1
|
Mohammadshirazi A, Mazzone GL, Zylberberg BA, Taccola G. A Focal Traumatic Injury to the Neonatal Rodent Spinal Cord Causes an Immediate and Massive Spreading Depolarization Sustained by Chloride Ions, with Transient Network Dysfunction. Cell Mol Neurobiol 2025; 45:10. [PMID: 39745523 PMCID: PMC11695467 DOI: 10.1007/s10571-024-01516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/13/2024] [Indexed: 01/06/2025]
Abstract
In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats. Before and after injury, multiple ventral root (VR) recordings continuously traced respiratory rhythm, baseline spontaneous activities, and electrically induced reflex responses. As early as 200 ms after the lowering of the impactor, an immediate transient depolarization spread from the injury site to the whole spinal cord with distinct segmental velocities. Stronger strikes induced higher potentials causing, close by the site of injury, a transient drop in spinal cord oxygenation (SCO2) and a massive cell death with a complete functional disconnection of input along the cord. Below the impact site, expiratory rhythm and spontaneous lumbar activity were suppressed. On lumbar VRs, reflex responses transiently halted but later recovered to control values, while electrically induced fictive locomotion remained perturbed. Moreover, low-ion modified Krebs solutions differently influenced impact-induced depolarizations, the magnitude of which amplified in low Cl-. Overall, our novel ex vivo platform traces the immediate functional consequences of impacts to the spinal cord during development. This basic study provides insights on the SCI pathophysiology, unveiling an immediate chloride dysregulation.
Collapse
Affiliation(s)
- Atiyeh Mohammadshirazi
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, TS, Italy
- Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Benjamín A Zylberberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, TS, Italy.
- Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy.
| |
Collapse
|
2
|
Sharma P, Rampersaud H, Shah PK. Repeated epidural stimulation modulates cervical spinal cord excitability in healthy adult rats. Exp Brain Res 2024; 243:22. [PMID: 39665849 DOI: 10.1007/s00221-024-06965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/04/2024] [Indexed: 12/13/2024]
Abstract
Spinal evoked motor responses (SEMR) are utilized in longitudinal pre-clinical and human studies to reflect the in-vivo physiological changes in neural networks secondary to a spinal cord injury (SCI) or neuro-rehabilitative treatments utilizing epidural stimulation (ES). However, it remains unknown whether the repeated ES exposure during SEMR testing itself modulates spinal cord physiology and accompanying SEMR characteristics. To answer this, ES was delivered to the cervical spinal cord using standard stimulation paradigms during multiple SEMR data acquisition sessions (~ 17 h spanning across 100 days) in ten healthy adult rats. Cervical SEMR at rest and forelimb muscle activity during reaching and grasping task were collected before and after 100 days. We noted a persistent increase in SEMR activity relative to baseline, with prominent changes in the mono and poly-synaptic components of SEMR. The findings indicate increased spinal cord excitability. Increased spinal cord excitability translated into increased forelimb muscle activation during the reaching and grasping task. For the majority of SEMR and muscle activity increase, effect size was large or very large. Cervical SEMR are amenable to modulation by routine ES testing protocols, with prominent changes in the mono and poly-synaptic components of SEMR. Since repeated stimulation during multiple testing alone increases cord excitability, we recommend (1) SEMR may be used with caution to infer the physiological status of the spinal circuitry (2) utilizing appropriate control groups and motor behavioral correlates for meaningful functional interpretation in longitudinal neuromodulation studies involving multiple SEMR testing sessions following a SCI.
Collapse
Affiliation(s)
- Pawan Sharma
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, University of Louisville, Louisville, KY, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY, 40202, USA.
| | - Hema Rampersaud
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11727, USA
| | - Prithvi K Shah
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, University of Louisville, Louisville, KY, USA
| |
Collapse
|
3
|
Kumar G, Zhou Z, Wang Z, Kwan KM, Tin C, Ma CHE. Real-time field-programmable gate array-based closed-loop deep brain stimulation platform targeting cerebellar circuitry rescues motor deficits in a mouse model of cerebellar ataxia. CNS Neurosci Ther 2024; 30:e14638. [PMID: 38488445 PMCID: PMC10941591 DOI: 10.1111/cns.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 03/18/2024] Open
Abstract
AIMS The open-loop nature of conventional deep brain stimulation (DBS) produces continuous and excessive stimulation to patients which contributes largely to increased prevalence of adverse side effects. Cerebellar ataxia is characterized by abnormal Purkinje cells (PCs) dendritic arborization, loss of PCs and motor coordination, and muscle weakness with no effective treatment. We aim to develop a real-time field-programmable gate array (FPGA) prototype targeting the deep cerebellar nuclei (DCN) to close the loop for ataxia using conditional double knockout mice with deletion of PC-specific LIM homeobox (Lhx)1 and Lhx5, resulting in abnormal dendritic arborization and motor deficits. METHODS We implanted multielectrode array in the DCN and muscles of ataxia mice. The beneficial effect of open-loop DCN-DBS or closed-loop DCN-DBS was compared by motor behavioral assessments, electromyography (EMG), and neural activities (neurospike and electroencephalogram) in freely moving mice. FPGA board, which performed complex real-time computation, was used for closed-loop DCN-DBS system. RESULTS Closed-loop DCN-DBS was triggered only when symptomatic muscle EMG was detected in a real-time manner, which restored motor activities, electroencephalogram activities and neurospike properties completely in ataxia mice. Closed-loop DCN-DBS was more effective than an open-loop paradigm as it reduced the frequency of DBS. CONCLUSION Our real-time FPGA-based DCN-DBS system could be a potential clinical strategy for alleviating cerebellar ataxia and other movement disorders.
Collapse
Affiliation(s)
- Gajendra Kumar
- Department of NeuroscienceCity University of Hong KongHong KongHong Kong SAR
| | - Zhanhong Zhou
- Department of Biomedical EngineeringCity University of Hong KongHong KongHong Kong SAR
| | - Zhihua Wang
- Department of Biomedical EngineeringCity University of Hong KongHong KongHong Kong SAR
| | - Kin Ming Kwan
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong KongHong Kong SAR
| | - Chung Tin
- Department of Biomedical EngineeringCity University of Hong KongHong KongHong Kong SAR
| | - Chi Him Eddie Ma
- Department of NeuroscienceCity University of Hong KongHong KongHong Kong SAR
| |
Collapse
|
4
|
Taccola G, Kissane R, Culaclii S, Apicella R, Liu W, Gad P, Ichiyama RM, Chakrabarty S, Edgerton VR. Dynamic electrical stimulation enhances the recruitment of spinal interneurons by corticospinal input. Exp Neurol 2024; 371:114589. [PMID: 37907125 DOI: 10.1016/j.expneurol.2023.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs and their input-output profile elicited by pulses delivered to peripheral nerves. Apart from increased EMGs, DS selectively increased excitability of the spinal interneurons that first process corticospinal input, without changing the magnitude of commands descending from the motor cortex, suggesting a novel correlation between muscle recruitment and components of cortically-evoked CDPs. Finally, DS increases excitability of post-synaptic spinal interneurons at the stimulation site and their responsiveness to any residual supraspinal control, thus supporting the use of electrical neuromodulation whenever the motor output is jeopardized by a weak volitional input, due to a partial disconnection from supraspinal structures and/or neuronal brain dysfunctions.
Collapse
Affiliation(s)
- Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Roger Kissane
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Department of Musculoskeletal & Ageing Science, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Stanislav Culaclii
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Rosamaria Apicella
- Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; UCLA California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Parag Gad
- SpineX Inc, Los Angeles, CA 90064, USA
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - V Reggie Edgerton
- Rancho Research Institute, Los Amigos National Rehabilitation Center, Downey, CA 90242, USA; University of Southern California Neurorestoration Center, Keck School of Medicine, Los Angeles, CA 90033; USA; Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, Badalona 08916, Spain
| |
Collapse
|
5
|
Gorgey AS, Venigalla S, Rehman MU, George B, Rejc E, Gouda JJ. Interleaved configurations of percutaneous epidural stimulation enhanced overground stepping in a person with chronic paraplegia. Front Neurosci 2023; 17:1284581. [PMID: 38144208 PMCID: PMC10740173 DOI: 10.3389/fnins.2023.1284581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Descending motor signals are disrupted after complete spinal cord injury (SCI) resulting in loss of standing and walking. We previously restored standing and trunk control in a person with a T3 complete SCI following implantation of percutaneous spinal cord epidural stimulation (SCES). We, hereby, present a step-by-step procedure on configuring the SCES leads to initiate rhythmic lower limb activation (rhythmic-SCES) resulting in independent overground stepping in parallel bars and using a standard walker. Initially, SCES was examined in supine lying at 2 Hz before initiating stepping-like activity in parallel bars using 20 or 30 Hz; however, single lead configuration (+2, -5) resulted in lower limb adduction and crossing of limbs, impairing the initiation of overground stepping. After 6 months, interleaving the original rhythmic-SCES with an additional configuration (-12, +15) on the opposite lead, resulted in a decrease of the extensive adduction tone and allowed the participant to initiate overground stepping up to 16 consecutive steps. The current paradigm suggests that interleaving two rhythmic-SCES configurations may improve the excitability of the spinal circuitry to better interpret the residual descending supraspinal signals with the ascending proprioceptive inputs, resulting in a stepping-like motor behavior after complete SCI.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Siddharth Venigalla
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
| | - Muhammad Uzair Rehman
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
| | - Botros George
- ELAGI Center for Physical Therapy and Rehabilitation, Giza, Egypt
| | - Enrico Rejc
- Department of Medicine, University of Udine, Udine, Italy
| | - Jan J. Gouda
- Neurosurgery Department, Louran Hospital, Alexandria, Egypt
- Department of Surgery, Wright State University, Dayton, OH, United States
| |
Collapse
|
6
|
Taccola G, Kissane R, Culaclii S, Apicella R, Liu W, Gad P, Ichiyama RM, Chakrabarty S, Edgerton VR. Spinal facilitation of descending motor input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547229. [PMID: 37461548 PMCID: PMC10349979 DOI: 10.1101/2023.06.30.547229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs on the dorsal cord and their input-output profile elicited by pulses delivered to peripheral nerves. Apart from increased EMGs, DS selectively increased excitability of the spinal interneurons that first process corticospinal input, without changing the magnitude of commands descending from the motor cortex, suggesting a novel correlation between muscle recruitment and components of cortically-evoked CDPs. Finally, DS increases excitability of post-synaptic spinal interneurons at the stimulation site and their responsiveness to any residual supraspinal control, thus supporting the use of electrical neuromodulation whenever the motor output is jeopardized by a weak volitional input, due to a partial disconnection from supraspinal structures and/or neuronal brain dysfunctions.
Collapse
Affiliation(s)
- Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roger Kissane
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Musculoskeletal & Ageing Science, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Stanislav Culaclii
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Rosamaria Apicella
- Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- UCLA California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Parag Gad
- Rancho Research Institute, Downy, CA 90242, USA; Los Amigos National Rehabilitation Center
- University of Southern California Neurorestoration Center, Keck School of Medicine, Los Angeles, CA 90033; USA
| | - Ronaldo M. Ichiyama
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - V. Reggie Edgerton
- Rancho Research Institute, Downy, CA 90242, USA; Los Amigos National Rehabilitation Center
- University of Southern California Neurorestoration Center, Keck School of Medicine, Los Angeles, CA 90033; USA
- Institut Guttmann. Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, 08916 Badalona, Spain
| |
Collapse
|
7
|
Mohammadshirazi A, Apicella R, Zylberberg BA, Mazzone GL, Taccola G. Suprapontine Structures Modulate Brainstem and Spinal Networks. Cell Mol Neurobiol 2023:10.1007/s10571-023-01321-z. [PMID: 36732488 DOI: 10.1007/s10571-023-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Several spinal motor output and essential rhythmic behaviors are controlled by supraspinal structures, although their contribution to neuronal networks for respiration and locomotion at birth still requires better characterization. As preparations of isolated brainstem and spinal networks only focus on local circuitry, we introduced the in vitro central nervous system (CNS) from neonatal rodents to simultaneously record a stable respiratory rhythm from both cervical and lumbar ventral roots (VRs).Electrical pulses supplied to multiple sites of brainstem evoked distinct VR responses with staggered onset in the rostro-caudal direction. Stimulation of ventrolateral medulla (VLM) resulted in higher events from homolateral VRs. Stimulating a lumbar dorsal root (DR) elicited responses even from cervical VRs, albeit small and delayed, confirming functional ascending pathways. Oximetric assessments detected optimal oxygen levels on brainstem and cortical surfaces, and histological analysis of internal brain structures indicated preserved neuron viability without astrogliosis. Serial ablations showed precollicular decerebration reducing respiratory burst duration and frequency and diminishing the area of lumbar DR and VR potentials elicited by DR stimulation, while pontobulbar transection increased the frequency and duration of respiratory bursts. Keeping legs attached allows for expressing a respiratory rhythm during hindlimb stimulation. Trains of pulses evoked episodes of fictive locomotion (FL) when delivered to VLM or to a DR, the latter with a slightly better FL than in isolated cords.In summary, suprapontine centers regulate spontaneous respiratory rhythms, as well as electrically evoked reflexes and spinal network activity. The current approach contributes to clarifying modulatory brain influences on the brainstem and spinal microcircuits during development. Novel preparation of the entire isolated CNS from newborn rats unveils suprapontine modulation on brainstem and spinal networks. Preparation views (A) with and without legs attached (B). Successful fictive respiration occurs with fast dissection from P0-P2 rats (C). Decerebration speeds up respiratory rhythm (D) and reduces spinal reflexes derived from both ventral and dorsal lumbar roots (E).
Collapse
Affiliation(s)
- Atiyeh Mohammadshirazi
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy
| | - Rosamaria Apicella
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy
| | - Benjamín A Zylberberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT)-CONICET - Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires, Argentina
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT)-CONICET - Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires, Argentina
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy. .,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy.
| |
Collapse
|
8
|
Asthana P, Kumar G, Milanowski LM, Au NPB, Chan SC, Huang J, Feng H, Kwan KM, He J, Chan KWY, Wszolek ZK, Ma CHE. Cerebellar glutamatergic system impacts spontaneous motor recovery by regulating Gria1 expression. NPJ Regen Med 2022; 7:45. [PMID: 36064798 PMCID: PMC9445039 DOI: 10.1038/s41536-022-00243-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Peripheral nerve injury (PNI) often results in spontaneous motor recovery; however, how disrupted cerebellar circuitry affects PNI-associated motor recovery is unknown. Here, we demonstrated disrupted cerebellar circuitry and poor motor recovery in ataxia mice after PNI. This effect was mimicked by deep cerebellar nuclei (DCN) lesion, but not by damaging non-motor area hippocampus. By restoring cerebellar circuitry through DCN stimulation, and reversal of neurotransmitter imbalance using baclofen, ataxia mice achieve full motor recovery after PNI. Mechanistically, elevated glutamate-glutamine level was detected in DCN of ataxia mice by magnetic resonance spectroscopy. Transcriptomic study revealed that Gria1, an ionotropic glutamate receptor, was upregulated in DCN of control mice but failed to be upregulated in ataxia mice after sciatic nerve crush. AAV-mediated overexpression of Gria1 in DCN rescued motor deficits of ataxia mice after PNI. Finally, we found a correlative decrease in human GRIA1 mRNA expression in the cerebellum of patients with ataxia-telangiectasia and spinocerebellar ataxia type 6 patient iPSC-derived Purkinje cells, pointing to the clinical relevance of glutamatergic system. By conducting a large-scale analysis of 9,655,320 patients with ataxia, they failed to recover from carpal tunnel decompression surgery and tibial neuropathy, while aged-match non-ataxia patients fully recovered. Our results provide insight into cerebellar disorders and motor deficits after PNI.
Collapse
Affiliation(s)
- Pallavi Asthana
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Lukasz M Milanowski
- Department of Neurology, Mayo Clinic, Jacksonville, USA.,Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Siu Chung Chan
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Hemin Feng
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Kin Ming Kwan
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR.
| |
Collapse
|
9
|
Stochastic spinal neuromodulation tunes the intrinsic logic of spinal neural networks. Exp Neurol 2022; 355:114138. [DOI: 10.1016/j.expneurol.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
10
|
Noga BR, Guest JD. Combined neuromodulatory approaches in the central nervous system for treatment of spinal cord injury. Curr Opin Neurol 2021; 34:804-811. [PMID: 34593718 PMCID: PMC8595808 DOI: 10.1097/wco.0000000000000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To report progress in neuromodulation following spinal cord injury (SCI) using combined brain and spinal neuromodulation.Neuromodulation refers to alterations in neuronal activity for therapeutic purposes. Beneficial effects are established in disease states such as Parkinson's Disease (PD), chronic pain, epilepsy, and SCI. The repertoire of neuromodulation and bioelectric medicine is rapidly expanding. After SCI, cohort studies have reported the benefits of epidural stimulation (ES) combined with training. Recently, we have explored combining ES with deep brain stimulation (DBS) to increase activation of descending motor systems to address limitations of ES in severe SCI. In this review, we describe the types of applied neuromodulation that could be combined in SCI to amplify efficacy to enable movement. These include ES, mesencephalic locomotor region (MLR) - DBS, noninvasive transcutaneous stimulation, transcranial magnetic stimulation, paired-pulse paradigms, and neuromodulatory drugs. We examine immediate and longer-term effects and what is known about: (1) induced neuroplastic changes, (2) potential safety concerns; (3) relevant outcome measures; (4) optimization of stimulation; (5) therapeutic limitations and prospects to overcome these. RECENT FINDINGS DBS of the mesencephalic locomotor region is emerging as a potential clinical target to amplify supraspinal command circuits for locomotion. SUMMARY Combinations of neuromodulatory methods may have additive value for restoration of function after spinal cord injury.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
11
|
Taylor C, McHugh C, Mockler D, Minogue C, Reilly RB, Fleming N. Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: A methodological review. PLoS One 2021; 16:e0260166. [PMID: 34793572 PMCID: PMC8601579 DOI: 10.1371/journal.pone.0260166] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background Transcutaneous spinal cord stimulation (tSCS) is a non-invasive modality in which electrodes can stimulate spinal circuitries and facilitate a motor response. This review aimed to evaluate the methodology of studies using tSCS to generate motor activity in persons with spinal cord injury (SCI) and to appraise the quality of included trials. Methods A systematic search for studies published until May 2021 was made of the following databases: EMBASE, Medline (Ovid) and Web of Science. Two reviewers independently screened the studies, extracted the data, and evaluated the quality of included trials. The electrical characteristics of stimulation were summarised to allow for comparison across studies. In addition, the surface electromyography (EMG) recording methods were evaluated. Results A total of 3753 articles were initially screened, of which 25 met the criteria for inclusion. Studies were divided into those using tSCS for neurophysiological investigations of reflex responses (n = 9) and therapeutic investigations of motor recovery (n = 16). The overall quality of evidence was deemed to be poor-to-fair (10.5 ± 4.9) based on the Downs and Black Quality Checklist criteria. The electrical characteristics were collated to establish the dosage range across stimulation trials. The methods employed by included studies relating to stimulation parameters and outcome measurement varied extensively, although some trends are beginning to appear in relation to electrode configuration and EMG outcomes. Conclusion This review outlines the parameters currently employed for tSCS of the cervicothoracic and thoracolumbar regions to produce motor responses. However, to establish standardised procedures for neurophysiological assessments and therapeutic investigations of tSCS, further high-quality investigations are required, ideally utilizing consistent electrophysiological recording methods, and reporting common characteristics of the electrical stimulation administered.
Collapse
Affiliation(s)
- Clare Taylor
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
- * E-mail:
| | - Conor McHugh
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - David Mockler
- John Stearne Medical Library, Trinity Centre for Health Sciences, School of Medicine, St. James’s Hospital, Dublin, Ireland
| | - Conor Minogue
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Richard B. Reilly
- Trinity Centre for Biomedical Engineering, Trinity College, The University of Dublin, Dublin, Ireland
- School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Neil Fleming
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Taccola G, Culaclii S, Zhong H, Gad P, Liu W, Edgerton VR. An epidural stimulating interface unveils the intrinsic modulation of electrically motor evoked potentials in behaving rats. J Neurophysiol 2021; 126:1635-1641. [PMID: 34644129 PMCID: PMC8782665 DOI: 10.1152/jn.00278.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 10/07/2021] [Indexed: 01/26/2023] Open
Abstract
In intact and spinal-injured anesthetized animals, stimulation levels that did not induce any visible muscle twitches were used to elicit motor evoked potentials (MEPs) of varying amplitude, reflecting the temporal and amplitude dynamics of the background excitability of spinal networks. To characterize the physiological excitability states of neuronal networks driving movement, we designed five experiments in awake rats chronically implanted with an epidural stimulating interface, with and without a spinal cord injury (SCI). First, an uninjured rat at rest underwent a series of single electrical pulses at sub-motor threshold intensity, which generated responses that were continuously recorded from flexor and extensor hindlimb muscles, showing an intrinsic patterned modulation of MEPs. Responses were recruited by increasing strengths of stimulation, and the amplitudes were moderately correlated between flexors and extensors. Next, after SCI, four awake rats at rest showed electrically induced MEPs, varying largely in amplitude, of both flexors and extensors that were mainly synchronously modulated. After full anesthesia, MEP amplitudes were largely reduced, although stimulation still generated random baseline changes, unveiling an intrinsic stochastic modulation. The present five cases demonstrate a methodology that can be feasibly replicated in a broader group of awake and behaving rats to further define experimental treatments involving neuroplasticity. Besides validating a new technology for a neural stimulating interface, the present data support the broader message that there is intrinsic patterned and stochastic modulation of baseline excitability reflecting the dynamics of physiological states of spinal networks.NEW & NOTEWORTHY Chronic implants of a new epidural stimulating interface trace dynamics of spinal excitability in awake rats, before and after injury. Motor evoked potentials induced by trains of pulses at sub-motor threshold intensity were continuously modulated in amplitude. Oscillatory patterns of amplitude modulation reduced with increasing strengths of stimulation and were replaced by an intrinsic stochastic tone under anesthesia. Variability of baseline excitability is a fundamental feature of spinal networks, affecting their responses to external input.
Collapse
Affiliation(s)
- Giuliano Taccola
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Stanislav Culaclii
- Department of Bioengineering, University of California, Los Angeles, California
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Parag Gad
- Department of Neurobiology, University of California, Los Angeles, California
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, California
- Brain Research Institute, University of California, Los Angeles, California
- UCLA California NanoSystems Institute, Los Angeles, California
| | - V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, California
- Brain Research Institute, University of California, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, California
- Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| |
Collapse
|
13
|
Malone IG, Nosacka RL, Nash MA, Otto KJ, Dale EA. Electrical epidural stimulation of the cervical spinal cord: implications for spinal respiratory neuroplasticity after spinal cord injury. J Neurophysiol 2021; 126:607-626. [PMID: 34232771 PMCID: PMC8409953 DOI: 10.1152/jn.00625.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023] Open
Abstract
Traumatic cervical spinal cord injury (cSCI) can lead to damage of bulbospinal pathways to the respiratory motor nuclei and consequent life-threatening respiratory insufficiency due to respiratory muscle paralysis/paresis. Reports of electrical epidural stimulation (EES) of the lumbosacral spinal cord to enable locomotor function after SCI are encouraging, with some evidence of facilitating neural plasticity. Here, we detail the development and success of EES in recovering locomotor function, with consideration of stimulation parameters and safety measures to develop effective EES protocols. EES is just beginning to be applied in other motor, sensory, and autonomic systems; however, there has only been moderate success in preclinical studies aimed at improving breathing function after cSCI. Thus, we explore the rationale for applying EES to the cervical spinal cord, targeting the phrenic motor nucleus for the restoration of breathing. We also suggest cellular/molecular mechanisms by which EES may induce respiratory plasticity, including a brief examination of sex-related differences in these mechanisms. Finally, we suggest that more attention be paid to the effects of specific electrical parameters that have been used in the development of EES protocols and how that can impact the safety and efficacy for those receiving this therapy. Ultimately, we aim to inform readers about the potential benefits of EES in the phrenic motor system and encourage future studies in this area.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Erica A Dale
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
14
|
Culaclii S, Wang PM, Taccola G, Yang W, Bailey B, Chen YP, Lo YK, Liu W. A Biomimetic, SoC-Based Neural Stimulator for Novel Arbitrary-Waveform Stimulation Protocols. Front Neurosci 2021; 15:697731. [PMID: 34393710 PMCID: PMC8358079 DOI: 10.3389/fnins.2021.697731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022] Open
Abstract
Novel neural stimulation protocols mimicking biological signals and patterns have demonstrated significant advantages as compared to traditional protocols based on uniform periodic square pulses. At the same time, the treatments for neural disorders which employ such protocols require the stimulator to be integrated into miniaturized wearable devices or implantable neural prostheses. Unfortunately, most miniaturized stimulator designs show none or very limited ability to deliver biomimetic protocols due to the architecture of their control logic, which generates the waveform. Most such designs are integrated into a single System-on-Chip (SoC) for the size reduction and the option to implement them as neural implants. But their on-chip stimulation controllers are fixed and limited in memory and computing power, preventing them from accommodating the amplitude and timing variances, and the waveform data parameters necessary to output biomimetic stimulation. To that end, a new stimulator architecture is proposed, which distributes the control logic over three component tiers - software, microcontroller firmware and digital circuits of the SoC, which is compatible with existing and future biomimetic protocols and with integration into implantable neural prosthetics. A portable prototype with the proposed architecture is designed and demonstrated in a bench-top test with various known biomimetic output waveforms. The prototype is also tested in vivo to deliver a complex, continuous biomimetic stimulation to a rat model of a spinal-cord injury. By delivering this unique biomimetic stimulation, the device is shown to successfully reestablish the connectivity of the spinal cord post-injury and thus restore motor outputs in the rat model.
Collapse
Affiliation(s)
- Stanislav Culaclii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Po-Min Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies, Trieste, Italy
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - William Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brett Bailey
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yan-Peng Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yi-Kai Lo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Niche Biomedical Inc., Los Angeles, CA, United States
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Cortical Representations of Transversus Abdominis and Multifidus Muscles Were Discrete in Patients with Chronic Low Back Pain: Evidence Elicited by TMS. Neural Plast 2021; 2021:6666024. [PMID: 33679969 PMCID: PMC7906820 DOI: 10.1155/2021/6666024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction The transversus abdominis (TVA) and multifidus (MF) muscles are the main segmental spinal stabilizers that are controlled by the primary motor cortex of the brain. However, relocations of the muscle representation in the motor cortex may occur after chronic lower back pain (cLBP); it still needs more evidence to be proven. The current study was aimed at applying transcranial magnetic stimulation (TMS) to investigate the changes of representation of TVA and MF muscles at the cortical network in individuals with cLBP. Methods Twenty-four patients with cLBP and 12 age-matched healthy individuals were recruited. Responses of TVA and MF to TMS during muscle contraction were monitored and mapped over the contralateral cortex using a standardized grid cap. Maps of the center of gravity (CoG), area, volume, and latency were analyzed, and the asymmetry index was also computed and compared. Results The locations of MF CoG in cLBP individuals were posterior and lateral to the CoG locations in healthy individuals. In the healthy group, the locations of TVA and MF CoG were closed to each other in both the left and right hemispheres. In the cLBP group, these two locations were next to each other in the right hemisphere but discrete in the left hemisphere. In the cLBP group, the cortical motor map of TVA and MF were mutually symmetric in five out of eleven (45.5%) subjects and leftward asymmetric in four out of ten (40.0%) subjects. Conclusions Neural representations of TVA and MF muscles were closely organized in both the right and left motor cortices in the healthy group but were discretely organized in the left motor cortex in the cLBP group. This provides strong support for the neural basis of pathokinesiology and clinical treatment of cLBP.
Collapse
|
16
|
Taccola G, Salazar BH, Apicella R, Hogan MK, Horner PJ, Sayenko D. Selective Antagonism of A1 Adenosinergic Receptors Strengthens the Neuromodulation of the Sensorimotor Network During Epidural Spinal Stimulation. Front Syst Neurosci 2020; 14:44. [PMID: 32760254 PMCID: PMC7372902 DOI: 10.3389/fnsys.2020.00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023] Open
Abstract
Although epidural spinal stimulation (ESS) results in promising therapeutic effects in individuals with spinal cord injury (SCI), its potential to generate functional motor recovery varies between individuals and remains largely unclear. However, both preclinical and clinical studies indicate the capacity of electrical and pharmacological interventions to synergistically increase the engagement of spinal sensorimotor networks and regain motor function after SCI. This study explored whether selective pharmacological antagonism of the adenosine A1 receptor subtype synergizes with ESS, thereby increasing motor response. We hypothesized that selective pharmacological antagonism of A1 receptors during ESS would produce facilitatory effects in spinal sensorimotor networks detected as an increased amplitude of spinally-evoked motor potentials and sustained duration of ESS induced activity. Terminal experiments were performed in adult rats using trains of stereotyped pulses at 40 Hz delivered at L5 with the local administration to the cord of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). We demonstrated that ESS combined with the blockage of A1 receptors increased the magnitude of the endogenous modulation and postponed the decay of responses that occur during ESS alone. Although DPCPX significantly increased the yield of repetitive stimulation in intact spinal cords, the effects of A1 antagonism on motor evoked responses after an acute spinal transection was not detected. These studies support the future investigation of the optimal dosage, methods of delivery, and systemic effects of the synergistic application of A1 antagonists and spinal stimulation in the intact and injured spinal cord.
Collapse
Affiliation(s)
- Giuliano Taccola
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Betsy Habeth Salazar
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Rosamaria Apicella
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Matthew Kevin Hogan
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Philip John Horner
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Dimitry Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
17
|
Taccola G, Barber S, Horner PJ, Bazo HAC, Sayenko D. Complications of epidural spinal stimulation: lessons from the past and alternatives for the future. Spinal Cord 2020; 58:1049-1059. [DOI: 10.1038/s41393-020-0505-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
|
18
|
Acute neuromodulation restores spinally-induced motor responses after severe spinal cord injury. Exp Neurol 2020; 327:113246. [DOI: 10.1016/j.expneurol.2020.113246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/29/2022]
|