1
|
Zeng K, Li Z, Xia X, Wang Z, Darmani G, Li X, Chen R. Effects of different sonication parameters of theta burst transcranial ultrasound stimulation on human motor cortex. Brain Stimul 2024; 17:258-268. [PMID: 38442800 DOI: 10.1016/j.brs.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Theta burst TUS (tbTUS) can induce increased cortical excitability in human, but how different sonication parameters influence the effects are still unknown. OBJECTIVE To examine how a range of sonication parameters, including acoustic intensity, pulse repetition frequency, duty cycle and sonication duration, influence the effects of tbTUS on human motor cortical excitability. METHODS 14 right-handed healthy subjects underwent 8 sessions with different tbTUS parameters in a randomized, cross-over design on separate days. The original tbTUS protocol was studied in one session and one parameter was changed in each of the seven sessions. To examine changes in cortical excitability induced by tbTUS, we measured the motor-evoked potential (MEP) amplitude, resting motor threshold, short-interval intracortical inhibition and intracortical facilitation, as well as short-interval intracortical facilitation before and up to 90 min after tbTUS. RESULTS All conditions increased MEP amplitudes except the condition with low acoustic intensity of 10 W/cm2. Pulse repetition frequency of 5 Hz produced higher MEP amplitudes compared to pulse repetition frequencies of 2 and 10 Hz. In addition, higher duty cycles (5%, 10%, and 15%) and longer sonication durations (40, 80, and 120 s) were associated with longer duration of increased MEP amplitudes. Resting motor threshold remained stable in all conditions. For paired-pulse TMS measures, tbTUS reduced short-interval intracortical inhibition and enhanced short-interval intracortical facilitation, but had no effect on intracortical facilitation. CONCLUSIONS Ultrasound bursts repeated at theta (∼5 Hz) frequency is optimal to produce increased cortical excitability with the range of 2-10 Hz. Furthermore, there was a dose-response effect regarding duty cycle and sonication duration in tbTUS for plasticity induction. The aftereffects of tbTUS were associated with a shift of the inhibition/excitation balance toward less inhibition and more excitation in the motor cortex. These findings can be used to determine the optimal tbTUS parameters in neuroscience research and treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ke Zeng
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, Guangdong, China; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zhiwei Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Xue Xia
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zhen Wang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; School of Sport and Health Science, Xi'an Physical Education University, Xi'an, China
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaoli Li
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, Guangdong, China
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Turrini S, Fiori F, Chiappini E, Lucero B, Santarnecchi E, Avenanti A. Cortico-cortical paired associative stimulation (ccPAS) over premotor-motor areas affects local circuitries in the human motor cortex via Hebbian plasticity. Neuroimage 2023; 271:120027. [PMID: 36925088 DOI: 10.1016/j.neuroimage.2023.120027] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that cortico-cortical paired associative stimulation (ccPAS) can strengthen connectivity between the ventral premotor cortex (PMv) and the primary motor cortex (M1) by modulating convergent input over M1 via Hebbian spike-timing-dependent plasticity (STDP). However, whether ccPAS locally affects M1 activity remains unclear. We tested 60 right-handed young healthy humans in two studies, using a combination of dual coil TMS and ccPAS over the left PMv and M1 to probe and manipulate PMv-to-M1 connectivity, and single- and paired-pulse TMS to assess neural activity within M1. We provide convergent evidence that ccPAS, relying on repeated activations of excitatory PMv-to-M1 connections, acts locally over M1. During ccPAS, motor-evoked potentials (MEPs) induced by paired PMv-M1 stimulation gradually increased. Following ccPAS, the threshold for inducing MEPs of different amplitudes decreased, and the input-output curve (IO) slope increased, highlighting increased M1 corticospinal excitability. Moreover, ccPAS reduced the magnitude of short-interval intracortical inhibition (SICI), reflecting suppression of GABA-ergic interneuronal mechanisms within M1, without affecting intracortical facilitation (ICF). These changes were specific to ccPAS Hebbian strengthening of PMv-to-M1 connectivity, as no modulations were observed when reversing the order of the PMv-M1 stimulation during a control ccPAS protocol. These findings expand prior ccPAS research that focused on the malleability of cortico-cortical connectivity at the network-level, and highlight local changes in the area of convergent activation (i.e., M1) during plasticity induction. These findings provide new mechanistic insights into the physiological basis of ccPAS that are relevant for protocol optimization.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States.
| | - Francesca Fiori
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; NeXT: Neurophysiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome 00128, Italy
| | - Emilio Chiappini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Institut für Klinische und Gesundheitspsychologie, Universität Wien, Vienna 1010, Austria
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States
| | - Alessio Avenanti
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile.
| |
Collapse
|
3
|
Assessment of cortical inhibition depends on inter individual differences in the excitatory neural populations activated by transcranial magnetic stimulation. Sci Rep 2022; 12:9923. [PMID: 35705672 PMCID: PMC9200840 DOI: 10.1038/s41598-022-14271-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is used to probe inhibitory intracortical neurotransmission and has been used to infer the neurobiological dysfunction that may underly several neurological disorders. One technique, short-interval intracortical inhibition (SICI), indexes gamma-aminobutyric acid (GABA) mediated inhibitory activity and is a promising biomarker. However emerging evidence suggests SICI does not exclusively represent GABAergic activity because it may be influenced by inter-individual differences in the specific excitatory neural populations activated by TMS. Here we used the latency of TMS motor evoked potentials (MEPs) to index these inter-individual differences, and found that a significant proportion of the observed variability in SICI magnitude was accounted for by MEP latency, r = − 0.57, r2 = 0.33, p = .014. We conclude that SICI is influenced by inter-individual differences in the excitatory neural populations activated by TMS, reducing the precision of this GABAergic probe. Interpreting SICI measures in the context of MEP latency may facilitate a more precise assessment of GABAergic intracortical inhibition. The reduced cortical inhibition observed in some neuropathologies could be influenced by reduced activity in specific excitatory neural populations. Including MEP latency assessment in research investigating SICI in clinical groups could assist in differentiating the cortical circuits impacted by neurological disorders.
Collapse
|
4
|
Suppa A, Asci F, Guerra A. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:73-89. [PMID: 35034759 DOI: 10.1016/b978-0-12-819410-2.00005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activity-dependent synaptic plasticity is the main theoretical framework to explain mechanisms of learning and memory. Synaptic plasticity can be explored experimentally in animals through various standardized protocols for eliciting long-term potentiation and long-term depression in hippocampal and cortical slices. In humans, several non-invasive protocols of repetitive transcranial magnetic stimulation and transcranial direct current stimulation have been designed and applied to probe synaptic plasticity in the primary motor cortex, as reflected by long-term changes in motor evoked potential amplitudes. These protocols mimic those normally used in animal studies for assessing long-term potentiation and long-term depression. In this chapter, we first discuss the physiologic basis of theta-burst stimulation, paired associative stimulation, and transcranial direct current stimulation. We describe the current biophysical and theoretical models underlying the molecular mechanisms of synaptic plasticity and metaplasticity, defined as activity-dependent changes in neural functions that modulate subsequent synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), in the human motor cortex including calcium-dependent plasticity, spike-timing-dependent plasticity, the role of N-methyl-d-aspartate-related transmission and gamma-aminobutyric-acid interneuronal activity. We also review the putative microcircuits responsible for synaptic plasticity in the human motor cortex. We critically readdress the issue of variability in studies investigating synaptic plasticity and propose available solutions. Finally, we speculate about the utility of future studies with more advanced experimental approaches.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy.
| | | | | |
Collapse
|
5
|
Zeng K, Darmani G, Fomenko A, Xia X, Tran S, Nankoo JF, Oghli YS, Wang Y, Lozano AM, Chen R. Induction of Human Motor Cortex Plasticity by Theta Burst Transcranial Ultrasound Stimulation. Ann Neurol 2021; 91:238-252. [PMID: 34964172 DOI: 10.1002/ana.26294] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique with advantages of high spatial precision and ability to target deep brain regions. This study aimed to develop a TUS protocol to effectively induce brain plasticity in human subjects. METHODS An 80 s train of theta burst patterned TUS (tbTUS), regularly patterned TUS (rTUS) with the same sonication duration and sham tbTUS were delievered to the motor cortex in healthy subjects. Transcranial magnetic stimulation (TMS) was used to examine changes in corticospinal excitability, intracortical inhibition and facilitation, and the site of plasticity induction. The effects of motor cortical tbTUS on a visuo-motor task and the effects of occipital cortex tbTUS on motor cortical excitability were also tested. RESULTS The tbTUS produced consistent increase in corticospinal excitability for at least 30 minutes while rTUS and sham tbTUS produced no significant change. tbTUS decreased short-interval intracortical inhibiton and increased intracortical facilitation. The effects of TMS in different current directions suggested that the site of the plastic changes was within the motor cortex. tbTUS to the occipital cortex did not change motor cortical excitability. Motor cortical tbTUS shortened movement time in a visuo-motor task. INTERPRETATION tbTUS is a novel and efficient paradigm to induce cortical plasticity in human. It has the potential to be developed for neuromodulation treatment for neurological and psychiatric disorders, and to advance neuroscience research. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ke Zeng
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anton Fomenko
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xue Xia
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Stephanie Tran
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Yazan Shamli Oghli
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yanqiu Wang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Dubbioso R, Pellegrino G, Ranieri F, Di Pino G, Capone F, Dileone M, Iodice R, Ruggiero L, Tozza S, Uncini A, Manganelli F, Di Lazzaro V. BDNF polymorphism and inter hemispheric balance of motor cortex excitability: a preliminary study. J Neurophysiol 2021; 127:204-212. [PMID: 34936818 DOI: 10.1152/jn.00268.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preclinical studies have demonstrated that Brain-Derived Neurotrophic Factor (BDNF) plays a crucial role in the homeostatic regulation of cortical excitability and excitation/inhibition balance. Using transcranial magnetic stimulation (TMS) techniques we investigated whether BDNF polymorphism could influence cortical excitability of the left and right primary motor cortex in healthy humans. Twenty-nine participants were recruited and genotyped for the presence of the BDNF Val66Met polymorphism, namely homozygous for the valine allele (Val/Val), heterozygotes (Val/Met), and homozygous for the methionine allele (Met/Met). Blinded to the latter, we evaluated inhibitory and facilitatory circuits of the left (LH) and right motor cortex (RH) by measuring resting (RMT) and active motor threshold (AMT), short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). For each neurophysiological metric we also considered the inter-hemispheric balance expressed by the Laterality Index (LI). Val/Val participants (n= 21) exhibited an overall higher excitability of the LH compared to the RH, as probed by lower motor thresholds, lower SICI and higher ICF. Val/Val participants displayed positive LI, especially for AMT and ICF (all p< 0.05), indicating higher LH excitability and more pronounced inter-hemispheric excitability imbalance as compared to Met carriers. Our preliminary results suggest that BDNF Val66Met polymorphism might influence interhemispheric balance of motor cortex excitability.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Michele Dileone
- Faculty of Health Sciences, University of Castilla La Mancha, Talavera de la Reina, Spain
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Antonino Uncini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
7
|
Meder A, Liepelt-Scarfone I, Sulzer P, Berg D, Laske C, Preische O, Desideri D, Zipser CM, Salvadore G, Tatikola K, Timmers M, Ziemann U. Motor cortical excitability and paired-associative stimulation-induced plasticity in amnestic mild cognitive impairment and Alzheimer’s disease. Clin Neurophysiol 2021; 132:2264-2273. [DOI: 10.1016/j.clinph.2021.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
|
8
|
Kishore A, James P, Popa T, Thejaus A, Rajeswari P, Sarma G, Krishnan S, Meunier S. Plastic responsiveness of motor cortex to paired associative stimulation depends on cerebellar input. Clin Neurophysiol 2021; 132:2493-2502. [PMID: 34454278 DOI: 10.1016/j.clinph.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The extent of plastic responses of motor cortex (M1) to paired associative stimulation (PAS) varies among healthy subjects. Continuous theta-burst stimulation (cTBS) of cerebellum enhances the mean PAS-induced plasticity in groups of healthy subjects. We tested whether the initial status of Responder or Non -Responder to PAS, influenced the effect of cerebellar stimulation on PAS-induced plasticity. METHODS We assessed in 19 young healthy volunteers (8 Responders, 11 Non-Responders to PAS), how cTBS and iTBS (intermittent TBS) applied to the cerebellum before a PAS protocol influenced the plastic responsiveness of M1 to PAS. We tested whether the PAS-induced plastic effects could be depotentiated by a short cTBS protocol applied to M1 shortly after PAS and whether cerebellar stimulation influenced GABA-ergic intracortical inhibition and M1 plasticity in parallel. RESULTS Cerebellar cTBS restored the M1 response to PAS in Non-Responders while cerebellar iTBS turned the potentiating response to PAS to a depressive response in both groups. The depotentiation protocol abolished both responses. CONCLUSION Non-Responder status to PAS is a state of M1 amenable to bidirectional plastic modulation when primed by a change in cerebello-thalamic drive. SIGNIFICANCE The meaning of lack of responsiveness to certain protocols probing plasticity should be reconsidered.
Collapse
Affiliation(s)
- Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India.
| | - Praveen James
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Arun Thejaus
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Parvathy Rajeswari
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Gangadhara Sarma
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Sabine Meunier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelleépinière, ICM, F-75013 Paris, France
| |
Collapse
|
9
|
Bisio A, Biggio M, Canepa P, Faelli E, Ruggeri P, Avanzino L, Bove M. Primary motor cortex excitability as a marker of plasticity in a stimulation protocol combining action observation and kinesthetic illusion of movement. Eur J Neurosci 2021; 53:2763-2773. [PMID: 33539632 DOI: 10.1111/ejn.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Action observation combined with proprioceptive stimulation able to induce a kinesthetic illusion of movement (AO-KI) was shown to elicit a plastic increase in primary motor cortex (M1) excitability, with promising applications in rehabilitative interventions. Nevertheless, the known individual variability in response to combined stimulation protocols limits its application. The aim of this study was to examine whether a relationship exists between changes in M1 excitability during AO-KI and the long-lasting changes in M1 induced by AO-KI. Fifteen volunteers received a conditioning protocol consisting in watching a video showing a thumb-opposition movement and a simultaneous proprioceptive stimulation that evoked an illusory kinesthetic experience of their thumbs closing. M1 excitability was evaluated by means of single-pulse transcranial magnetic stimulation before, DURING the conditioning protocol, and up to 60 min AFTER it was administered. M1 excitability significantly increased during AO-KI with respect to a rest condition. Furthermore, AO-KI induced a long-lasting increase in M1 excitability up to 60 min after administration. Finally, a significant positive correlation appeared between M1 excitability changes during and after AO-KI; that is, participants who were more responsive during AO-KI showed greater motor cortical activity changes after it. These findings suggest that M1 response during AO-KI can be considered a neurophysiological marker of individual responsiveness to the combined stimulation since it was predictive of its efficacy in inducing long-lasting M1 increase excitability. This information would allow knowing in advance whether an individual will be a responder to AO-KI.
Collapse
Affiliation(s)
- Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Patrizio Canepa
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Emanuela Faelli
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
10
|
Pellegrini M, Zoghi M, Jaberzadeh S. A Checklist to Reduce Response Variability in Studies Using Transcranial Magnetic Stimulation for Assessment of Corticospinal Excitability: A Systematic Review of the Literature. Brain Connect 2020; 10:53-71. [PMID: 32093486 DOI: 10.1089/brain.2019.0715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Response variability between individuals (interindividual variability) and within individuals (intraindividual variability) is an important issue in the transcranial magnetic stimulation (TMS) literature. This has raised questions of the validity of TMS to assess changes in corticospinal excitability (CSE) in a predictable and reliable manner. Several participant-specific factors contribute to this observed response variability with a current lack of consensus on the degree each factor contributes. This highlights a need for consistency and structure in reporting study designs and methodologies. Currently, there is no summarized review of the participant-specific factors that can be controlled and may contribute to response variability. This systematic review aimed to develop a checklist of methodological measures taken by previously published research to increase the homogeneity of participant selection criteria, preparation of participants before experimental testing, participant scheduling, and the instructions given to participants throughout experimental testing to minimize their effect on response variability. Seven databases were searched in full. Studies were included if CSE was measured via TMS and included methodological measures to increase the homogeneity of the participants. Eighty-four studies were included. Twenty-three included measures to increase participant selection homogeneity, 21 included measures to increase participant preparation homogeneity, while 61 included measures to increase participant scheduling and instructions during experimental testing homogeneity. These methodological measures were summarized into a user-friendly checklist with considerations, suggestions, and rationale/justification for their inclusion. This may provide the framework for further insights into ways to reduce response variability in TMS research.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, Discipline of Physiotherapy, School of Allied Health, La Trobe University, Melbourne, Victoria, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Guerra A, López-Alonso V, Cheeran B, Suppa A. Variability in non-invasive brain stimulation studies: Reasons and results. Neurosci Lett 2020; 719:133330. [DOI: 10.1016/j.neulet.2017.12.058] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 01/22/2023]
|
12
|
Sato D, Yamashiro K, Yamazaki Y, Ikarashi K, Onishi H, Baba Y, Maruyama A. Priming Effects of Water Immersion on Paired Associative Stimulation-Induced Neural Plasticity in the Primary Motor Cortex. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010215. [PMID: 31892253 PMCID: PMC6982345 DOI: 10.3390/ijerph17010215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
We aimed to verify whether indirect-wave (I-wave) recruitment and cortical inhibition can regulate or predict the plastic response to paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), and also whether water immersion (WI) can facilitate the subsequent PAS25-induced plasticity. To address the first question, we applied transcranial magnetic stimulation (TMS) to the M1 hand area, while alternating the direction of the induced current between posterior-to-anterior and anterior-to-posterior to activate two independent synaptic inputs to the corticospinal neurons. Moreover, we used a paired stimulation paradigm to evaluate the short-latency afferent inhibition (SAI) and short-interval intracortical inhibition (SICI). To address the second question, we examined the motor evoked potential (MEP) amplitudes before and after PAS25, with and without WI, and used the SAI, SICI, and MEP recruitment curves to determine the mechanism underlying priming by WI on PAS25. We demonstrated that SAI, with an inter-stimulus interval of 25 ms, might serve as a predictor of the response to PAS25, whereas I-wave recruitment evaluated by the MEP latency difference was not predictive of the PAS25 response, and found that 15 min WI prior to PAS25 facilitated long-term potentiation (LTP)-like plasticity due to a homeostatic increase in cholinergic activity.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Health and Sports, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (K.Y.); (Y.B.)
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
- Correspondence:
| | - Koya Yamashiro
- Department of Health and Sports, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (K.Y.); (Y.B.)
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
| | - Yudai Yamazaki
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
- Graduate School, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Koyuki Ikarashi
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
- Graduate School, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
| | - Yasuhiro Baba
- Department of Health and Sports, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (K.Y.); (Y.B.)
| | - Atsuo Maruyama
- Department of Rehabilitation Medicine, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima City, Kagoshima 890-8520, Japan;
| |
Collapse
|
13
|
Longitudinal assessment of 1H-MRS (GABA and Glx) and TMS measures of cortical inhibition and facilitation in the sensorimotor cortex. Exp Brain Res 2019; 237:3461-3474. [PMID: 31734787 DOI: 10.1007/s00221-019-05691-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/09/2019] [Indexed: 01/05/2023]
Abstract
The purpose of the present study was to investigate the long-term stability of water-referenced GABA and Glx neurometabolite concentrations in the sensorimotor cortex using MRS and to assess the long-term stability of GABA- and glutamate-related intracortical excitability using transcranial magnetic stimulation (TMS). Healthy individuals underwent two sessions of MRS and TMS at a 3-month interval. A MEGA-PRESS sequence was used at 3 T to acquire MRS signals in the sensorimotor cortex. Metabolites were quantified by basis spectra fitting and metabolite concentrations were derived using unsuppressed water reference scans accounting for relaxation and partial volume effects. TMS was performed using published standards. After performing stability and reliability analyses for MRS and TMS, reliable change indexes were computed for all measures with a statistically significant test-retest correlation. No significant effect of time was found for GABA, Glx and TMS measures. There was an excellent ICC and a strong correlation across time for GABA and Glx. Analysis of TMS measure stability revealed an excellent ICC for rMT CSP and %MSO and a fair ICC for 2 ms SICI. There was no significant correlation between MRS and TMS measures at any time point. This study shows that MRS-GABA and MRS-Glx of the sensorimotor cortex have good stability over a 3-month period, with variability across time comparable to that reported in other brain areas. While resting motor threshold, %MSO and CSP were found to be stable and reliable, other TMS measures had greater variability and lesser reliability.
Collapse
|
14
|
Silverstein J, Cortes M, Tsagaris KZ, Climent A, Gerber LM, Oromendia C, Fonzetti P, Ratan RR, Kitago T, Iacoboni M, Wu A, Dobkin B, Edwards DJ. Paired Associative Stimulation as a Tool to Assess Plasticity Enhancers in Chronic Stroke. Front Neurosci 2019; 13:792. [PMID: 31427918 PMCID: PMC6687765 DOI: 10.3389/fnins.2019.00792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/15/2019] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose The potential for adaptive plasticity in the post-stroke brain is difficult to estimate, as is the demonstration of central nervous system (CNS) target engagement of drugs that show promise in facilitating stroke recovery. We set out to determine if paired associative stimulation (PAS) can be used (a) as an assay of CNS plasticity in patients with chronic stroke, and (b) to demonstrate CNS engagement by memantine, a drug which has potential plasticity-modulating effects for use in motor recovery following stroke. Methods We examined the effect of PAS in fourteen participants with chronic hemiparetic stroke at five time-points in a within-subjects repeated measures design study: baseline off-drug, and following a week of orally administered memantine at doses of 5, 10, 15, and 20 mg, comprising a total of seventy sessions. Each week, MEP amplitude pre and post-PAS was assessed in the contralesional hemisphere as a marker of enhanced or diminished plasticity. Strength and dexterity were recorded each week to monitor motor-specific clinical status across the study period. Results We found that MEP amplitude was significantly larger after PAS in baseline sessions off-drug, and responsiveness to PAS in these sessions was associated with increased clinical severity. There was no observed increase in MEP amplitude after PAS with memantine at any dose. Motor threshold (MT), strength, and dexterity remained unchanged during the study. Conclusion Paired associative stimulation successfully induced corticospinal excitability enhancement in chronic stroke subjects at the group level. However, this response did not occur in all participants, and was associated with increased clinical severity. This could be an important way to stratify patients for future PAS-drug studies. PAS was suppressed by memantine at all doses, regardless of responsiveness to PAS off-drug, indicating CNS engagement.
Collapse
Affiliation(s)
- Joshua Silverstein
- Human Motor Recovery Laboratory, Burke Neurological Institute, White Plains, NY, United States
| | - Mar Cortes
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Katherine Zoe Tsagaris
- Human Motor Recovery Laboratory, Burke Neurological Institute, White Plains, NY, United States
| | - Alejandra Climent
- Sant Joan de Deu Hospital, Department of Neurology, University of Barcelona, Barcelona, Spain
| | - Linda M Gerber
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY, United States
| | - Clara Oromendia
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY, United States
| | - Pasquale Fonzetti
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States.,Memory Evaluation and Treatment Service, Burke Rehabilitation Hospital, White Plains, NY, United States
| | - Rajiv R Ratan
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States.,Burke Neurological Institute, White Plains, NY, United States.,Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Tomoko Kitago
- Human Motor Recovery Laboratory, Burke Neurological Institute, White Plains, NY, United States.,Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States.,Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Allan Wu
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Dobkin
- Department of Neurology, Geffen School of Medicine, Reed Neurologic Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dylan J Edwards
- Moss Rehabilitation Research Institute, Elkins Park, PA, United States.,School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
15
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The use of transcranial magnetic stimulation as a treatment for movement disorders: A critical review. Mov Disord 2019; 34:769-782. [PMID: 31034682 DOI: 10.1002/mds.27705] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation is a safe and painless non-invasive brain stimulation technique that has been largely used in the past 30 years to explore cortical function in healthy participants and, inter alia, the pathophysiology of movement disorders. During the years, its use has evolved from primarily research purposes to treatment of a large variety of neurological and psychiatric diseases. In this article, we illustrate the basic principles on which the therapeutic use of transcranial magnetic stimulation is based and review the clinical trials that have been performed in patients with movement disorders. METHODS A search of the PubMed database for research and review articles was performed on therapeutic applications of transcranial magnetic stimulation in movement disorders. The search included the following conditions: Parkinson's disease, dystonia, Tourette syndrome and other chronic tic disorders, Huntington's disease and choreas, and essential tremor. The results of the studies and possible mechanistic explanations for the relatively minor effects of transcranial magnetic stimulation are discussed. Possible ways to improve the methodology and achieve greater therapeutic efficacy are discussed. CONCLUSION Despite the promising and robust rationales for the use of transcranial magnetic stimulations as a treatment tool in movement disorders, the results taken as a whole are not as successful as were initially expected. There is encouraging evidence that transcranial magnetic stimulation may improve motor symptoms and depression in Parkinson's disease, but the efficacy in other movement disorders is unclear. Possible improvements in methodology are on the horizon but have yet to be implemented in large clinical studies. © 2019 International Parkinson and Movement Disorder Society © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Isernia, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| |
Collapse
|
16
|
Meng HJ, Cao N, Lin YT, Liu K, Zhang J, Pi YL. Motor learning enhanced by combined motor imagery and noninvasive brain stimulation is associated with reduced short-interval intracortical inhibition. Brain Behav 2019; 9:e01252. [PMID: 30884212 PMCID: PMC6456775 DOI: 10.1002/brb3.1252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Motor imagery (MI) improves motor skill learning, which is further enhanced when MI is paired with primary motor cortex transcranial brain stimulation or with electrical stimulation of the peripheral median nerve. Applying both stimulation types (here with 25 ms intervals) is called paired associative stimulation (PAS25). The final primary motor cortex output is determined by combined excitatory and intracortical inhibitory circuits, and reducing the latter is associated with enhanced synaptic transmission and efficacy. Indeed, short-interval intracortical inhibition (SICI) inhibits motor evoked potentials (MEPs), and motor learning has been associated with decreased SICI and increased cortical excitability. Here, we investigated whether cortical excitability and SICI are altered by PAS25 applied after MI-induced modulation of motor learning. METHODS Peak acceleration of a hand-grasping movement and MEPs and SICI were measured before and after MI alone, PAS25 alone, and MI followed by PAS25 in 16 healthy participants to evaluate changes in motor learning, corticospinal excitability, and intracortical inhibition. RESULTS After PAS25 alone, MEP amplitude increased while peak acceleration was unchanged. However, PAS25 applied following MI not only significantly enhanced both peak acceleration (p = 0.011) and MEP amplitude (p = 0.004) but also decreased SICI (p = 0.011). Moreover, we found that this decrease in SICI was significantly correlated with both the peak acceleration (r = 0.49, p = 0.029) and the MEP amplitude (r = 0.56, p = 0.013). CONCLUSIONS These results indicate that brain function altered by PAS25 of the motor cortex enhances MI-induced motor learning and corticospinal excitability and decreases SICI, suggesting that SICI underlies, at least in part, PAS25 modulation of motor learning.
Collapse
Affiliation(s)
- Hai-Jiang Meng
- School of Sports, Anqing Normal University, Anqing, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Na Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yi-Tong Lin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ke Liu
- Shanghai Punan Hospital of Pudong New District, Shanghai, China
| | - Jian Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yan-Ling Pi
- Shanghai Punan Hospital of Pudong New District, Shanghai, China
| |
Collapse
|
17
|
Huang Y, Chen JC, Chen CM, Tsai CH, Lu MK. Paired Associative Electroacupuncture and Transcranial Magnetic Stimulation in Humans. Front Hum Neurosci 2019; 13:49. [PMID: 30809140 PMCID: PMC6379477 DOI: 10.3389/fnhum.2019.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 02/03/2023] Open
Abstract
Pairing transcutaneous electric nerve stimulation (TENS) and transcranial magnetic stimulation (TMS) with specific stimulus-intervals induces associative motor plasticity at the primary motor cortex (M1). Electroacupuncture (EA) is an established medical technique in the eastern countries. This study investigates whether EA paired with TMS induces distinct M1 motor plasticity. Fifteen healthy, right-handed subjects (aged 23.6 ± 2.0 years, eight women) were studied. Two-hundred and twenty-five pairs of TMS of the left M1 preceded by right EA at acupoint “Neiguan” [Pericardium 6 (PC6), located 2 decimeters proximal from the wrist wrinkle] were respectively applied with the interstimulus interval (ISI) of individual somatosensory evoked potential (SSEP) N20 latency plus 2 ms (N20+2) and minus 5 ms (N20-5) with at least 1-week interval. The paired stimulation was delivered at a rate of 0.25 Hz. Sham TMS with a sham coil was adopted to examine the low-frequency EA influence on M1 in eleven subjects. M1 excitability was assessed by motor-evoked potential (MEP) recruitment curve with five TMS intensity levels, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and cerebellar inhibition (CBI) at the abductor pollicis brevis (APB) muscle of the right hand before and after the EA-M1 paired associative stimulation (PAS). In addition, median nerve SSEPs and H-reflex were respectively measured to monitor somatosensory and spinal excitability. The MEP showed significantly facilitated after the sham EA-M1 PAS while tested with 80% of the TMS intensity producing on average 1 mV amplitude (i.e., MEP1 mV) in the resting APB muscle. It was also facilitated while tested with 90% MEP1 mV irrespective of the stimulation conditions. The SSEP showed a higher amplitude from the real EA-M1 PAS compared to that from the sham EA-M1 PAS. No significant change was found on SICI, ICF, CBI and H-reflex. Findings suggest that repetitive low frequency EA paired with real TMS did not induce spike-timing dependent motor plasticity but EA paired with sham TMS induced specific M1 excitability change. Complex sensory afferents with dispersed time locked to the sensorimotor cortical area could hamper instead of enhancing the induction of the spike-timing dependent plasticity (STDP) in M1.
Collapse
Affiliation(s)
- Yi Huang
- Graduate Institute of Biomedical Sciences, Medical College, China Medical University, Taichung, Taiwan
| | - Jui-Cheng Chen
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, Medical College, China Medical University, Taichung, Taiwan
| | - Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, Medical College, China Medical University, Taichung, Taiwan
| | - Ming-Kuei Lu
- Graduate Institute of Biomedical Sciences, Medical College, China Medical University, Taichung, Taiwan.,Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Conventional or threshold-hunting TMS? A tale of two SICIs. Brain Stimul 2018; 11:1296-1305. [DOI: 10.1016/j.brs.2018.07.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/14/2022] Open
|
19
|
A reappraisal of pain-paired associative stimulation suggesting motor inhibition at spinal level. Neurophysiol Clin 2018; 48:295-302. [DOI: 10.1016/j.neucli.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/15/2018] [Accepted: 04/24/2018] [Indexed: 01/17/2023] Open
|
20
|
Ferris JK, Neva JL, Francisco BA, Boyd LA. Bilateral Motor Cortex Plasticity in Individuals With Chronic Stroke, Induced by Paired Associative Stimulation. Neurorehabil Neural Repair 2018; 32:671-681. [DOI: 10.1177/1545968318785043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: In the chronic phase after stroke, cortical excitability differs between the cerebral hemispheres; the magnitude of this asymmetry depends on degree of motor impairment. It is unclear whether these asymmetries also affect capacity for plasticity in corticospinal tract excitability or whether hemispheric differences in plasticity are related to chronic sensorimotor impairment. Methods: Response to paired associative stimulation (PAS) was assessed bilaterally in 22 individuals with chronic hemiparesis. Corticospinal excitability was measured as the area under the motor-evoked potential (MEP) recruitment curve (AUC) at baseline, 5 minutes, and 30 minutes post-PAS. Percentage change in contralesional AUC was calculated and correlated with paretic motor and somatosensory impairment scores. Results: PAS induced a significant increase in AUC in the contralesional hemisphere ( P = .041); in the ipsilesional hemisphere, there was no significant effect of PAS ( P = .073). Contralesional AUC showed significantly greater change in individuals without an ipsilesional MEP ( P = .029). Percentage change in contralesional AUC between baseline and 5 m post-PAS correlated significantly with FM score ( r = −0.443; P = .039) and monofilament thresholds ( r = 0.444, P = .044). Discussion: There are differential responses to PAS within each cerebral hemisphere. Contralesional plasticity was increased in individuals with more severe hemiparesis, indicated by both the absence of an ipsilesional MEP and a greater degree of motor and somatosensory impairment. These data support a body of research showing compensatory changes in the contralesional hemisphere after stroke; new therapies for individuals with chronic stroke could exploit contralesional plasticity to help restore function.
Collapse
Affiliation(s)
| | - Jason L. Neva
- University of British Columbia, Vancouver, BC, Canada
| | | | - Lara A. Boyd
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Opie GM, Cirillo J, Semmler JG. Age-related changes in late I-waves influence motor cortex plasticity induction in older adults. J Physiol 2018; 596:2597-2609. [PMID: 29667190 DOI: 10.1113/jp274641] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/16/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The response to neuroplasticity interventions using transcranial magnetic stimulation (TMS) is reduced in older adults, which may be due, in part, to age-related alterations in interneuronal (I-wave) circuitry. The current study investigated age-related changes in interneuronal characteristics and whether they influence motor cortical plasticity in older adults. While I-wave recruitment was unaffected by age, there was a shift in the temporal characteristics of the late, but not the early I-waves. Using I-wave periodicity repetitive TMS (iTMS), we showed that these differences in I-wave characteristics influence the induction of cortical plasticity in older adults. ABSTRACT Previous research shows that neuroplasticity assessed using transcranial magnetic stimulation (TMS) is reduced in older adults. While this deficit is often assumed to represent altered synaptic modification processes, age-related changes in the interneuronal circuits activated by TMS may also contribute. Here we assessed age-related differences in the characteristics of the corticospinal indirect (I) waves and how they influence plasticity induction in primary motor cortex. Twenty young (23.7 ± 3.4 years) and 19 older adults (70.6 ± 6.0 years) participated in these studies. I-wave recruitment was assessed by changing the direction of the current used to activate the motor cortex, whereas short-interval intracortical facilitation (SICF) was recorded to assess facilitatory I-wave interactions. In a separate study, I-wave periodicity TMS (iTMS) was used to examine the effect of I-wave latency on motor cortex plasticity. Data from the motor-evoked potential (MEP) onset latency produced using different coil orientations suggested that there were no age-related differences in preferential I-wave recruitment (P = 0.6). However, older adults demonstrated significant reductions in MEP facilitation at all 3 SICF peaks (all P values < 0.05) and a delayed latency of the second and third SICF peaks (all P values < 0.05). Using I-wave intervals that were optimal for young and older adults, these changes in the late I-waves were shown to influence the plasticity response in older adults after iTMS. These findings suggest that temporal characteristics are delayed for the late I-waves in older adults, and that optimising TMS interventions based on I-wave characteristics may improve the plasticity response in older adults.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
22
|
Cirillo J, Cowie MJ, MacDonald HJ, Byblow WD. Response inhibition activates distinct motor cortical inhibitory processes. J Neurophysiol 2018; 119:877-886. [DOI: 10.1152/jn.00784.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We routinely cancel preplanned movements that are no longer required. If stopping is forewarned, proactive processes are engaged to selectively decrease motor cortex excitability. However, without advance information there is a nonselective reduction in motor cortical excitability. In this study we examined modulation of human primary motor cortex inhibitory networks during response inhibition tasks with informative and uninformative cues using paired-pulse transcranial magnetic stimulation. Long- (LICI) and short-interval intracortical inhibition (SICI), indicative of GABAB- and GABAA-receptor mediated inhibition, respectively, were examined from motor evoked potentials obtained in task-relevant and task-irrelevant hand muscles when response inhibition was preceded by informative and uninformative cues. When the participants (10 men and 8 women) were cued to stop only a subcomponent of the bimanual response, the remaining response was delayed, and the extent of delay was greatest in the more reactive context, when cues were uninformative. For LICI, inhibition was reduced in both muscles during all types of response inhibition trials compared with the pre-task resting baseline. When cues were uninformative and left-hand responses were suddenly canceled, task-relevant LICI positively correlated with response times of the responding right hand. In trials where left-hand responding was highly probable or known (informative cues), task-relevant SICI was reduced compared with that when cued to rest, revealing a motor set indicative of responding. These novel findings indicate that the GABAB-receptor-mediated pathway may set a default inhibitory tone according to task context, whereas the GABAA-receptor-mediated pathways are recruited proactively with response certainty. NEW & NOTEWORTHY We examined how informative and uninformative cues that trigger both proactive and reactive processes modulate GABAergic inhibitory networks within human primary motor cortex. We show that GABAB inhibition was released during the task regardless of cue type, whereas GABAA inhibition was reduced when responding was highly probable or known compared with rest. GABAB-receptor-mediated inhibition may set a default inhibitory tone, whereas GABAA circuits may be modulated proactively according to response certainty.
Collapse
Affiliation(s)
- John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Matthew J. Cowie
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Hayley J. MacDonald
- Sport, Exercise and Rehabilitation Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Winston D. Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Mango D, Nisticò R, Furlan R, Finardi A, Centonze D, Mori F. PDGF Modulates Synaptic Excitability and Short-Latency Afferent Inhibition in Multiple Sclerosis. Neurochem Res 2018; 44:726-733. [PMID: 29392518 DOI: 10.1007/s11064-018-2484-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/25/2022]
Abstract
Maintenance of synaptic plasticity reserve is crucial to contrast clinical deterioration in MS and PDGF plays a key role in this phenomenon. Indeed, higher cerebrospinal fluid PDGF concentration correlates with improved clinical recovery after a relapse, and the amplitude of LTP-like cortical plasticity in relapsing-remitting MS patients. However, LTP-like cortical plasticity varies depending on the individual level of inhibitory cortical circuits. Aim of this study was to explore whether PDGF-CSF concentration correlates with inhibitory cortical circuits explored by means of transcranial magnetic stimulation in patients affected by relapsing-remitting MS. We further performed electrophysiological experiments evaluating GABAergic transmission in the experimental autoimmune encephalomyelitis (EAE) hippocampus. Our results reveal that increased CSF PDGF concentration correlates with decreased short afferent inhibition in the motor cortex in MS patients and decreased GABAergic activity in EAE. These findings show that PDGF affects GABAergic activity both in MS patients and in EAE hippocampus.
Collapse
Affiliation(s)
- Dalila Mango
- Neuropharmacology Unit, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Robert Nisticò
- Neuropharmacology Unit, EBRI Rita Levi-Montalcini Foundation, Rome, Italy. .,Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Diego Centonze
- Neurology and Neurorehabilitation Units, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, IS, Italy. .,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Francesco Mori
- Neurology and Neurorehabilitation Units, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, IS, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
24
|
Suppa A, Quartarone A, Siebner H, Chen R, Di Lazzaro V, Del Giudice P, Paulus W, Rothwell J, Ziemann U, Classen J. The associative brain at work: Evidence from paired associative stimulation studies in humans. Clin Neurophysiol 2017; 128:2140-2164. [DOI: 10.1016/j.clinph.2017.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022]
|
25
|
Kumru H, Albu S, Rothwell J, Leon D, Flores C, Opisso E, Tormos JM, Valls-Sole J. Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation. Clin Neurophysiol 2017; 128:2043-2047. [DOI: 10.1016/j.clinph.2017.06.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/29/2017] [Accepted: 06/18/2017] [Indexed: 10/19/2022]
|
26
|
Wu W, Xiong W, Zhang P, Chen L, Fang J, Shields C, Xu XM, Jin X. Increased threshold of short-latency motor evoked potentials in transgenic mice expressing Channelrhodopsin-2. PLoS One 2017; 12:e0178803. [PMID: 28562670 PMCID: PMC5451077 DOI: 10.1371/journal.pone.0178803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/18/2017] [Indexed: 01/28/2023] Open
Abstract
Transgenic mice that express channelrhodopsin-2 or its variants provide a powerful tool for optogenetic study of the nervous system. Previous studies have established that introducing such exogenous genes usually does not alter anatomical, electrophysiological, and behavioral properties of neurons in these mice. However, in a line of Thy1-ChR2-YFP transgenic mice (line 9, Jackson lab), we found that short-latency motor evoked potentials (MEPs) induced by transcranial magnetic stimulation had a longer latency and much lower amplitude than that of wild type mice. MEPs evoked by transcranial electrical stimulation also had a much higher threshold in ChR2 mice, although similar amplitudes could be evoked in both wild and ChR2 mice at maximal stimulation. In contrast, long-latency MEPs evoked by electrically stimulating the motor cortex were similar in amplitude and latency between wild type and ChR2 mice. Whole-cell patch clamp recordings from layer V pyramidal neurons of the motor cortex in ChR2 mice revealed no significant differences in intrinsic membrane properties and action potential firing in response to current injection. These data suggest that corticospinal tract is not accountable for the observed abnormality. Motor behavioral assessments including BMS score, rotarod, and grid-walking test showed no significant differences between the two groups. Because short-latency MEPs are known to involve brainstem reticulospinal tract, while long-latency MEPs mainly involve primary motor cortex and dorsal corticospinal tract, we conclude that this line of ChR2 transgenic mice has normal function of motor cortex and dorsal corticospinal tract, but reduced excitability and responsiveness of reticulospinal tracts. This abnormality needs to be taken into account when using these mice for related optogenetic study.
Collapse
Affiliation(s)
- Wei Wu
- Department of Neurological Surgery, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wenhui Xiong
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, Kentucky, United States of America
| | - Lifang Chen
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jianqiao Fang
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.,Zhejiang Chinese Medical University, Hangzhou, China
| | - Christopher Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, Kentucky, United States of America
| | - Xiao-Ming Xu
- Department of Neurological Surgery, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaoming Jin
- Department of Neurological Surgery, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
27
|
Mooney RA, Cirillo J, Byblow WD. GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study. J Neurophysiol 2017; 118:425-433. [PMID: 28424294 DOI: 10.1152/jn.00199.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
The effects of healthy aging on γ-aminobutyric acid (GABA) within primary motor cortex (M1) remain poorly understood. Studies have reported contrasting results, potentially due to limitations with the common assessment technique. The aim of the present study was to investigate the effect of healthy aging on M1 GABA concentration and neurotransmission using a multimodal approach. Fifteen young and sixteen older adults participated in this study. Magnetic resonance spectroscopy (MRS) was used to measure M1 GABA concentration. Single-pulse and threshold-tracking paired-pulse transcranial magnetic stimulation (TMS) protocols were used to examine cortical silent period duration, short- and long-interval intracortical inhibition (SICI and LICI), and late cortical disinhibition (LCD). The reliability of TMS measures was examined with intraclass correlation coefficient analyses. SICI at 1 ms was reduced in older adults (15.13 ± 2.59%) compared with young (25.66 ± 1.44%; P = 0.002). However, there was no age-related effect for cortical silent period duration, SICI at 3 ms, LICI, or LCD (all P > 0.66). The intersession reliability of threshold-tracking measures was good to excellent for both young (range 0.75-0.96) and older adults (range 0.88-0.93). Our findings indicate that extrasynaptic inhibition may be reduced with advancing age, whereas GABA concentration and synaptic inhibition are maintained. Furthermore, MRS and threshold-tracking TMS provide valid and reliable assessment of M1 GABA concentration and neurotransmission, respectively, in young and older adults.NEW & NOTEWORTHY γ-Aminobutyric acid (GABA) in primary motor cortex was assessed in young and older adults using magnetic resonance spectroscopy and threshold-tracking paired-pulse transcranial magnetic stimulation. Older adults exhibited reduced extrasynaptic inhibition (short-interval intracortical inhibition at 1 ms) compared with young, whereas GABA concentration and synaptic inhibition were similar between age groups. We demonstrate that magnetic resonance spectroscopy and threshold-tracking provide valid and reliable assessments of primary motor cortex GABA concentration and neurotransmission, respectively.
Collapse
Affiliation(s)
- Ronan A Mooney
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, New Zealand; and.,Centre for Brain Research, The University of Auckland, New Zealand
| | - John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, New Zealand; and.,Centre for Brain Research, The University of Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, New Zealand; and .,Centre for Brain Research, The University of Auckland, New Zealand
| |
Collapse
|
28
|
Meehan SK, Mirdamadi JL, Martini DN, Broglio SP. Changes in Cortical Plasticity in Relation to a History of Concussion during Adolescence. Front Hum Neurosci 2017; 11:5. [PMID: 28144218 PMCID: PMC5239801 DOI: 10.3389/fnhum.2017.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/04/2017] [Indexed: 11/13/2022] Open
Abstract
Adolescence and early adulthood is a critical period for neurophysiological development potentially characterized by an increased susceptibility to the long-term effects of traumatic brain injury. The current study investigated differences in motor cortical physiology and neuroplastic potential across a cohort of young adults with adolescent concussion history and those without. Transcranial magnetic stimulation (TMS) was used to assess motor evoked potential (MEP) amplitude, short-interval cortical inhibition (SICI) and intracortical facilitation (ICF) before and after intermittent theta burst stimulation (iTBS). Pre-iTBS, MEP amplitude, but not SICI or ICF, was greater in the concussion history group. Post-iTBS, the expected increase in MEP amplitude and ICF was tempered in the concussion history group. Change in SICI was variable within the concussion history group. Post hoc assessment revealed that SICI was significantly lower in individuals whose concussion was not diagnosed at the time of injury compared to both those without a concussion history or whose concussion was medically diagnosed. Concussive impacts during adolescence appear to result in a persistent reduction of the ability to modulate facilitatory motor networks. Failure to report/identify concussive impacts close to injury during adolescence also appears to produce persistent change in inhibitory networks. These findings highlight the potential long-term impact of adolescent concussion upon motor cortical physiology.
Collapse
Affiliation(s)
- Sean K Meehan
- School of Kinesiology, University of Michigan Ann Arbor, MI, USA
| | | | | | - Steven P Broglio
- School of Kinesiology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
29
|
Caranzano L, Stephan MA, Herrmann FR, Benninger DH. Desynchronization does not contribute to intracortical inhibition and facilitation: a paired-pulse paradigm study combined with TST. J Neurophysiol 2016; 117:1052-1056. [PMID: 27974446 DOI: 10.1152/jn.00381.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022] Open
Abstract
The paired-pulse (PP) transcranial magnetic stimulation (TMS) paradigms allow the exploration of the motor cortex physiology. The triple stimulation technique (TST) improves conventional TMS by reducing effects of desynchronization of motor neuron discharges allowing a precise evaluation of the corticospinal conduction. The objective of our study was to explore PP TMS paradigms combined with the TST to study whether the desynchronization contributes to these phenomena and whether the combined TMS-TST protocol could improve the consistency of responses. We investigated the PP paradigms of short intracortical inhibition (SICI) with 2 ms interstimulus interval (ISI) and of intracortical facilitation (ICF) with 10 ms ISI in 22 healthy subjects applying either conventional TMS alone or combined with the TST protocol. The results of the PP paradigms combined with the TST of SICI and ICF do not differ from those with conventional TMS. However, combining the PP paradigm with the TST reduces their variability. These results speak against a contribution of the desynchronization of motor neuron discharges to the PP paradigms of SICI and ICF. Combining the PP TMS paradigm with the TST may improve their consistency, but the interindividual variability remains such that it precludes their utility for clinical practice.NEW & NOTEWORTHY Combining the triple stimulation technique with the paired-pulse stimulation paradigm improves the consistency of short intracortical inhibition and facilitation and could be useful in research, but the interindividual variability precludes their utility for clinical practice. Our findings do not suggest that desynchronization of descending discharges following transcranial magnetic stimulation contributes to short intracortical inhibition or intracortical facilitation.
Collapse
Affiliation(s)
- L Caranzano
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Faculté de Biologie et de Médecine, Doctoral School, Université de Lausanne, Lausanne, Switzerland; and
| | - M A Stephan
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - F R Herrmann
- Division of Geriatrics, Department of Internal Medicine, Rehabilitation, and Geriatrics, University Hospitals and University of Geneva, Geneva, Switzerland
| | - D H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland;
| |
Collapse
|
30
|
Cirillo J, Byblow WD. Threshold tracking primary motor cortex inhibition: the influence of current direction. Eur J Neurosci 2016; 44:2614-2621. [DOI: 10.1111/ejn.13369] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- John Cirillo
- Movement Neuroscience Laboratory; Department of Exercise Sciences and Centre for Brain Research; University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| | - Winston D. Byblow
- Movement Neuroscience Laboratory; Department of Exercise Sciences and Centre for Brain Research; University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| |
Collapse
|
31
|
Fedele T, Blagovechtchenski E, Nazarova M, Iscan Z, Moiseeva V, Nikulin VV. Long-Range Temporal Correlations in the amplitude of alpha oscillations predict and reflect strength of intracortical facilitation: Combined TMS and EEG study. Neuroscience 2016; 331:109-19. [DOI: 10.1016/j.neuroscience.2016.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 12/01/2022]
|
32
|
Royter V, Gharabaghi A. Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization. Front Cell Neurosci 2016; 10:115. [PMID: 27242429 PMCID: PMC4861730 DOI: 10.3389/fncel.2016.00115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/20/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pairing peripheral electrical stimulation (ES) and transcranial magnetic stimulation (TMS) increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI)-related oscillatory modulation amplifies both ES-related cortical effects-sensorimotor event-related desynchronization (ERD), and TMS-induced peripheral responses-motor-evoked potentials (MEP). However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear. OBJECTIVE The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. METHOD The paired application of functional electrical stimulation (FES) of the extensor digitorum communis (EDC) muscle and subsequent single-pulse TMS (110% resting motor threshold (RMT)) of the contralateral primary motor cortex (M1) was controlled by beta-band (16-22 Hz) ERD during MI of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC) of both MEP peak-to-peak amplitude and area under the curve (AUC) before and after the intervention. RESULT The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain state-dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied. CONCLUSION These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation (PAS) in the context of neurorehabilitation.
Collapse
Affiliation(s)
- Vladislav Royter
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
33
|
Kamke MR, Nydam AS, Sale MV, Mattingley JB. Associative plasticity in the human motor cortex is enhanced by concurrently targeting separate muscle representations with excitatory and inhibitory protocols. J Neurophysiol 2016; 115:2191-8. [PMID: 26864761 DOI: 10.1152/jn.00794.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
Paired associative stimulation (PAS) induces changes in the excitability of human sensorimotor cortex that outlast the procedure. PAS typically involves repeatedly pairing stimulation of a peripheral nerve that innervates an intrinsic hand muscle with transcranial magnetic stimulation over the representation of that muscle in the primary motor cortex. Depending on the timing of the stimuli (interstimulus interval of 25 or 10 ms), PAS leads to either an increase (PAS25) or a decrease (PAS10) in excitability. Both protocols, however, have been associated with an increase in excitability of nearby muscle representations not specifically targeted by PAS. Based on these spillover effects, we hypothesized that an additive, excitability-enhancing effect of PAS25 applied to one muscle representation may be produced by simultaneously applying PAS25 or PAS10 to a nearby representation. In different experiments prototypical PAS25 targeting the left thumb representation [abductor pollicis brevis (APB)] was combined with either PAS25 or PAS10 applied to the left little finger representation [abductor digiti minimi (ADM)] or, in a control experiment, with PAS10 also targeting the APB. In an additional control experiment PAS10 targeted both representations. The plasticity effects were quantified by measuring the amplitude of motor evoked potentials (MEPs) recorded before and after PAS. As expected, prototypical PAS25 was associated with an increase in MEP amplitude in the APB muscle. This effect was enhanced when PAS also targeted the ADM representation but only when a different interstimulus timing (PAS10) was used. These results suggest that PAS-induced plasticity is modified by concurrently targeting separate motor cortical representations with excitatory and inhibitory protocols.
Collapse
Affiliation(s)
- Marc R Kamke
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Abbey S Nydam
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Martin V Sale
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans. Eur J Appl Physiol 2015; 115:2505-19. [PMID: 26335625 PMCID: PMC4635177 DOI: 10.1007/s00421-015-3248-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/13/2015] [Indexed: 12/02/2022]
Abstract
Purpose Sensory input can modify voluntary motor function. We examined whether somatosensory electrical stimulation (SES) added to motor practice (MP) could augment motor learning, interlimb transfer, and whether physiological changes in neuronal excitability underlie these changes. Methods Participants (18–30 years, n = 31) received MP, SES, MP + SES, or a control intervention. Visuomotor practice included 300 trials for 25 min with the right-dominant wrist and SES consisted of weak electrical stimulation of the radial and median nerves above the elbow. Single- and double-pulse transcranial magnetic stimulation (TMS) metrics were measured in the intervention and non-intervention extensor carpi radialis. Results There was 27 % motor learning and 9 % (both p < 0.001) interlimb transfer in all groups but SES added to MP did not augment learning and transfer. Corticospinal excitability increased after MP and SES when measured at rest but it increased after MP and decreased after SES when measured during contraction. No changes occurred in intracortical inhibition and facilitation. MP did not affect the TMS metrics in the transfer hand. In contrast, corticospinal excitability strongly increased after SES with MP + SES showing sharply opposite of these effects. Conclusion Motor practice and SES each can produce motor learning and interlimb transfer and are likely to be mediated by different mechanisms. The results provide insight into the physiological mechanisms underlying the effects of MP and SES on motor learning and cortical plasticity and show that these mechanisms are likely to be different for the trained and stimulated motor cortex and the non-trained and non-stimulated motor cortex.
Collapse
|
35
|
Chieffo R, Comi G, Leocani L. Noninvasive Neuromodulation in Poststroke Gait Disorders. Neurorehabil Neural Repair 2015; 30:71-82. [DOI: 10.1177/1545968315586464] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Walking rehabilitation is one of the primary goals in stroke survivors because of its great potential for recovery and its functional relevance in daily living activities. Although 70% to 80% of people in the chronic poststroke phases are able to walk, impairment of gait often persists, involving speed, endurance, and stability. Walking involves several brain regions, such as the sensorimotor cortex, supplementary motor area, cerebellum, and brainstem, which are approachable by the application of noninvasive brain stimulation (NIBS). NIBS techniques, such as repetitive transcranial magnetic stimulation and transcranial direct current stimulation, have been reported to modulate neural activity beyond the period of stimulation, facilitating neuroplasticity. NIBS methods have been largely applied for improving paretic hand motor function and stroke-associated cognitive deficits. Recent studies suggest a possible effectiveness of these techniques also in the recovery of poststroke gait disturbance. This article is a selective review about functional investigations addressing the mechanisms of lower-limb motor system reorganization after stroke and the application of NIBS for neurorehabilitation.
Collapse
Affiliation(s)
- Raffaella Chieffo
- Scientific Institute Vita-Salute University San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Scientific Institute Vita-Salute University San Raffaele, Milan, Italy
| | - Letizia Leocani
- Scientific Institute Vita-Salute University San Raffaele, Milan, Italy
| |
Collapse
|
36
|
Efficacy and interindividual variability in motor-cortex plasticity following anodal tDCS and paired-associative stimulation. Neural Plast 2015; 2015:530423. [PMID: 25866683 PMCID: PMC4381571 DOI: 10.1155/2015/530423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023] Open
Abstract
Interindividual response variability to various motor-cortex stimulation protocols has been recently reported. Comparative data of stimulation protocols with different modes of action is lacking. We aimed to compare the efficacy and response variability of two LTP-inducing stimulation protocols in the human motor cortex: anodal transcranial direct current stimulation (a-tDCS) and paired-associative stimulation (PAS25). In two experiments 30 subjects received 1mA a-tDCS and PAS25. Data analysis focused on motor-cortex excitability change and response defined as increase in MEP applying different cut-offs. Furthermore, the predictive pattern of baseline characteristics was explored. Both protocols induced a significant increase in motor-cortical excitability. In the PAS25 experiments the likelihood to develop a MEP response was higher compared to a-tDCS, whereas for intracortical facilitation (ICF) the likelihood for a response was higher in the a-tDCS experiments. Baseline ICF (12 ms) correlated positively with an increase in MEPs only following a-tDCS and responders had significantly higher ICF baseline values. Contrary to recent studies, we showed significant group-level efficacy following both stimulation protocols confirming older studies. However, we also observed a remarkable amount of nonresponders. Our findings highlight the need to define sufficient physiological read-outs for a given plasticity protocol and to develop predictive markers for targeted stimulation.
Collapse
|