1
|
Hou WP, Qin XQ, Hou WW, Han YY, Bo QJ, Dong F, Zhou FC, Li XB, Wang CY. Interaction between catechol-O-methyltransferase Val/Met polymorphism and cognitive reserve for negative symptoms in schizophrenia. World J Psychiatry 2024; 14:695-703. [PMID: 38808087 PMCID: PMC11129152 DOI: 10.5498/wjp.v14.i5.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Cognitive reserve (CR) and the catechol-O-methyltransferase (COMT) Val/Met polymorphism are reportedly linked to negative symptoms in schizophrenia. However, the regulatory effect of the COMT genotype on the relationship between CR and negative symptoms is still unexamined. AIM To investigate whether the relationship between CR and negative symptoms could be regulated by the COMT Val/Met polymorphism. METHODS In a cross-sectional study, 54 clinically stable patients with schizophrenia underwent assessments for the COMT genotype, CR, and negative symptoms. CR was estimated using scores in the information and similarities subtests of a short form of the Chinese version of the Wechsler Adult Intelligence Scale. RESULTS COMT Met-carriers exhibited fewer negative symptoms than Val homozygotes. In the total sample, significant negative correlations were found between negative symptoms and information, similarities. Associations between information, similarities and negative symptoms were observed in Val homozygotes only, with information and similarities showing interaction effects with the COMT genotype in relation to negative symptoms (information, β = -0.282, 95%CI: -0.552 to -0.011, P = 0.042; similarities, β = -0.250, 95%CI: -0.495 to -0.004, P = 0.046). CONCLUSION This study provides initial evidence that the association between negative symptoms and CR is under the regulation of the COMT genotype in schizophrenia.
Collapse
Affiliation(s)
- Wen-Peng Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiang-Qin Qin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wei-Wei Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yun-Yi Han
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qi-Jing Bo
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Fang Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Fu-Chun Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xian-Bin Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chuan-Yue Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Weidler C, Hofhansel L, Regenbogen C, Müller D, Clemens B, Montag C, Reif A, Habel U. The influence of the COMT Val158Met polymorphism on prefrontal TDCS effects on aggression. Sci Rep 2024; 14:3437. [PMID: 38341445 PMCID: PMC10858895 DOI: 10.1038/s41598-024-53930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Increasing dorsolateral prefrontal cortex (DLPFC) activity by anodal transcranial direct current stimulation (tDCS) enhances cognitive control and might reduce aggression. The Val158Met polymorphism within the catechol-O-methyltransferase gene (rs4680) plays a pivotal role in prefrontal dopamine signaling, displaying associations with aggressive behavior, and potentially influencing the effects of tDCS. In a double-blind, sham-controlled study, we investigated the influence of rs4680 on tDCS effects on aggression. While undergoing functional magnetic resonance imaging, 89 healthy male participants performed the Taylor aggression paradigm before and immediately after tDCS. Actively stimulated participants (n = 45) received anodal tDCS (1.5 mA) for 20 min targeting the right DLPFC. Carriers of the val-allele (val+; n = 46; active tDCS n = 23) were compared to met-allele homozygotes (val-; n = 43; active tDCS n = 22). Analysis revealed decreased aggressive behavior in the val- group following active tDCS (p < 0.001). The val+ group showed increased aggression during the second session (p < 0.001) with an even higher increase following active as compared to sham tDCS (p < 0.001). No effects of stimulation or rs4680 on brain activation were found. Our study provides evidence for opposite tDCS effects on aggressive behavior in val-carriers and val-noncarriers. By shedding light on genetic factors predicting tDCS responsivity, the study will help to pave the way toward individualized-and thus more effective-tDCS treatment options.
Collapse
Affiliation(s)
- Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Lena Hofhansel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Dario Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
3
|
Ai Y, Liu Y, Yin M, Zhang L, Luo J, Zhang S, Huang L, Zhang C, Liu G, Fang J, Zheng H, Li L, Hu X. Interactions between tDCS treatment and COMT Val158Met in poststroke cognitive impairment. Clin Neurophysiol 2024; 158:43-55. [PMID: 38176157 DOI: 10.1016/j.clinph.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE This study aimed to explore the effect of catechol-O-methyltransferase (COMT) Val158Met and brain-derived neurotrophic factor (BDNF) Val66Met to post-stroke cognitive impairment (PSCI) and the interaction with transcranial direct current stimulation (tDCS). METHODS Seventy-six patients with PSCI were randomly assigned to Group (1) (n = 38) to receive anodal tDCS of left dorsolateral prefrontal cortex or Group (2) (n = 38) to receive sham stimulation. The intensity of the tDCS was 2 mA, and the stimulations were applied over the left DLPFC for 10 sessions. The Montreal Cognitive Assessment (MoCA) and backward digit span test (BDST) were assessed before, immediately after, and one month after stimulation. RESULTS After stimulation, patients in the tDCS group showed better improvement in both MoCA and BDST than those in the sham group. The results of GLMs also supported the main effects of tDCS on general cognitive function and working memory. Then we found that COMT genotype may have a main effect on the improvement of MoCA and BDST, and there may be an interaction between COMT genotype and tDCS in enhancing BDST. In contrast, BDNF genotype showed no significant main or interaction effects on any scales. CONCLUSIONS These findings demonstrate that tDCS can improve cognition after stroke. Gene polymorphisms of COMT can affect the efficacy of tDCS on PSCI, but BDNF may not. SIGNIFICANCE This study found that COMT Val158Met has an interaction on the efficacy of prefrontal tDCS in cognitive function, which provides reference for future tDCS research and clinical application.
Collapse
Affiliation(s)
- Yinan Ai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Yuanwen Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Shuxian Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Li Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Chanjuan Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Guirong Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Jie Fang
- Xiamen Humanity Rehabilitation Hospital, Xiamen 361009, Fujian Province, PR China.
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| |
Collapse
|
4
|
Farshad M, Artemenko C, Cipora K, Svaldi J, Schroeder PA. Regional specificity of cathodal transcranial direct current stimulation effects on spatial-numerical associations: Comparison of four stimulation sites. J Neurosci Res 2024; 102:e25304. [PMID: 38361404 DOI: 10.1002/jnr.25304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Neuromodulation with transcranial direct current stimulation (tDCS) is an increasingly popular research tool to experimentally manipulate cortical areas and probe their causal involvements in behavior, but its replicability and regional specificity are not clear. This registered report investigated cathodal tDCS effects on spatial-numerical associations (i.e., the SNARC effect), the numerical distance effect (NDE), and inhibitory control (i.e., stop-signal reaction time; SSRT). Healthy adults (N = 160) were randomly assigned to one of five groups to receive sham tDCS or 1 mA cathodal tDCS to one of four stimulation sites (left/right prefrontal cortex [PFC], left/right posterior parietal cortex) with extracephalic return. We replicated that cathodal tDCS over the left PFC reduced the SNARC effect compared to sham tDCS and to tDCS over the left parietal cortex. However, neither NDE nor SSRT were modulated in the main analyses. Post hoc contrasts and exploratory analyses showed that cathodal tDCS over the right PFC had a time-dependent effect by delayed practice-related improvements in SSRT. Math anxiety moderated changes in the NDE in the groups receiving tDCS to the right parietal cortex. With few exceptions, the replicability and regional specificity of tDCS effects on behavior were weak and partially moderated by individual differences. Future research needs to characterize the parameter settings for effective neuromodulation.
Collapse
Affiliation(s)
- Maryam Farshad
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
| | - Christina Artemenko
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Research Network, University of Tuebingen, Tuebingen, Germany
| | - Krzysztof Cipora
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Research Network, University of Tuebingen, Tuebingen, Germany
- Centre for Mathematical Cognition, Loughborough University, Loughborough, UK
| | - Jennifer Svaldi
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
5
|
Laskov O, Biačková N, Stuchlíková Z, Kostýlková L, Klírová M. Inhibitory Control in Young Healthy Adults - a tDCS Study. Physiol Res 2023; 72:633-644. [PMID: 38015762 PMCID: PMC10751056 DOI: 10.33549/physiolres.935066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/08/2023] [Indexed: 01/05/2024] Open
Abstract
Inhibitory control plays a role in the behavior selection and detection of conflicts. Defects in inhibitory control are an integral part of many neuropsychiatric disorders and the possibilities of influencing it are the subject of active study. Studies have shown and confirmed the activation of the dorsolateral prefrontal cortex (DLPFC) during the Stroop task and other tests involving response inhibition. Non-invasive brain stimulation is an emerging and actively developing group of methods used in cognitive research. In the present study, we used non-invasive, painless, and delicate transcranial direct stimulation (tDCS) for the study of inhibitory control, and to explore the effect of impulsivity on response inhibition ability in young healthy participants. We conducted a cross-over study with cross-hemispheric application of 2 mA tDCS with electrodes placed on the right - cathode, and left - anode - DLPFC. Participants performed a classic Stroop test before and after stimulation. Impulsivity was measured via the personal impulsiveness questionnaire. There was no significant difference in interference score alteration between active and sham stimulations, anodal and sham tDCS both induced slight improvement in Stroop test results. Individual impulsivity in healthy participants showed no influence on their results. Our study adds to the picture and helps to deepen knowledge about the impact of different stimulation parameters on cognitive functions.
Collapse
Affiliation(s)
- O Laskov
- National Institute of Mental Health, Klecany, Czech Republic.
| | | | | | | | | |
Collapse
|
6
|
Leow LA, Marcos A, Nielsen E, Sewell D, Ballard T, Dux PE, Filmer HL. Dopamine Alters the Effect of Brain Stimulation on Decision-Making. J Neurosci 2023; 43:6909-6919. [PMID: 37648451 PMCID: PMC10573748 DOI: 10.1523/jneurosci.1140-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), show promise in treating a range of psychiatric and neurologic conditions. However, optimization of such applications requires a better understanding of how tDCS alters cognition and behavior. Existing evidence implicates dopamine in tDCS alterations of brain activity and plasticity; however, there is as yet no causal evidence for a role of dopamine in tDCS effects on cognition and behavior. Here, in a preregistered, double-blinded study, we examined how pharmacologically manipulating dopamine altered the effect of tDCS on the speed-accuracy trade-off, which taps ubiquitous strategic operations. Cathodal tDCS was delivered over the left prefrontal cortex and the superior medial frontal cortex before participants (N = 62, 24 males, 38 females) completed a dot-motion task, making judgments on the direction of a field of moving dots under instructions to emphasize speed, accuracy, or both. We leveraged computational modeling to uncover how our interventions altered latent decisional processes driving the speed-accuracy trade-off. We show that dopamine in combination with tDCS (but not tDCS alone nor dopamine alone) not only impaired decision accuracy but also impaired discriminability, which suggests that these manipulations altered the encoding or representation of discriminative evidence. This is, to the best of our knowledge, the first direct evidence implicating dopamine in the way tDCS affects cognition and behavior.SIGNIFICANCE STATEMENT tDCS can improve cognitive and behavioral impairments in clinical conditions; however, a better understanding of its mechanisms is required to optimize future clinical applications. Here, using a pharmacological approach to manipulate brain dopamine levels in healthy adults, we demonstrate a role for dopamine in the effects of tDCS in the speed-accuracy trade-off, a strategic cognitive process ubiquitous in many contexts. In doing so, we provide direct evidence implicating dopamine in the way tDCS affects cognition and behavior.
Collapse
Affiliation(s)
- Li-Ann Leow
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - Anjeli Marcos
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - Esteban Nielsen
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - David Sewell
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - Timothy Ballard
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - Paul E Dux
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - Hannah L Filmer
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| |
Collapse
|
7
|
D'Urso G, Toscano E, Barone A, Palermo M, Dell'Osso B, Di Lorenzo G, Mantovani A, Martinotti G, Fornaro M, Iasevoli F, de Bartolomeis A. Transcranial direct current stimulation for bipolar depression: systematic reviews of clinical evidence and biological underpinnings. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110672. [PMID: 36332699 DOI: 10.1016/j.pnpbp.2022.110672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022]
Abstract
Despite multiple available treatments for bipolar depression (BD), many patients face sub-optimal responses. Transcranial direct current stimulation (tDCS) has been advocated in the management of different conditions, including BD, especially in treatment-resistant cases. The optimal dose and timing of tDCS, the mutual influence with other concurrently administered interventions, long-term efficacy, overall safety, and biological underpinnings nonetheless deserve additional assessment. The present study appraised the existing clinical evidence about tDCS for bipolar depression, delving into the putative biological underpinnings with a special emphasis on cellular and molecular levels, with the ultimate goal of providing a translational perspective on the matter. Two separate systematic reviews across the PubMed database since inception up to August 8th 2022 were performed, with fourteen clinical and nineteen neurobiological eligible studies. The included clinical studies encompass 207 bipolar depression patients overall and consistently document the efficacy of tDCS, with a reduction in depression scores after treatment ranging from 18% to 92%. The RCT with the largest sample clearly showed a significant superiority of active stimulation over sham. Mild-to-moderate and transient adverse effects are attributed to tDCS across these studies. The review of neurobiological literature indicates that several molecular mechanisms may account for the antidepressant effect of tDCS in BD patients, including the action on calcium homeostasis in glial cells, the enhancement of LTP, the regulation of neurotrophic factors and inflammatory mediators, and the modulation of the expression of plasticity-related genes. To the best of our knowledge, this is the first study on the matter to concurrently provide a synthesis of the clinical evidence and an in-depth appraisal of the putative biological underpinnings, providing consistent support for the efficacy, safety, and tolerability of tDCS.
Collapse
Affiliation(s)
- Giordano D'Urso
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy.
| | - Elena Toscano
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Annarita Barone
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Mario Palermo
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Luigi Sacco Polo Universitario, ASST Fatebenefratelli Sacco, Milan, Italy; Department of Psychiatry and Behavioural Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA; CRC "Aldo Ravelli" for Neuro-technology & Experimental Brain Therapeutics, University of Milan, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, Tor Vergata University of Rome, Italy; Psychiatric and Clinical Psychology Unit, Fondazione Policlinico Tor Vergata, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Mantovani
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio" Università degli Studi del Molise, Campobasso, Italy; Dipartimento di Salute Mentale e delle Dipendenze, Azienda Sanitaria Regionale del Molise (ASReM), Campobasso, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging, Clinical Sciences, University Gabriele d'Annunzio, Chieti-Pescara, Italy; Department of Pharmacy, Pharmacology, Clinical Sciences, University of Hertfordshire, Herts, UK
| | - Michele Fornaro
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
8
|
Yatan G, Lim LW, Aquili L. Routine behaviour, a putative dopamine marker, predicts cognitive flexibility by tDCS of the dlPFC. Brain Stimul 2023; 16:108-110. [PMID: 36731769 DOI: 10.1016/j.brs.2023.01.1676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Affiliation(s)
- Gibson Yatan
- College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Luca Aquili
- College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
9
|
Vergallito A, Feroldi S, Pisoni A, Romero Lauro LJ. Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sci 2022; 12:522. [PMID: 35624908 PMCID: PMC9139102 DOI: 10.3390/brainsci12050522] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Due to its safety, portability, and cheapness, transcranial direct current stimulation (tDCS) use largely increased in research and clinical settings. Despite tDCS's wide application, previous works pointed out inconsistent and low replicable results, sometimes leading to extreme conclusions about tDCS's ineffectiveness in modulating behavioral performance across cognitive domains. Traditionally, this variability has been linked to significant differences in the stimulation protocols across studies, including stimulation parameters, target regions, and electrodes montage. Here, we reviewed and discussed evidence of heterogeneity emerging at the intra-study level, namely inter-individual differences that may influence the response to tDCS within each study. This source of variability has been largely neglected by literature, being results mainly analyzed at the group level. Previous research, however, highlighted that only a half-or less-of studies' participants could be classified as responders, being affected by tDCS in the expected direction. Stable and variable inter-individual differences, such as morphological and genetic features vs. hormonal/exogenous substance consumption, partially account for this heterogeneity. Moreover, variability comes from experiments' contextual elements, such as participants' engagement/baseline capacity and individual task difficulty. We concluded that increasing knowledge on inter-dividual differences rather than undermining tDCS effectiveness could enhance protocols' efficiency and reproducibility.
Collapse
Affiliation(s)
- Alessandra Vergallito
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Sarah Feroldi
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy;
| | - Alberto Pisoni
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Leonor J. Romero Lauro
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| |
Collapse
|
10
|
Prowacki M, Lim LW, Aquili L. Eyeblink rate, a putative dopamine marker, predicts negative reinforcement learning by tDCS of the dlPFC. Brain Stimul 2022; 15:533-535. [DOI: 10.1016/j.brs.2022.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 01/05/2023] Open
|
11
|
Zhou J, Xuan B. Inhibitory control training and transcranial direct current stimulation of the pre-supplementary motor area: behavioral gains and transfer effects. Exp Brain Res 2022; 240:909-925. [PMID: 35083548 DOI: 10.1007/s00221-021-06297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Inhibitory control is a critical part of executive function and an important cognitive process in daily life. It is currently unclear how to optimally improve inhibitory control ability through behavior training and other interventions. Here, we explored the factors that influence inhibition control training in two experiments, focusing on the gains and transfer effects of training. Experiments 1 and 2 investigated the effects of anodal transcranial direct current stimulation (tDCS) over the pre-supplementary motor area and an increase in training duration on the training effect for inhibitory control, respectively, as well as the transfer effects when participants completed the Stroop and directed forgetting tasks. The results showed a stable training effect in relation to inhibitory control and a transfer effect for the Stroop task. Anodal tDCS in the pre-supplementary motor area could effectively improve inhibitory control ability, but not further enhance the training effect for inhibitory control. Moreover, increasing the training duration did not enhance the training effect for inhibitory control. The addition of tDCS and the extension of training duration failed to enhance the training effect, indicating that there may be a limitation of improvement in inhibitory control. The findings provide evidence regarding the further intervention effects of behavioral training and tDCS.
Collapse
Affiliation(s)
- Jing Zhou
- School of Educational Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Bin Xuan
- School of Educational Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China.
| |
Collapse
|
12
|
Initial performance modulates the effects of cathodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex on inhibitory control. Brain Res 2022; 1774:147722. [PMID: 34774867 DOI: 10.1016/j.brainres.2021.147722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/22/2021] [Accepted: 11/06/2021] [Indexed: 11/27/2022]
Abstract
Transcranial direct current stimulation (tDCS) has received considerable attention as a new option to facilitate cognitive ability or rehabilitation in healthy populations or in individuals with neuropsychiatric disorders. However, the tDCS effect varies widely, possibly because individual differences in initial performance have frequently been ignored in previous research. Here, we aimed to examine the influence of initial performance on inhibitory control after tDCS. Fifty-six participants were randomly divided into three groups: anodal, cathodal and sham stimulation. The go/no-go task, stop-signal task and Stroop task were performed to measure inhibitory control before and immediately after tDCS. tDCS was applied to the F4 site (international 10-20 system), corresponding to the right dorsolateral prefrontal cortex (rDLPFC), for 20 min with an intensity of 1.5 mA. Neither anodal nor cathodal stimulation had significant effects on the performance of these three tasks at the group level in comparison with sham stimulation. However, the analyses at the individual level only showed a negative relationship between baseline performance and the magnitude of change in go/no-go task performance following cathodal tDCS, indicating the dependence of the change amount on initial performance, with greater gains (or losses) observed in individuals with poorer (or better) initial performance. Together, the initial performance modulates the proactive inhibitory effect of cathodal tDCS of the rDLPFC. Additionally, the rDLPFC plays a crucial role in proactive inhibition.
Collapse
|
13
|
Chinzara T, Buckingham G, Harris D. Transcranial direct current stimulation (tDCS) and sporting performance: A systematic review and meta-analysis of tDCS effects on physical endurance, muscular strength, and visuomotor skills. Eur J Neurosci 2021; 55:468-486. [PMID: 34904303 DOI: 10.1111/ejn.15540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has been linked with a range of physiological and cognitive enhancements relevant to sporting performance. As a number of positive and null findings have been reported in the literature, the present meta-analysis sought to synthesise results across endurance, strength, and visuomotor skill domains to investigate if tDCS improves any aspect of sporting performance. Online database searches in August 2020 identified 43 full-text studies which examined the acute effects of tDCS compared to sham/control conditions on physical endurance, muscular strength, and visuomotor skills in healthy adults. Meta-analysis indicated a small overall effect favouring tDCS stimulation over sham/control (standardized mean difference (SMD)=0.25, CI95%[0.14;0.36]). Effects on strength (SMD=0.31, CI95%[0.10;0.51]) and visuomotor (SMD=0.29, CI95%[0.00;0.57]) tasks were larger than endurance performance (SMD=0.18, CI95%[0.00;0.37]). Meta-regressions indicated effect sizes were not related to stimulation parameters, but other factors such as genetics, gender, and experience may modulate tDCS effects. The results suggest tDCS has the potential to be used as an ergogenic aid in conjunction with a specified training regime.
Collapse
Affiliation(s)
- Trish Chinzara
- Department of Sport and Health Science, University of Exeter, UK.,Goldsmiths University of London, London, UK
| | - Gavin Buckingham
- Department of Sport and Health Science, University of Exeter, UK
| | - David Harris
- Department of Sport and Health Science, University of Exeter, UK
| |
Collapse
|
14
|
Wu D, Zhang P, Liu N, Sun K, Xiao W. Effects of High-Definition Transcranial Direct Current Stimulation Over the Left Fusiform Face Area on Face View Discrimination Depend on the Individual Baseline Performance. Front Neurosci 2021; 15:704880. [PMID: 34867146 PMCID: PMC8639859 DOI: 10.3389/fnins.2021.704880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
A basic human visual function is to identify objects from different viewpoints. Typically, the ability to discriminate face views based on in-depth orientation is necessary in daily life. Early neuroimaging studies have identified the involvement of the left fusiform face area (FFA) and the left superior temporal sulcus (STS) in face view discrimination. However, many studies have documented the important role of the right FFA in face processing. Thus, there remains controversy over whether one specific region or all of them are involved in discriminating face views. Thus, this research examined the influence of high-definition transcranial direct current stimulation (HD-tDCS) over the left FFA, left STS or right FFA on face view discrimination in three experiments. In experiment 1, eighteen subjects performed a face view discrimination task before and immediately, 10 min and 20 min after anodal, cathodal and sham HD-tDCS (20 min, 1.5 mA) over the left FFA in three sessions. Compared with sham stimulation, anodal and cathodal stimulation had no effects that were detected at the group level. However, the analyses at the individual level showed that the baseline performance negatively correlated with the degree of change after anodal tDCS, suggesting a dependence of the change amount on the initial performance. Specifically, tDCS decreased performance in the subjects with better baseline performance but increased performance in those with poorer baseline performance. In experiments 2 and 3, the same experimental protocol was used except that the stimulation site was the left STS or right FFA, respectively. Neither anodal nor cathodal tDCS over the left STS or right FFA influenced face view discrimination in group- or individual-level analyses. These results not only indicated the importance of the left FFA in face view discrimination but also demonstrated that individual initial performance should be taken into consideration in future research and practical applications.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| |
Collapse
|
15
|
Mardani P, Zolghadriha A, Dadashi M, Javdani H, Mousavi SE. Effect of medication therapy combined with transcranial direct current stimulation on depression and response inhibition of patients with bipolar disorder type I: a clinical trial. BMC Psychiatry 2021; 21:579. [PMID: 34789181 PMCID: PMC8596350 DOI: 10.1186/s12888-021-03592-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Bipolar Disorder (BD) is one of the most common mental disorders associated with depressive symptoms and impairment in executive functions such as response inhibition. This study aimed to investigate the effectiveness of medication therapy combined with Transcranial Direct Current Stimulation (tDCS) on depression and response inhibition of patients with BD. METHOD This is a double-blinded randomized clinical trial with pretest, posttest, and follow-up design. Participants were 30 patients with BD randomly assigned to two groups of Medication+tDCS (n = 15, receiving medications plus tDCS with 2 mA intensity over dorsolateral prefrontal cortex for 10 days, two sessions per day each for 20 min) and Medication (n = 15, receiving mood stabilizers including 2-5 tables of 300 mg (mg) lithium, 200 mg sodium valproate, and 200 mg carbamazepine two times per day). Pretest, posttest and 3-month follow-up assessments were the 21-item Hamilton Depression Rating Scale (HDRS) and a Go/No-Go test. Collected data were analyzed in SPSS v.20 software. RESULTS The mean HDRS score in both groups was reduced after both interventional techniques, where the group received combined therapy showed more reduction (P < 0.01), although their effects were not maintained after 3 months. In examining response inhibition variable, only the combined therapy could reduce the commission error of patients under a go/no-go task (p < 0.05), but its effect was not maintained after 3 months. There was no significant difference in the group received medication therapy alone. CONCLUSION Medication in combination with tDCS can reduce the depressive symptoms and improve the response inhibition ability of people with BD. TRIAL REGISTRATION This study was registred by Iranian Registry of Clinical Trials (Parallel, ID: IRCT20191229045931N1 , Registration date: 24/08/2020).
Collapse
Affiliation(s)
- Parnaz Mardani
- grid.469309.10000 0004 0612 8427Department of Clinical Psychology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ahmad Zolghadriha
- grid.469309.10000 0004 0612 8427Department of Psychiatry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohsen Dadashi
- grid.469309.10000 0004 0612 8427Department of Clinical Psychology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Javdani
- grid.412606.70000 0004 0405 433XDepartment of Psychiatry, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Seyedeh Elnaz Mousavi
- Department of Clinical Psychology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Null Effect of Transcranial Static Magnetic Field Stimulation over the Dorsolateral Prefrontal Cortex on Behavioral Performance in a Go/NoGo Task. Brain Sci 2021; 11:brainsci11040483. [PMID: 33920398 PMCID: PMC8069672 DOI: 10.3390/brainsci11040483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
The purpose of this pilot study was to investigate whether transcranial static magnetic field stimulation (tSMS), which can modulate cortical excitability, would influence inhibitory control function when applied over the dorsolateral prefrontal cortex (DLPFC). Young healthy adults (n = 8, mean age ± SD = 24.4 ± 4.1, six females) received the following stimulations for 30 min on different days: (1) tSMS over the left DLPFC, (2) tSMS over the right DLPFC, and (3) sham stimulation over either the left or right DLPFC. The participants performed a Go/NoGo task before, immediately after, and 10 min after the stimulation. They were instructed to extend the right wrist in response to target stimuli. We recorded the electromyogram from the right wrist extensor muscles and analyzed erroneous responses (false alarm and missed target detection) and reaction times. As a result, 50% of the participants made erroneous responses, and there were five erroneous responses in total (0.003%). A series of statistical analyses revealed that tSMS did not affect the reaction time. These preliminary findings suggest the possibility that tSMS over the DLPFC is incapable of modulating inhibitory control and/or that the cognitive load imposed in this study was insufficient to detect the effect.
Collapse
|
17
|
Wu D, Zhou Y, Lv H, Liu N, Zhang P. The initial visual performance modulates the effects of anodal transcranial direct current stimulation over the primary visual cortex on the contrast sensitivity function. Neuropsychologia 2021; 156:107854. [PMID: 33823163 DOI: 10.1016/j.neuropsychologia.2021.107854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Transcranial direct current stimulation (tDCS) has great potential to modulate cortical excitability and further facilitate visual function or rehabilitation. However, tDCS modulation effects are largely variable, possibly because of the individual differences in initial performance. The present study investigated the influence of the initial performance on contrast sensitivity function (CSF) following tDCS. Fifty healthy participants were randomly assigned to three groups: anodal, cathodal and sham stimulation. The CSF was measured through a grating detection task before and immediately after tDCS. Active and reference electrodes were applied to the primary occipital cortex (Oz) and the middle of the head (Cz) for 20 min with an intensity of 1.5 mA, respectively. Compared with sham stimulation, anodal or cathodal stimulation had no effect on the area under the log CSF (AULCSF) or contrast sensitivity (CS) of various spatial frequencies at the group level. However, a negative relationship was found between initial performance and the AULCSF change (or CS change at a spatial of frequency 8 c/°) after the application of anodal tDCS, indicating that the degree of change was dependent on initial performance, with greater gains observed for those with poorer initial performance. Initial performance modulated the effect of anodal tDCS over the Oz on the CSF, indicating that the Oz plays a crucial role in visual function. These results contribute to a deep understanding of the mechanisms of tDCS and to the design of more precise and efficient personalized simulation approaches based on individual differences.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - YingJie Zhou
- Basic Medical School, Air Force Medical University, Xi'an, China
| | - Haixu Lv
- Basic Medical School, Air Force Medical University, Xi'an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
18
|
Max SM, Plewnia C, Zipfel S, Giel KE, Schag K. Combined antisaccade task and transcranial direct current stimulation to increase response inhibition in binge eating disorder. Eur Arch Psychiatry Clin Neurosci 2021; 271:17-28. [PMID: 32661703 PMCID: PMC7867531 DOI: 10.1007/s00406-020-01164-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Abstract
Binge eating disorder (BED) is associated with deficient response inhibition. Malfunctioning response inhibition is linked to hypoactivation of the dorsolateral prefrontal cortex (dlPFC), where excitability could be increased by anodal transcranial direct current stimulation (tDCS). Response inhibition can be assessed using an antisaccade task which requires supressing a dominant response (i.e. saccade) towards a newly appearing picture in the visual field. We performed a double-blind, randomised, placebo-controlled proof-of-concept-study in which we combined a food-modified antisaccade task with tDCS in people with BED. We expected task learning and modulatory tDCS effects. Sixteen people were allocated to a 1 mA condition, 15 people to a 2 mA condition. Each participant underwent the food-modified antisaccade task at three measurement points: baseline without stimulation, anodal verum and sham stimulation at the right dlPFC in a crossover design. The error rate and the latencies of correct antisaccades decreased over time. No tDCS effect on the error rate could be observed. Compared to sham stimulation, 2 mA tDCS decreased the latencies of correct antisaccades, whereas 1 mA tDCS increased it. Self-reported binge eating episodes were reduced in the 2 mA condition, while there was no change in the 1 mA condition. Participants demonstrated increased response inhibition capacities by a task learning effect concerning the error rate and latencies of correct antisaccades over time as well as a nonlinear tDCS effect represented by ameliorated latencies in the 2 mA and impaired latencies in the 1 mA condition. The reduction of binge eating episodes might indicate a transfer effect to everyday life. Given that the reduction in binge eating was observed before tDCS administration, this effect could not be the result of neuromodulation. Randomized clinical trials are needed to fully understand this reduction, and to explore the efficacy of a combined antisaccade and tDCS training for BED.
Collapse
Affiliation(s)
- Sebastian M Max
- Department of Psychiatry and Psychotherapy, Neurophysiology and Interventional Neuropsychiatry, University of Tübingen, Calwerstraße 14, 72076, Tübingen, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology and Interventional Neuropsychiatry, University of Tübingen, Calwerstraße 14, 72076, Tübingen, Germany.
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Osianderstraße 5, 72076, Tübingen, Germany
- Competence Center for Eating Disorders Tübingen (KOMET), Tübingen, Germany
| | - Katrin E Giel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Osianderstraße 5, 72076, Tübingen, Germany
- Competence Center for Eating Disorders Tübingen (KOMET), Tübingen, Germany
| | - Kathrin Schag
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Osianderstraße 5, 72076, Tübingen, Germany
- Competence Center for Eating Disorders Tübingen (KOMET), Tübingen, Germany
| |
Collapse
|
19
|
Preliminary effects of prefrontal tDCS on dopamine-mediated behavior and psychophysiology. Behav Brain Res 2021; 402:113091. [PMID: 33359843 DOI: 10.1016/j.bbr.2020.113091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022]
Abstract
The ability to manipulate dopamine in vivo through non-invasive, reversible mechanisms has the potential to impact clinical, translational, and basic research. Recent PET studies have demonstrated increased dopamine release in the striatum after bifrontal transcranial direct current stimulation (tDCS). We sought to extend this work by examining whether bifrontal tDCS could demonstrate an effect on behavioral and physiological correlates of subcortical dopamine activity. We conducted a preliminary between-subjects study (n = 30) with active and sham tDCS and used spontaneous eye blink rate (EBR), facial attractiveness ratings, and greyscales orienting bias as indirect proxies for dopamine functioning. The initial design and analyses were pre-registered (https://osf.io/gmnpc). Stimulation did not significantly affect any of the three measures, though effect sizes were often moderately large and were all in the predicted directions. Additional exploratory analyses suggested that stimulation's effect on EBR might depend on pre-stimulation dopamine levels. Our results suggest that larger samples than those that are standard in tDCS literature should be used to assess the effect of tDCS on dopamine using indirect measures. Further, exploratory results add to a growing body of work demonstrating the importance of accounting for individual differences in tDCS response.
Collapse
|
20
|
Impact of COMT val158met on tDCS-induced cognitive enhancement in older adults. Behav Brain Res 2021; 401:113081. [PMID: 33359367 DOI: 10.1016/j.bbr.2020.113081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previous studies suggest that genetic polymorphisms and aging modulate inter-individual variability in brain stimulation-induced plasticity. However, the relationship between genetic polymorphisms and behavioral modulation through transcranial direct current stimulation (tDCS) in older adults remains poorly understood. OBJECTIVE Link individual tDCS responsiveness, operationalized as performance difference between tDCS and sham condition, to common genetic polymorphisms in healthy older adults. METHODS 106 healthy older participants from five tDCS-studies were re-invited to donate blood for genotyping of apoliproprotein E (APOE: ε4 carriers and ε4 non-carriers), catechol-O-methyltransferase (COMT: val/val, val/met, met/met), brain-derived neurotrophic factor (BDNF: val/val, val/met, met/met) and KIdney/BRAin encoding gene (KIBRA: C/C, C/T, T/T). Studies had assessed cognitive performance during tDCS and sham in cross-over designs. We now asked whether the tDCS responsiveness was related to the four genotypes using a linear regression models. RESULTS We found that tDCS responsiveness was significantly associated with COMT polymorphism; i.e., COMT val carriers (compared to met/met) showed higher tDCS responsiveness. No other significant associations emerged. CONCLUSION Using data from five brain stimulation studies conducted in our group, we showed that only individual variation of COMT genotypes modulated behavioral response to tDCS. These findings contribute to the understanding of inherent factors that explain inter-individual variability in functional tDCS effects in older adults, and might help to better stratify participants for future clinical trials.
Collapse
|
21
|
Weidler C, Habel U, Wallheinke P, Wagels L, Hofhansel L, Ling S, Blendy JA, Clemens B. Consequences Of Prefrontal TDCS On Inhibitory Control And Reactive Aggression. Soc Cogn Affect Neurosci 2020; 17:120-130. [PMID: 33227131 PMCID: PMC8824612 DOI: 10.1093/scan/nsaa158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 11/24/2022] Open
Abstract
Increased aggression and impulsivity represent a key component of several psychiatric disorders, including substance use disorder, which is often associated with deficient prefrontal brain activation. Thus, innovative tools to increase cognitive control are highly warranted. The current study investigates the potential of transcranial direct current stimulation (tDCS), a tool to modulate cortical activation and to increase cognitive control in individuals with a high potential for impulsive and aggressive behavior. In a double-blind, sham-controlled study, we applied anodal tDCS over the right dorsolateral prefrontal cortex in an all-male sample of alcohol-dependent patients (AD), tobacco users (TU) and healthy controls (HC), who completed the Taylor Aggression Paradigm and Stop Signal Reaction Time Task twice. While there were no observable effects of tDCS in controls, the results revealed altered aggressive behavior in AD following active stimulation. Specifically, these individuals did not show the standard increase in aggression over time seen in the other groups. Furthermore, improved response inhibition was found in AD and TU following active but not sham stimulation. Our study demonstrates that prefrontal tDCS improves our laboratory measure of impulse control in at-risk groups, illustrating the importance of sample characteristics such as nicotine intake and personality traits for understanding the effects of brain stimulation.
Collapse
Affiliation(s)
- Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Paul Wallheinke
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Lena Hofhansel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Shichun Ling
- Department of Criminology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany
| |
Collapse
|
22
|
Polizzotto NR, Ramakrishnan N, Cho RY. Is It Possible to Improve Working Memory With Prefrontal tDCS? Bridging Currents to Working Memory Models. Front Psychol 2020; 11:939. [PMID: 32528366 PMCID: PMC7264806 DOI: 10.3389/fpsyg.2020.00939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/15/2020] [Indexed: 01/30/2023] Open
Abstract
A great deal of research has been performed with the promise of improving such critical cognitive functions as working memory (WM), with transcranial direct current stimulation (tDCS), a well-tolerated, inexpensive, easy-to-use intervention. Under the assumption that by delivering currents through electrodes placed in suitable locations on the scalp, it is possible to increase prefrontal cortex excitability and therefore improve WM. A growing number of studies have led to mixed results, leading to the realization that such oversimplified assumptions need revision. Models spanning currents to behavior have been advocated in order to reconcile and inform neurostimulation investigations. We articulate such multilevel exploration to tDCS/WM by briefly reviewing critical aspects at each level of analysis but focusing on the circuit level and how available biophysical WM models could inform tDCS. Indeed, such models should replace vague reference to cortical excitability changes with relevant tDCS net effects affecting neural computation and behavior in a more predictable manner. We will refer to emerging WM models and explore to what extent the general concept of excitation-inhibition (E/I) balance is a meaningful intermediate level of analysis, its relationship with gamma oscillatory activity, and the extent to which it can index tDCS effects. We will highlight some predictions that appear consistent with empirical evidence – such as non-linearities and trait dependency of effects and possibly a preferential effect on WM control functions – as well as limitations that appear related to the dynamical aspects of coding by persistent activity.
Collapse
Affiliation(s)
- Nicola Riccardo Polizzotto
- Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nithya Ramakrishnan
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States
| | - Raymond Y Cho
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States.,Menninger Clinic, Houston, TX, United States
| |
Collapse
|
23
|
Combined and Isolated Effects of Acute Exercise and Brain Stimulation on Executive Function in Healthy Young Adults. J Clin Med 2020; 9:jcm9051410. [PMID: 32397614 PMCID: PMC7291170 DOI: 10.3390/jcm9051410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract: Acute cognitive enhancement has been sought by healthy young individuals to improve academic and professional performance. Among several methods, physical exercise interventions and transcranial direct current brain stimulation (tDCS) have shown promise in impacting executive functions. Here, we observed a set of new findings about the causal effect of acute aerobic exercise and tDCS across three facets of executive function: Inhibition (as measured by a flanker task) was selectively impacted by acute aerobic exercise but not tDCS, whereas working memory (as measured by an n-back task) was impacted by both acute aerobic exercise and tDCS, with effects emerging on distinct processing components for each manipulation. Sustained attention (as measured by the Mackworth clock task), on the other hand, was not impacted by acute aerobic exercise or tDCS. Interestingly, no effects of combining acute aerobic exercise and tDCS emerged. We argue that understanding the unique and combined contributions of these cognitive enhancement techniques can not only contribute to a deeper mechanistic explanation in healthy individuals but also inform future research with clinical and aging populations.
Collapse
|
24
|
Teti Mayer J, Chopard G, Nicolier M, Gabriel D, Masse C, Giustiniani J, Vandel P, Haffen E, Bennabi D. Can transcranial direct current stimulation (tDCS) improve impulsivity in healthy and psychiatric adult populations? A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109814. [PMID: 31715284 DOI: 10.1016/j.pnpbp.2019.109814] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Impulsivity is a multidimensional phenomenon that remains hard to define. It compounds the core pathological construct of many neuropsychiatric illnesses, and despite its close relation to suicide risk, it currently has no specific treatment. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique whose application results in cognitive function improvement, both in healthy and psychiatric populations. Following PRISMA recommendations, a systematic review of the literature concerning tDCS's effects on impulsive behaviour was performed using the PubMed database. The research was based on the combination of the keyword 'tDCS' with 'impulsivity', 'response inhibition', 'risk-taking', 'planning', 'delay discounting' or 'craving'. The initial search yielded 309 articles, 92 of which were included. Seventy-four papers demonstrated improvement in task performance related to impulsivity in both healthy and clinical adult populations. However, results were often inconsistent. The conditions associated with improvement, such as tDCS parameters and other aspects that may influence tDCS's outcomes, are discussed. The overall effects of tDCS on impulsivity are promising. Yet further research is required to develop a more comprehensive understanding of impulsivity, allowing for a more accurate assessment of its behavioural outcomes as well as a definition of tDCS therapeutic protocols for impulsive disorders.
Collapse
Affiliation(s)
- Juliana Teti Mayer
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France.
| | - Gilles Chopard
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Mémoire Ressources et Recherche, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| | - Magali Nicolier
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Damien Gabriel
- Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Caroline Masse
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Julie Giustiniani
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Pierre Vandel
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Mémoire Ressources et Recherche, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| | - Emmanuel Haffen
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Expert Dépression Résistante FondaMental, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| | - Djamila Bennabi
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Expert Dépression Résistante FondaMental, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| |
Collapse
|
25
|
McClintock SM, Martin DM, Lisanby SH, Alonzo A, McDonald WM, Aaronson ST, Husain MM, O'Reardon JP, Weickert CS, Mohan A, Loo CK. Neurocognitive effects of transcranial direct current stimulation (tDCS) in unipolar and bipolar depression: Findings from an international randomized controlled trial. Depress Anxiety 2020; 37:261-272. [PMID: 31944487 DOI: 10.1002/da.22988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/03/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) has been found to have antidepressant effects and may have beneficial neurocognitive effects. However, prior research has produced an unclear understanding of the neurocognitive effects of repeated exposure to tDCS. The study's aim was to determine the neurocognitive effects following tDCS treatment in participants with unipolar or bipolar depression. METHOD The study was a triple-masked, randomized, controlled clinical trial across six international academic medical centers. Participants were randomized to high dose (2.5 mA for 30 min) or low dose (0.034 mA, for 30 min) tDCS for 20 sessions over 4 weeks, followed by an optional 4 weeks of open-label high dose treatment. The tDCS anode was centered over the left dorsolateral prefrontal cortex at F3 (10/20 EEG system) and the cathode over F8. Participants completed clinical and neurocognitive assessments before and after tDCS. Genotype (BDNF Val66Met and catechol-o-methyltransferase [COMT] Val158Met polymorphisms) were explored as potential moderators of neurocognitive effects. RESULTS The study randomized 130 participants. Across the participants, tDCS treatment (high and low dose) resulted in improvements in verbal learning and recall, selective attention, information processing speed, and working memory, which were independent of mood effects. Similar improvements were observed in the subsample of participants with bipolar disorder. There was no observed significant effect of tDCS dose. However, BDNF Val66Met and COMT Val158Met polymorphisms interacted with tDCS dose and affected verbal memory and verbal fluency outcomes, respectively. CONCLUSIONS These findings suggest that tDCS could have positive neurocognitive effects in unipolar and bipolar depression. Thus, tDCS stimulation parameters may interact with interindividual differences in BDNF and COMT polymorphisms to affect neurocognitive outcomes, which warrants further investigation.
Collapse
Affiliation(s)
- Shawn M McClintock
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Donel M Martin
- Black Dog Institute, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Sarah H Lisanby
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina.,Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland
| | - Angelo Alonzo
- Black Dog Institute, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Scott T Aaronson
- Department of Clinical Research Programs, Sheppard Pratt Health System, Baltimore, Maryland
| | - Mustafa M Husain
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - John P O'Reardon
- Department of Psychiatry and Behavioral Sciences, Center for Mood Disorders and Neuromodulation Therapies, Rowan University School of Osteopathic Medicine, Cherry Hill, New Jersey
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York
| | - Adith Mohan
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colleen K Loo
- Black Dog Institute, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
26
|
Schroeder PA, Artemenko C, Cipora K, Svaldi J. Regional specificity of cathodal transcranial direct current stimulation (tDCS) effects on spatial-numerical associations: Comparison of four stimulation sites. J Neurosci Res 2019; 98:655-667. [PMID: 31785042 DOI: 10.1002/jnr.24559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022]
Abstract
Based on a theory of impulsive and reflective human behavior, we test the effects of transcranial direct current stimulation (tDCS) targeting either prefrontal or parietal cortex in either hemisphere. In a confirmatory registered report, cathodal tDCS is administered to conceptually reproduce tDCS modulations of implicit spatial-numerical associations, numerical distance effects, and response inhibition. Those cognitive operations are hypothesized to draw on left prefrontal, parietal, and right prefrontal activations, respectively, thereby susceptible to inhibitory, cathodal tDCS across those regions. Vice versa, the mutual regional and behavioral specificity of tDCS effects on these behavioral indices is examined and expected to produce double dissociations. In a mixed within-subjects (baseline, during tDCS, post-tDCS) and between-subjects (target electrode: left/right prefrontal cortex/posterior parietal cortex, or sham tDCS) design, we collect (a) confirmatory data on the robustness of cathodal tDCS effects on three behavioral effects and (b) differential data on the specificity of regional targets in male and female human participants. Results will provide crucial tests of theories of cortical organization implied by implicit associations and explicit regulation, which can direct future brain stimulation studies.
Collapse
Affiliation(s)
| | - Christina Artemenko
- Department of Psychology, University of Tübingen, Tübingen, Germany.,LEAD Research Network, University of Tübingen, Tübingen, Germany
| | - Krzysztof Cipora
- Department of Psychology, University of Tübingen, Tübingen, Germany.,LEAD Research Network, University of Tübingen, Tübingen, Germany
| | - Jennifer Svaldi
- Department of Psychology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Zortea M, Ramalho L, Alves RL, Alves CFDS, Braulio G, Torres ILDS, Fregni F, Caumo W. Transcranial Direct Current Stimulation to Improve the Dysfunction of Descending Pain Modulatory System Related to Opioids in Chronic Non-cancer Pain: An Integrative Review of Neurobiology and Meta-Analysis. Front Neurosci 2019; 13:1218. [PMID: 31803005 PMCID: PMC6876542 DOI: 10.3389/fnins.2019.01218] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Opioid long-term therapy can produce tolerance, opioid-induced hyperalgesia (OIH), and it induces dysfunction in pain descending pain inhibitory system (DPIS). Objectives: This integrative review with meta-analysis aimed: (i) To discuss the potential mechanisms involved in analgesic tolerance and opioid-induced hyperalgesia (OIH). (ii) To examine how the opioid can affect the function of DPIS. (ii) To show evidence about the tDCS as an approach to treat acute and chronic pain. (iii) To discuss the effect of tDCS on DPIS and how it can counter-regulate the OIH. (iv) To draw perspectives for the future about the tDCS effects as an approach to improve the dysfunction in the DPIS in chronic non-cancer pain. Methods: Relevant published randomized clinical trials (RCT) comparing active (irrespective of the stimulation protocol) to sham tDCS for treating chronic non-cancer pain were identified, and risk of bias was assessed. We searched trials in PubMed, EMBASE and Cochrane trials databases. tDCS protocols accepted were application in areas of the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), or occipital area. Results: Fifty-nine studies were fully reviewed, and 24 with moderate to the high-quality methodology were included. tDCS improved chronic pain with a moderate effect size [pooled standardized mean difference; -0.66; 95% confidence interval (CI) -0.91 to -0.41]. On average, active protocols led to 27.26% less pain at the end of treatment compared to sham [95% CI; 15.89-32.90%]. Protocol varied in terms of anodal or cathodal stimulation, areas of stimulation (M1 and DLPFC the most common), number of sessions (from 5 to 20) and current intensity (from 1 to 2 mA). The time of application was 20 min in 92% of protocols. Conclusion: In comparison with sham stimulation, tDCS demonstrated a superior effect in reducing chronic pain conditions. They give perspectives that the top-down neuromodulator effects of tDCS are a promising approach to improve management in refractory chronic not-cancer related pain and to enhance dysfunctional neuronal circuitries involved in the DPIS and other pain dimensions and improve pain control with a therapeutic opioid-free. However, further studies are needed to determine individualized protocols according to a biopsychosocial perspective.
Collapse
Affiliation(s)
- Maxciel Zortea
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Leticia Ramalho
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Rael Lopes Alves
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Camila Fernanda da Silveira Alves
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Gilberto Braulio
- Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Service of Anesthesia and Perioperative Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Iraci Lucena da Silva Torres
- Department of Pharmacology, Institute of Health Sciences (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Pharmacology of Pain and Neuromodulation: Pre-clinical Investigations Research Group, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolnei Caumo
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Pain Treatment and Palliative Medicine Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
28
|
Dopamine depletion effects on cognitive flexibility as modulated by tDCS of the dlPFC. Brain Stimul 2019; 13:105-108. [PMID: 31494070 DOI: 10.1016/j.brs.2019.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Recent evidence suggests that transcranial direct current stimulation (tDCS) may interact with the dopaminergic system to affect cognitive flexibility. Objective/hypotheses: We examined whether putative reduction of dopamine levels through the acute phenylalanine/tyrosine depletion (APTD) procedure and excitatory anodal tDCS of the dorsolateral prefrontal cortex (dlPFC) are causally related to cognitive flexibility as measured by task switching and reversal learning. METHOD A double-blind, sham-controlled, randomised trial was conducted to test the effects of combining anodal tDCS and depletion of catecholaminergic precursor tyrosine on cognitive flexibility. RESULTS Anodal tDCS and tyrosine depletion had a significant effect on task switching, but not reversal learning. Whilst perseverative errors were significantly improved by anodal tDCS, the APTD impaired reaction times. Importantly, the combination of APTD and anodal tDCS resulted in cognitive performance which did not statistically differ to that of the control condition. CONCLUSIONS Our results suggest that the effects of tDCS on cognitive flexibility are modulated by dopaminergic tone.
Collapse
|
29
|
Al-Shargie F, Tariq U, Mir H, Alawar H, Babiloni F, Al-Nashash H. Vigilance Decrement and Enhancement Techniques: A Review. Brain Sci 2019; 9:E178. [PMID: 31357524 PMCID: PMC6721323 DOI: 10.3390/brainsci9080178] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023] Open
Abstract
This paper presents the first comprehensive review on vigilance enhancement using both conventional and unconventional means, and further discusses the resulting contradictory findings. It highlights the key differences observed between the research findings and argues that variations of the experimental protocol could be a significant contributing factor towards such contradictory results. Furthermore, the paper reveals the effectiveness of unconventional means of enhancement in significant reduction of vigilance decrement compared to conventional means. Meanwhile, a discussion on the challenges of enhancement techniques is presented, with several suggested recommendations and alternative strategies to maintain an adequate level of vigilance for the task at hand. Additionally, this review provides evidence in support of the use of unconventional means of enhancement on vigilance studies, regardless of their practical challenges.
Collapse
Affiliation(s)
- Fares Al-Shargie
- Department of Electrical Engineering, Biosciences and Bioengineering Research Institute, American University of Sharjah, Sharjah 26666, United Arab Emirates.
| | - Usman Tariq
- Department of Electrical Engineering, Biosciences and Bioengineering Research Institute, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Hasan Mir
- Department of Electrical Engineering, Biosciences and Bioengineering Research Institute, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Hamad Alawar
- Dubai Police Headquarters, Dubai 1493, United Arab Emirates
| | - Fabio Babiloni
- Dept. Molecular Medicine, University of Rome Sapienza, 00185 Rome, Italy
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hasan Al-Nashash
- Department of Electrical Engineering, Biosciences and Bioengineering Research Institute, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
30
|
Brevet-Aeby C, Mondino M, Poulet E, Brunelin J. Three repeated sessions of transcranial random noise stimulation (tRNS) leads to long-term effects on reaction time in the Go/No Go task. Neurophysiol Clin 2019; 49:27-32. [DOI: 10.1016/j.neucli.2018.10.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/27/2018] [Accepted: 10/12/2018] [Indexed: 11/26/2022] Open
|
31
|
Tardiff N, Graves KN, Thompson-Schill SL. The Role of Frontostriatal Systems in Instructed Reinforcement Learning: Evidence From Genetic and Experimentally-Induced Variation. Front Hum Neurosci 2019; 12:472. [PMID: 30618672 PMCID: PMC6304395 DOI: 10.3389/fnhum.2018.00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/12/2018] [Indexed: 01/16/2023] Open
Abstract
Instructions have a powerful effect on learning and decision-making, biasing choice even in the face of disconfirming feedback. Detrimental biasing effects have been reported in a number of studies in which instruction was given prior to trial-and-error learning. Previous work has attributed individual differences in instructional bias to variations in prefrontal and striatal dopaminergic genes, suggesting a role for prefrontally-mediated cognitive control processes in biasing learning. The current study replicates and extends these findings. Human subjects performed a probabilistic reinforcement learning task after receiving inaccurate instructions about the quality of one of the options. In order to establish a causal relationship between prefrontal cortical mechanisms and instructional bias, we applied transcranial direct current stimulation over dorsolateral prefrontal cortex (anodal, cathodal, or sham) while subjects performed the task. We additionally genotyped subjects for the COMT Val158Met genetic polymorphism, which influences the breakdown of prefrontal dopamine, and for the DAT1/SLC6A3 variable number tandem repeat, which affects expression of striatal dopamine transporter. We replicated the finding that the COMT Met allele is associated with increased instructional bias and further demonstrated that variation in DAT1 has similar effects to variation in COMT, with 9-repeat carriers demonstrating increased bias relative to 10-repeat homozygotes. Consistent with increased top-down regulation of reinforcement learning, anodal subjects demonstrated greater bias relative to sham, though this effect was present only early in training. In contrast, there was no effect of cathodal stimulation. Finally, we fit computational models to subjects' data to better characterize the mechanisms underlying instruction bias. A novel choice bias model, in which instructions influence decision-making rather than learning, was found to best account for subjects' behavior. Overall, these data provide further evidence for the role of frontostriatal interactions in biasing instructed reinforcement learning, which adds to the growing literature documenting both costs and benefits of cognitive control.
Collapse
Affiliation(s)
- Nathan Tardiff
- Department of Psychology, University of Pennsylvania Philadelphia, PA, United States
| | - Kathryn N Graves
- Department of Psychology, University of Pennsylvania Philadelphia, PA, United States
| | | |
Collapse
|
32
|
Chan S, Bota R. Personalized TMS: role of RNA genotyping. Ment Illn 2019; 11:8-15. [PMID: 32742620 PMCID: PMC7364573 DOI: 10.1108/mij-10-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose Noninvasive brain stimulation (NIBS) such a transcranial magnetic stimulation, intermittent theta burst stimulation, transcranial direct current stimulation and electroconvulsive therapy have emerged as an efficacious and well-tolerated therapy for treatment-resistant psychiatric disorders. While novel NIBS techniques are an exciting addition to the current repertoire of neuropsychiatric therapies, their success is somewhat limited by the wide range of treatment responses seen among treated patients. Design/methodology/approach In this study, the authors will review the studies on relevant genetic polymorphisms and discuss the role of RNA genotyping in personalizing NIBS. Findings Genome studies have revealed several genetic polymorphisms that may contribute for the heterogeneity of treatment response to NIBS where the presence of certain single nucleotide polymorphisms (SNPs) are associated with responders versus nonresponders. Originality/value Historically, mental illnesses have been arguably some of the most challenging disorders to study and to treat because of the degree of biological variability across affected individuals, the role of genetic and epigenetic modifications, the diversity of clinical symptomatology and presentations and the interplay with environmental factors. In lieu of these challenges, there has been a push for personalized medicine in psychiatry that aims to optimize treatment response based on one's unique characteristics.
Collapse
Affiliation(s)
- Shawna Chan
- University of California Irvine, Irvine, California, USA
| | - Robert Bota
- University of California Irvine, Irvine, California, USA
| |
Collapse
|
33
|
Jongkees BJ, Loseva AA, Yavari FB, Nitsche MA, Colzato LS. The COMT Val 158 Met polymorphism does not modulate the after-effect of tDCS on working memory. Eur J Neurosci 2019; 49:263-274. [PMID: 30402947 PMCID: PMC6590637 DOI: 10.1111/ejn.14261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/25/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023]
Abstract
Transcranial direct current stimulation (tDCS) can alter cortical excitability, neural plasticity, and cognitive-behavioral performance; however, its effects are known to vary across studies. A partial account of this variability relates to individual differences in dopamine function. Indeed, dopaminergic manipulations alter the physiological and cognitive-behavioral effects of tDCS, and gene polymorphisms related to dopamine have predicted individual response to online tDCS (i.e., stimulation overlapping with the critical task). Notably, the role of individual differences in dopamine has not yet been properly assessed in the effect of offline tDCS (i.e., stimulation prior to the critical task). We investigated if and how the COMT Val158 Met polymorphism (rs4680) modulates the after-effect of prefrontal tDCS on verbal working memory (WM). One hundred and thirty-nine participants were genotyped for the COMT Val158 Met polymorphism and received anodal-over-left, cathodal-over-right (AL-CR), cathodal-over-left, anodal-over-right (CL-AR), or sham stimulation over the dorsolateral prefrontal cortex in a between-subjects, pretest-posttest study design. WM was assessed using the N-back task. The results provide no evidence that the COMT polymorphism impacts the after-effect of prefrontal tDCS on WM. Taken together with previous findings on dopamine and tDCS interactions, the results of the present study suggest that (a) indirect markers of dopamine (such as COMT) are differently related to online and offline effects of tDCS, and (b) findings from studies involving pharmacological manipulation should be generalized with caution to findings of inter-individual differences. In sum, we argue that state (i.e., a manipulation of) and trait (i.e., baseline) differences in dopamine may exert different effects on online and offline tDCS.
Collapse
Affiliation(s)
- Bryant J. Jongkees
- Cognitive Psychology Unit & Leiden Institute for Brain and CognitionLeiden UniversityLeidenThe Netherlands
| | - Alexandra A. Loseva
- Cognitive Psychology Unit & Leiden Institute for Brain and CognitionLeiden UniversityLeidenThe Netherlands
| | - Fatemeh B. Yavari
- Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
- Department of Clinical NeurophysiologyGeorg‐August University GöttingenGöttingenGermany
- Department of NeurologyUniversity Medical Hospital BergmannsheilBochumGermany
| | - Lorenza S. Colzato
- Cognitive Psychology Unit & Leiden Institute for Brain and CognitionLeiden UniversityLeidenThe Netherlands
- Department of Cognitive PsychologyFaculty of PsychologyInstitute of Cognitive NeuroscienceRuhr University BochumBochumGermany
- Institute for Sports and Sport ScienceUniversity of KasselKasselGermany
| |
Collapse
|
34
|
Dennison O, Gao J, Lim LW, Stagg CJ, Aquili L. Catecholaminergic modulation of indices of cognitive flexibility: A pharmaco-tDCS study. Brain Stimul 2018; 12:290-295. [PMID: 30552060 DOI: 10.1016/j.brs.2018.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/24/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dopaminergic activity within the dorsolateral prefrontal cortex (dlPFC) has been implicated in the control of cognitive flexibility. Much of the evidence for a causative relationship between cognitive flexibility and dopamine has come from animal studies, whilst human data have largely been correlational. OBJECTIVE/HYPOTHESIS The current study examines whether changes in dopamine levels through tyrosine administration and suppression of dlPFC activity via cathodal tDCS could be causally related to cognitive flexibility as measured by task switching and reversal learning. METHODS Using a crossover, double-blind, sham controlled, counterbalanced, randomized trial, we tested the effects of combining cathodal tDCS with tyrosine, a catecholaminergic precursor, with appropriate drug and tDCS placebo controls, on two measures of cognitive flexibility: probabilistic reversal learning, and task switching. RESULTS While none of the manipulations had an effect on task switching, there was a significant main effect of cathodal tDCS and tyrosine on reversal learning. Reversal learning performance was significantly worsened by cathodal tDCS compared with sham tDCS, whilst tyrosine significantly improved performance compared with placebo. However, there was no significant tDCS × drugs interaction. Interestingly, and as predicted by our model, the combined administration of tyrosine with cathodal tDCS resulted in performance that was equivalent to the control condition (i.e. tDCS sham + placebo). CONCLUSIONS Our results suggest a causative role for dopamine signalling and dorsolateral prefrontal cortex activity in regulating indices of cognitive flexibility in humans.
Collapse
Affiliation(s)
- Olivia Dennison
- Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield, UK
| | - Jie Gao
- Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield, UK
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Charlotte J Stagg
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Luca Aquili
- Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
35
|
Voss M, Ehring T, Wolkenstein L. Does Transcranial Direct Current Stimulation Affect Post-stressor Intrusive Memories and Rumination? An Experimental Analogue Study. COGNITIVE THERAPY AND RESEARCH 2018. [DOI: 10.1007/s10608-018-9976-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Tan J, Iyer KK, Tang AD, Jamil A, Martins RN, Sohrabi HR, Nitsche MA, Hinder MR, Fujiyama H. Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: A narrative review. Neuroimage 2018; 185:490-512. [PMID: 30342977 DOI: 10.1016/j.neuroimage.2018.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Response inhibition, the ability to withhold a dominant and prepotent response following a change in circumstance or sensory stimuli, declines with advancing age. While non-invasive brain stimulation (NiBS) has shown promise in alleviating some cognitive and motor functions in healthy older individuals, NiBS research focusing on response inhibition has mostly been conducted on younger adults. These extant studies have primarily focused on modulating the activity of distinct neural regions known to be critical for response inhibition, including the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (pre-SMA). However, given that changes in structural and functional connectivity have been associated with healthy aging, this review proposes that NiBS protocols aimed at modulating the functional connectivity between the rIFG and pre-SMA may be the most efficacious approach to investigate-and perhaps even alleviate-age-related deficits in inhibitory control.
Collapse
Affiliation(s)
- Jane Tan
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia
| | - Kartik K Iyer
- Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Australia
| | - Asif Jamil
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Medicine (Division of Psychology), University of Tasmania, Hobart, Australia
| | - Hakuei Fujiyama
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia.
| |
Collapse
|
37
|
Gene polymorphisms and response to transcranial direct current stimulation for auditory verbal hallucinations in schizophrenia. Acta Neuropsychiatr 2018; 30:218-225. [PMID: 29559020 DOI: 10.1017/neu.2018.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Recent observations demonstrate a significant ameliorative effect of add-on transcranial direct current stimulation (tDCS) on auditory verbal hallucinations (AVHs) in schizophrenia. Of the many SNPs, NRG1 rs35753505 and catechol-o-methyl transferase (COMT) rs4680 polymorphisms have shown to have a strong association with neuroplasticity effect in schizophrenia. METHODS Schizophrenia patients (n=32) with treatment resistant auditory hallucinations were administered with an add-on tDCS. The COMT (rs4680) and NRG1 (rs35753505) genotypes were determined. The COMT genotypes were categorised into Val group (GG; n=15) and Met group (GG/AG; n=17) and NRG1 genotypes were categorised into AA group (n=12) and AG/GG group (n=20). RESULTS The reduction in auditory hallucination sub-scale score was significantly affected by COMT-GG genotype [Time×COMT interaction: F(1,28)=10.55, p=0.003, ɳ2=0.27]. Further, COMT-GG effect was epistatically influenced by the co-occurrence of NRG1-AA genotype [Time×COMT×NRG1 interaction: F(1,28)=8.09, p=0.008, ɳ2=0.22]. Irrespective of genotype, females showed better tDCS response than males [Time×Sex interaction: F(1,21)=4.67, p=0.04, ɳ2=0.18]. CONCLUSION COMT-GG and NRG1-AA genotypes aid the tDCS-induced improvement in AVHs in schizophrenia patients. Our preliminary observations need replication and further systematic research to understand the neuroplastic gene determinants that modulate the effect of tDCS.
Collapse
|
38
|
Imburgio MJ, Orr JM. Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis. Neuropsychologia 2018; 117:156-166. [PMID: 29727626 DOI: 10.1016/j.neuropsychologia.2018.04.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 02/04/2023]
Abstract
A meta-analysis of studies using single-session transcranial direct current stimulation (tDCS) to target the dorsolateral prefrontal cortex (DLPFC) was undertaken to examine the effect of stimulation on executive function (EF) in healthy samples. 27 studies were included in analyses, yielding 71 effect sizes. The most relevant measure for each task was determined a priori and used to calculate Hedge's g. Methodological characteristics of each study were examined individually as potential moderators of effect size. Stimulation effects on three domains of EF (inhibition of prepotent responses, mental set shifting, and information updating and monitoring) were analyzed separately. In line with previous work, the current study found no significant effect of anodal unilateral tDCS, cathodal unilateral tDCS, or bilateral tDCS on EF. Further moderator and subgroup analyses were only carried out for anodal unilateral montages due to the small number of studies using other montages. Subgroup analyses revealed a significant effect of anodal unilateral tDCS on updating tasks, but not on inhibition or set-shifting tasks. Cathode location significantly moderated the effect of anodal unilateral tDCS. Extracranial cathodes yielded a significant effect on EF while cranial cathodes yielded no effect. Anode size also significantly moderated effect of anodal unilateral tDCS, with smaller anodes being more effective than larger anodes. In summary, anodal DLPFC stimulation is more effective at improving updating ability than inhibition and set-shifting ability, but anodal stimulation can significantly improve general executive function when extracranial cathodes or small anodes are used. Future meta-analyses may examine how stimulation's effects on specific behavioral tasks, rather than broader domains, might be affected by methodological moderators.
Collapse
Affiliation(s)
- Michael J Imburgio
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
| | - Joseph M Orr
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
39
|
Padberg F, Kumpf U, Mansmann U, Palm U, Plewnia C, Langguth B, Zwanzger P, Fallgatter A, Nolden J, Burger M, Keeser D, Rupprecht R, Falkai P, Hasan A, Egert S, Bajbouj M. Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression: study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC). Eur Arch Psychiatry Clin Neurosci 2017; 267:751-766. [PMID: 28246891 DOI: 10.1007/s00406-017-0769-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
Abstract
UNLABELLED Transcranial direct current stimulation (tDCS) has been proposed as novel treatment for major depressive disorder (MDD) based on clinical pilot studies as well as randomized controlled monocentric trials. The DepressionDC trial is a triple-blind (blinding of rater, operator and patient), randomized, placebo controlled multicenter trial investigating the efficacy and safety of prefrontal tDCS used as additive treatment in MDD patients who have not responded to selective serotonin reuptake inhibitors (SSRI). At 5 study sites, 152 patients with MDD receive a 6-weeks treatment with active tDCS (anode F3 and cathode F4, 2 mA intensity, 30 min/day) or sham tDCS add-on to a stable antidepressant medication with an SSRI. Follow-up visits are at 3 and 6 months after the last tDCS session. The primary outcome measure is the change of the Montgomery-Asberg Depression Rating Scale (MADRS) scores at week 6 post-randomisation compared to baseline. Secondary endpoints also cover other psychopathological domains, and a comprehensive safety assessment includes measures of cognition. Patients undergo optional investigations comprising genetic testing and functional magnetic resonance imaging (fMRI) of structural and functional connectivity. The study uses also an advanced tDCS technology including standard electrode positioning and recording of technical parameters (current, impedance, voltage) in every tDCS session. Aside reporting the study protocol here, we present a novel approach for monitoring technical parameters of tDCS which will allow quality control of stimulation and further analysis of the interaction between technical parameters and clinical outcome. The DepressionDC trial will hopefully answer the important clinical question whether prefrontal tDCS is a safe and effective antidepressant intervention in patients who have not sufficiently responded to SSRIs. TRIAL REGISTRY ClinicalTrials.gov Identifier NCT0253016.
Collapse
Affiliation(s)
- Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilian University Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | | | - Andreas Fallgatter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Jana Nolden
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Max Burger
- Department of Psychiatry and Psychotherapy, Charité-Campus Benjamin Franklin, Berlin, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Silvia Egert
- Münchner Studienzentrum, Technical University of Munich, Munich, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Charité-Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
40
|
Satterfield BC, Hinson JM, Whitney P, Schmidt MA, Wisor JP, Van Dongen HPA. Catechol-O-methyltransferase (COMT) genotype affects cognitive control during total sleep deprivation. Cortex 2017; 99:179-186. [PMID: 29248857 DOI: 10.1016/j.cortex.2017.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022]
Abstract
Adaptive decision making is profoundly impaired by total sleep deprivation (TSD). This suggests that TSD impacts fronto-striatal pathways involved in cognitive control, where dopamine is a key neuromodulator. In the prefrontal cortex (PFC), dopamine is catabolized by the enzyme catechol-O-methyltransferase (COMT). A functional polymorphism (Val158Met) influences COMT's enzymatic activity, resulting in markedly different levels of prefrontal dopamine. We investigated the effect of this polymorphism on adaptive decision making during TSD. Sixty-six healthy young adults participated in one of two in-laboratory studies. After a baseline day, subjects were randomized to either a TSD group (n = 32) with 38 h or 62 h of extended wakefulness or a well-rested control group (n = 34) with 10 h nighttime sleep opportunities. Subjects performed a go/no-go reversal learning (GNGr) task at well-rested baseline and again during TSD or equivalent control. During the task, subjects were required to learn stimulus-response relationships from accuracy feedback. The stimulus-response relationships were reversed halfway through the task, which required subjects to learn the new stimulus-response relationships from accuracy feedback. Performance on the GNGr task was quantified by discriminability (d') between go and no-go stimuli before and after the stimulus-response reversal. GNGr performance did not differ between COMT genotypes when subjects were well-rested. However, TSD exposed a significant vulnerability to adaptive decision making impairment in subjects with the Val allele. Our results indicate that sleep deprivation degrades cognitive control through a fronto-striatal, dopaminergic mechanism.
Collapse
Affiliation(s)
- Brieann C Satterfield
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA.
| | - John M Hinson
- Department of Psychology, Washington State University, Pullman, WA, USA.
| | - Paul Whitney
- Department of Psychology, Washington State University, Pullman, WA, USA.
| | - Michelle A Schmidt
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA.
| | - Jonathan P Wisor
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA.
| | - Hans P A Van Dongen
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA.
| |
Collapse
|
41
|
Stephens JA, Jones KT, Berryhill ME. Task demands, tDCS intensity, and the COMT val 158met polymorphism impact tDCS-linked working memory training gains. Sci Rep 2017; 7:13463. [PMID: 29044248 PMCID: PMC5647397 DOI: 10.1038/s41598-017-14030-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022] Open
Abstract
Working memory (WM) training paired with transcranial direct current stimulation (tDCS) can improve executive function in older adults. The unclear mechanism of tDCS likely depends on tDCS intensity, and task relevant genetic factors (e.g., for WM: COMT val158met, DAT, BDNF val66met). Higher tDCS intensity does not always lead to greater cognitive gains, and genetic polymorphisms may modulate tDCS-linked WM improvements. To evaluate these factors, 137 healthy older adults provided DNA samples and received Visual and Spatial WM training paired with tDCS (sham, 1, 1.5, 2 mA). After one session of tDCS, significant group differences in WM performance were predicted by COMT val158met status. One month after training, there was a significant interaction of tDCS intensity, COMT genotype, and WM task. Specifically, val/val homozygotes benefited most from 1.5 mA tDCS on Visual WM and from 1 mA tDCS on Spatial WM. For met/met homozygotes, 2 mA resulted in significantly poorer performance compared to 1.5 mA on Spatial WM. While this pattern was observed with relatively small sample sizes, these data indicate that variations in COMT val158met may predict the nature of WM improvement after initial and longitudinal tDCS. This contributes to our understanding of the underlying mechanism by which tDCS affects behaviour.
Collapse
Affiliation(s)
- Jaclyn A Stephens
- University of Nevada, Department of Psychology, Program in Cognitive and Brain Sciences, Reno, Nevada, USA. .,Kennedy Krieger Institute, Department of Physical Medicine and Rehabilitation Baltimore, Maryland, USA. .,Johns Hopkins School of Medicine, Department of Physical Medicine and Rehabilitation, Baltimore, Maryland, USA. .,Colorado State University, Department of Occupational Therapy, Fort Collins, Colorado, USA.
| | - Kevin T Jones
- University of Nevada, Department of Psychology, Program in Cognitive and Brain Sciences, Reno, Nevada, USA.,Colorado State University, Department of Psychology, Fort Collins, Colorado, USA
| | - Marian E Berryhill
- University of Nevada, Department of Psychology, Program in Cognitive and Brain Sciences, Reno, Nevada, USA
| |
Collapse
|
42
|
Jongkees BJ, Sellaro R, Beste C, Nitsche MA, Kühn S, Colzato LS. l -Tyrosine administration modulates the effect of transcranial direct current stimulation on working memory in healthy humans. Cortex 2017; 90:103-114. [DOI: 10.1016/j.cortex.2017.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/01/2016] [Accepted: 02/18/2017] [Indexed: 10/20/2022]
|
43
|
Ruf SP, Fallgatter AJ, Plewnia C. Augmentation of working memory training by transcranial direct current stimulation (tDCS). Sci Rep 2017; 7:876. [PMID: 28432349 PMCID: PMC5430723 DOI: 10.1038/s41598-017-01055-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/20/2017] [Indexed: 01/14/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex (dlPFC) can modulate working memory (WM) performance. However, evidence regarding the enhancement of WM training, its sustainability and transferability is ambiguous. Since WM functioning appears to be lateralized in respect to stimulus characteristics, this study examined the difference between task-congruent (spatial-right, verbal-left), task-incongruent (spatial-left, verbal-right) and sham tDCS in regards to the efficacy of WM training. In a randomized, sham-controlled experiment, 71 healthy adults trained on a spatial or verbal adaptive n-back task. After a baseline session, anodal or sham tDCS (1 mA) to the right or left dlPFC was applied during the next three training sessions. Sustainability of training gains and near-transfer (verbal or spatial 3-back task) were tested in a fourth training and a follow-up session. Compared to sham stimulation, we found a steeper learning curve when WM training was combined with task-congruent tDCS. This advantage was also present compared to task-incongruent tDCS. Moreover, these effects lasted for up to nine months and transferred to the respective untrained task. These long-lasting, transferable, task-specific effects demonstrate a behaviorally relevant and sustainable facilitation of neuroplastic processes by tDCS that could be harnessed for the treatment of disorders associated with deficient WM.
Collapse
Affiliation(s)
- Steffen Philipp Ruf
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany.
| |
Collapse
|
44
|
Reteig LC, Talsma LJ, van Schouwenburg MR, Slagter HA. Transcranial Electrical Stimulation as a Tool to Enhance Attention. JOURNAL OF COGNITIVE ENHANCEMENT 2017. [DOI: 10.1007/s41465-017-0010-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Karuza EA, Balewski ZZ, Hamilton RH, Medaglia JD, Tardiff N, Thompson-Schill SL. Mapping the Parameter Space of tDCS and Cognitive Control via Manipulation of Current Polarity and Intensity. Front Hum Neurosci 2016; 10:665. [PMID: 28082886 PMCID: PMC5187365 DOI: 10.3389/fnhum.2016.00665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
In the cognitive domain, enormous variation in methodological approach prompts questions about the generalizability of behavioral findings obtained from studies of transcranial direct current stimulation (tDCS). To determine the impact of common variations in approach, we systematically manipulated two key stimulation parameters—current polarity and intensity—and assessed their impact on a task of inhibitory control (the Eriksen Flanker). Ninety participants were randomly assigned to one of nine experimental groups: three stimulation conditions (anode, sham, cathode) crossed with three intensity levels (1.0, 1.5, 2.0 mA). As participants performed the Flanker task, stimulation was applied over left dorsolateral prefrontal cortex (DLPFC; electrode montage: F3-RSO). The behavioral impact of these manipulations was examined using mixed effects linear regression. Results indicate a significant effect of stimulation condition (current polarity) on the magnitude of the interference effect during the Flanker; however, this effect was specific to the comparison between anodal and sham stimulation. Inhibitory control was therefore improved by anodal stimulation over the DLPFC. In the present experimental context, no reliable effect of stimulation intensity was observed, and we found no evidence that inhibitory control was impeded by cathodal stimulation. Continued exploration of the stimulation parameter space, particularly with more robustly powered sample sizes, is essential to facilitating cross-study comparison and ultimately working toward a reliable model of tDCS effects.
Collapse
Affiliation(s)
- Elisabeth A Karuza
- Department of Psychology, University of Pennsylvania, Philadelphia PA, USA
| | - Zuzanna Z Balewski
- Department of Psychology, University of Pennsylvania, Philadelphia PA, USA
| | - Roy H Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia PA, USA
| | - John D Medaglia
- Department of Psychology, University of Pennsylvania, Philadelphia PA, USA
| | - Nathan Tardiff
- Department of Psychology, University of Pennsylvania, Philadelphia PA, USA
| | - Sharon L Thompson-Schill
- Department of Psychology, University of Pennsylvania, PhiladelphiaPA, USA; Department of Neurology, University of Pennsylvania, PhiladelphiaPA, USA
| |
Collapse
|
46
|
Wiegand A, Nieratschker V, Plewnia C. Genetic Modulation of Transcranial Direct Current Stimulation Effects on Cognition. Front Hum Neurosci 2016; 10:651. [PMID: 28066217 PMCID: PMC5177633 DOI: 10.3389/fnhum.2016.00651] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023] Open
Abstract
High inter-individual variability substantially challenges the explanatory power of studies on the modulation of cognitive functions with transcranial direct current stimulation (tDCS). These differences in responsivity have been linked with a critical state-dependency of stimulation effects. In general, genetic diversity is a decisive biological basis of variations in neuronal network functioning. Therefore, it is most likely that inter-individual variability of tDCS-induced changes in cognitive functions is due to specific interactions between genetically determined network properties and the specific type of stimulation. In this context, predominantly the brain-derived neurotrophic factor (BDNF) Val66Met and the catechol-O-methyltransferase (COMT) Val108/158Met polymorphisms have been investigated. The studies on the interaction between the BDNF Val66Met polymorphism and the effect of brain stimulation indicate a critical but yet heterogeneous interaction. But up to now, data on the interplay between this polymorphism and tDCS on cognitive functioning are not available. However, recently, the functional Val(108/158)Met polymorphism in the COMT gene, that is particularly involved in the regulation of executive functions by means of the dopaminergic tone in frontal brain areas, has been demonstrated to specifically predict the effect of tDCS on cognitive control. Following an inverted U-shaped function, the high dopaminergic activity in Met allele homozygous individuals has been shown to be associated with a reduction of executive functioning by anodal tDCS to the prefrontal cortex. Consistently, Val homozygous individuals with lower dopaminergic tone show a clear reduction of response inhibition with cathodal tDCS. These findings exemplify the notion of a complex but neurophysiologically consistent interaction between genetically determined variations of neuronal activity and tDCS, particularly in the cognitive domain. Consequently, a systematic analysis and consideration of genetic modulators of tDCS effects will be helpful to improve the efficacy of brain stimulation and particularly tDCS in the investigation and treatment of cognitive functions.
Collapse
Affiliation(s)
- Ariane Wiegand
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Tübingen Tübingen, Germany
| | - Vanessa Nieratschker
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Tübingen Tübingen, Germany
| | - Christian Plewnia
- Neurophysiology and Interventional Neuropsychiatry, Department of Psychiatry and Psychotherapy, University of Tübingen Tübingen, Germany
| |
Collapse
|
47
|
Schroeder PA, Plewnia C. Beneficial Effects of Cathodal Transcranial Direct Current Stimulation (tDCS) on Cognitive Performance. JOURNAL OF COGNITIVE ENHANCEMENT 2016. [DOI: 10.1007/s41465-016-0005-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
He Q, Chen M, Chen C, Xue G, Feng T, Bechara A. Anodal Stimulation of the Left DLPFC Increases IGT Scores and Decreases Delay Discounting Rate in Healthy Males. Front Psychol 2016; 7:1421. [PMID: 27703440 PMCID: PMC5028393 DOI: 10.3389/fpsyg.2016.01421] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/05/2016] [Indexed: 11/13/2022] Open
Abstract
Previous correlational imaging studies have implicated the dorsolateral prefrontal cortex (DLPFC) in decision making. Using High-Definition Transcranial Direct Current Stimulation (HD-tDCS), the present study directly investigated the causal role of the DLPFC in performing the Iowa Gambling Task (IGT) and the Inter-Temporal Choice (ITC) task. Three experiments were conducted: Experiment 1 (N = 41) to study the left DLPFC, Experiment 2 (N = 49) to study the right DLPFC, and Experiment 3 (N = 20, a subset of those in Experiment 1) to switch the experimental and control conditions. All participants were healthy male college students. For Experiments 1 and 2, participants were randomly assigned to either the HD-tDCS or the sham stimulation condition. For Experiment 3, participants were assigned to the condition they were not in during Experiment 1. Results showed that HD-tDCS over the left DLPFC increased IGT score, decreased the recency parameter in IGT, and lowered delay discounting rate (k) in the ITC task. We discussed the potential roles of impulse control and time perception in mediating the effect of tDCS stimulation of left DLPFC on decision making. Our results have clinical implications for the treatment of disorders involving poor decision-making, such as addictions.
Collapse
Affiliation(s)
- Qinghua He
- Decision Neuroscience Lab, Faculty of Psychology, Southwest UniversityChongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest UniversityChongqing, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal UniversityChongqing, China
| | - Mei Chen
- Decision Neuroscience Lab, Faculty of Psychology, Southwest UniversityChongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest UniversityChongqing, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California at Irvine, Irvine CA, USA
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Tingyong Feng
- Decision Neuroscience Lab, Faculty of Psychology, Southwest UniversityChongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest UniversityChongqing, China
| | - Antoine Bechara
- Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles CA, USA
| |
Collapse
|
49
|
Cathodal tDCS improves task performance in participants high in Coldheartedness. Clin Neurophysiol 2016; 127:3102-3109. [DOI: 10.1016/j.clinph.2016.05.274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 11/22/2022]
|
50
|
Tatti E, Rossi S, Innocenti I, Rossi A, Santarnecchi E. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives. Ageing Res Rev 2016; 29:66-89. [PMID: 27221544 DOI: 10.1016/j.arr.2016.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/01/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction.
Collapse
|