
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Parvaneh Layegh
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Shahrokh Naseri
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Revuelta G, McGill C, Jensen JH, Bonilha L. Characterizing Thalamo-Cortical Structural Connectivity in Essential Tremor with Diffusional Kurtosis Imaging Tractography. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-690. [PMID: 31534829 PMCID: PMC6727860 DOI: 10.7916/tohm.v0.690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Background Neuromodulation of the cerebello-thalamo-cortical (CTC) circuit via thalamic stimulation is an effective therapy for essential tremor (ET). In order to develop non-invasive neuromodulation approaches, clinically relevant thalamo-cortical connections must be elucidated. Methods Twenty-eight subjects (18 ET patients and 10 controls) underwent MRI diffusional kurtosis imaging (DKI). A deterministic fiber-tracking algorithm based on DKI was used, with a seeding region placed at the ventral intermediate nucleus (Vim—located based on intraoperative physiology) to the ending regions at the supplementary motor area (SMA), pre-SMA, or primary motor cortex. One-tailed t-tests were performed to compare groups, and associations with tremor severity were determined by Pearson correlations. All p-values were adjusted for multiple comparisons using Bonferroni correction. Results There was a decrease in the mean diffusivity (MD) in patients compared to controls in all three tracts: Vim-M1 (ET 0.87, control 0.96, p < 0.01), Vim-SMA (ET 0.86, control 0.96, p < 0.05), and Vim-pre-SMA (ET 0.87, control 0.95, p < 0.05). There was a significant positive correlation between Tremor Rating Scale score and MK (r = 0.471, p = 0.033) and mean FA (r = 0.438, p = 0.045) for the Vim-SMA tract, and no significant correlation for the Vim-pre-SMA or Vim-M1 tracts was found. Discussion Patients with ET demonstrated a reinforcement of Vim-cortical connectivity, with higher Vim-SMA connectivity being associated with greater tremor severity. This finding suggests that the Vim-SMA connection is relevant to the underlying pathophysiology of ET, and inhibition of the SMA may be an effective therapeutic approach.
Collapse
Affiliation(s)
- Gonzalo Revuelta
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Corinne McGill
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
46
|
Joutsa J, Shih LC, Horn A, Reich MM, Wu O, Rost NS, Fox MD. Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann Neurol 2019; 84:153-157. [PMID: 30014594 DOI: 10.1002/ana.25285] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Abstract
Brain damage can occasionally result in paradoxical functional benefit, which could help identify therapeutic targets for neuromodulation. However, these beneficial lesions are rare and lesions in multiple different brain locations can improve the same symptom. Using a technique called lesion network mapping, we show that heterogeneous lesion locations resulting in tremor relief are all connected to common nodes in the cerebellum and thalamus, the latter of which is a proven deep brain stimulation target for tremor. These results suggest that lesion network mapping can identify the common substrate underlying therapeutic lesions and effective therapeutic targets. Ann Neurol 2018;83:153-157.
Collapse
Affiliation(s)
- Juho Joutsa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA.,Department of Neurology, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Ludy C Shih
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Andreas Horn
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martin M Reich
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA.,Deparment of Neurology, University Hospital and Julius Maximilian University, Würzburg, Germany
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Natalia S Rost
- Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Michael D Fox
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
van Dun K, Manto M. Non-invasive Cerebellar Stimulation: Moving Towards Clinical Applications for Cerebellar and Extra-Cerebellar Disorders. THE CEREBELLUM 2019; 17:259-263. [PMID: 29282616 DOI: 10.1007/s12311-017-0908-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of non-invasive stimulation of the cerebellum is quickly expanding. The anatomical structure of the cerebellum with a high density of neurons in the superficial layer, its electrical properties, and its participation in numerous closed-loop circuits involved in motor, cognitive, and affective operations both in children and in adults make of the cerebellum a target with very high potential for neuromodulation of both cerebellar and extra-cerebellar disorders, in neurology, psychiatry, and neurosurgery. A common research effort is required to extract the optimal parameters of stimulation and to identify how non-invasive stimulation of the cerebellum modifies cerebellar plasticity and functional connectivity in remote cortical and subcortical areas. A patient stratification should be considered.
Collapse
Affiliation(s)
- Kim van Dun
- Clinical and Experimental Neurolinguistics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Mario Manto
- FNRS, ULB-Erasme, Brussels, Belgium
- Service des Neurosciences, Université de Mons, Mons, Belgium
| |
Collapse
|
48
|
Behrangrad S, Zoghi M, Kidgell D, Jaberzadeh S. Does cerebellar non-invasive brain stimulation affect corticospinal excitability in healthy individuals? A systematic review of literature and meta-analysis. Neurosci Lett 2019; 706:128-139. [PMID: 31102706 DOI: 10.1016/j.neulet.2019.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Numerous studies have indicated that non-invasive brain stimulation (NIBS) of the cerebellum could modulate corticospinal excitability (CSE) in young healthy individuals. However, there is no systematic review and meta-analysis that clarifies the effects of cerebellar NIBS on CSE. The aim of this study was to provide a meta-analytic summary of the effects of cerebellar NIBS on CSE. Seven search engines were used to identify any trial evaluating CSE before and after one session of cerebellar NIBS in healthy individuals up to June 2018. Twenty-six studies investigating the corticospinal responses following cerebellar NIBS were included. Meta-analysis was used to pool the findings from included studies. Effects were expressed as mean differences (MD) and the standard deviation (SD). Risk of bias was assessed with the Cochrane tool. Meta-analysis found that paired associative stimulation (PAS) with 2 ms interval, a combination of PAS with 21.5 ms interval and anodal transcranial direct current stimulation, and repetitive transcranial magnetic stimulation with a frequency of < 5 Hz increase CSE (P PAS2 < 0.00001, P PAS21.5 +a-tDCS = 0.02, P rTMS = 0.04). However, continuous theta burst stimulation, a combination of PAS with 25 ms interval and anodal transcranial direct current stimulation, and PAS with a 6 ms interval decreased CSE (P PAS6 < 0.00001, P cTBS < 0.00001, P PAS25 +a-tDCS = 0.003). The results of this review show that cerebellar NIBS techniques are a promising tool for increasing CSE.
Collapse
Affiliation(s)
- Shabnam Behrangrad
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia.
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
| | - Dawson Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia
| |
Collapse
|
49
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The use of transcranial magnetic stimulation as a treatment for movement disorders: A critical review. Mov Disord 2019; 34:769-782. [PMID: 31034682 DOI: 10.1002/mds.27705] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation is a safe and painless non-invasive brain stimulation technique that has been largely used in the past 30 years to explore cortical function in healthy participants and, inter alia, the pathophysiology of movement disorders. During the years, its use has evolved from primarily research purposes to treatment of a large variety of neurological and psychiatric diseases. In this article, we illustrate the basic principles on which the therapeutic use of transcranial magnetic stimulation is based and review the clinical trials that have been performed in patients with movement disorders. METHODS A search of the PubMed database for research and review articles was performed on therapeutic applications of transcranial magnetic stimulation in movement disorders. The search included the following conditions: Parkinson's disease, dystonia, Tourette syndrome and other chronic tic disorders, Huntington's disease and choreas, and essential tremor. The results of the studies and possible mechanistic explanations for the relatively minor effects of transcranial magnetic stimulation are discussed. Possible ways to improve the methodology and achieve greater therapeutic efficacy are discussed. CONCLUSION Despite the promising and robust rationales for the use of transcranial magnetic stimulations as a treatment tool in movement disorders, the results taken as a whole are not as successful as were initially expected. There is encouraging evidence that transcranial magnetic stimulation may improve motor symptoms and depression in Parkinson's disease, but the efficacy in other movement disorders is unclear. Possible improvements in methodology are on the horizon but have yet to be implemented in large clinical studies. © 2019 International Parkinson and Movement Disorder Society © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Isernia, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| |
Collapse
|
50
|
Cerebellar repetitive transcranial magnetic stimulation for patients with essential tremor. Parkinsonism Relat Disord 2019; 64:304-307. [PMID: 30928207 DOI: 10.1016/j.parkreldis.2019.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The possibility of repetitive transcranial magnetic stimulation (rTMS) as an alternative therapy for essential tremor (ET) patients has emerged. However, its effect on medicated ET patients is lacking. The aim of this pilot study was to investigate the effect of cerebellar low-frequency rTMS as an "add-on" treatment. METHODS In this single-blinded, randomized, sham-controlled pilot study, patients with ET were randomized into two groups, one receiving real-rTMS and the other sham-rTMS. For 5 days, 1200 stimulations per day were applied to the bilateral cerebellar hemispheres at an intensity of 90% of the resting motor threshold (RMT) with a frequency of 1-Hz. Motor evoked potentials (MEPs) and the Fahn-Tolosa-Marin tremor rating scales (TRS) were measured before, immediately, and 4 weeks after the completion of the rTMS procedures. All patients continued taking medications during all procedures. RESULTS Among 22 patients, 12 and 10 patients were randomized into the real- and sham-rTMS groups, respectively. Repeated analysis of variance (ANOVA) measurements showed that the total TRS, TRS-A and B were changed both in real and sham-rTMS groups without interaction between time and group. TRS-C and MEPs, were not significantly changed at each follow-up point in either the real or sham-rTMS sessions. CONCLUSION We conclude that cerebellar low-frequency rTMS is safe, but has no significant effect as an "add-on" therapy in patients with ET.
Collapse
|