1
|
Tamura R, Dezawa S, Kato J, Nakata M, Kunori N, Takashima I. Transcranial direct current stimulation improves motor function in rats with 6-hydroxydopamine-induced Parkinsonism. Behav Brain Res 2024; 460:114815. [PMID: 38122905 DOI: 10.1016/j.bbr.2023.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Transcranial direct current stimulation (tDCS) is increasingly being used for Parkinson's disease (PD); however, the evaluation of its clinical impact remains complex owing to the heterogeneity of patients and treatments. Therefore, we used a unilateral 6-hydroxydopamine-induced PD rat model to investigate whether anodal tDCS of the primary motor cortex (M1) alleviates PD motor deficits. Before tDCS treatment, unilateral PD rats preferentially used the forelimb ipsilateral to the lesion in the exploratory cylinder test and showed reduced locomotor activity in the open field test. In addition, PD-related clumsy forelimb movements during treadmill walking were detected using deep learning-based video analysis (DeepLabCut). When the 5-day tDCS treatment began, the forelimb-use asymmetry was ameliorated gradually, and locomotor activity increased to pre-lesion levels. tDCS treatment also normalized unnatural forelimb movement during walking and restored a balanced gait. However, these therapeutic effects were rapidly lost or gradually disappeared when the tDCS treatment was terminated. Histological analysis at the end of the experiment revealed that the animals had moderately advanced PD, with 40-50% of dopamine neurons and fibers preserved on the injured side compared with those on the intact side. Although it remains a challenge to elucidate the neural mechanisms of the transient improvement in motor function induced by tDCS, the results of this study provide evidence that tDCS of the M1 produces positive behavioral outcomes in PD animals and provides the basis for further clinical research examining the application of tDCS in patients with PD.
Collapse
Affiliation(s)
- Ryota Tamura
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shinnosuke Dezawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Junpei Kato
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mariko Nakata
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Nobuo Kunori
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Department of Informatics and Electronics, Daiichi Institute of Technology, Tokyo, Japan.
| |
Collapse
|
2
|
Herlihy RA, Alicandri F, Berger H, Rehman H, Kao Y, Akhtar K, Dybas E, Mahoney-Rafferty E, Von Stein K, Kirby R, Tawfik A, Skumurski R, Feustel PJ, Molho ES, Shin DS. Investigation of non-invasive focused ultrasound efficacy on depressive-like behavior in hemiparkinsonian rats. Exp Brain Res 2024; 242:321-336. [PMID: 38059986 DOI: 10.1007/s00221-023-06750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
Depression is a common non-motor symptom in Parkinson's disease (PD) that includes anhedonia and impacts quality of life but is not effectively treated with conventional antidepressants clinically. Vagus nerve stimulation improves treatment-resistant depression in the general population, but research about its antidepressant efficacy in PD is limited. Here, we administered peripheral non-invasive focused ultrasound to hemiparkinsonian ('PD') and non-parkinsonian (sham) rats to mimic vagus nerve stimulation and assessed its antidepressant-like efficacy. Following 6-hydroxydopamine (6-OHDA) lesion, akinesia-like immobility was assessed in the limb-use asymmetry test, and despair- and anhedonic-like behaviors were evaluated in the forced swim test and sucrose preference test, respectively. After, tyrosine hydroxylase immuno-staining was employed to visualize and quantify dopaminergic degeneration in the substantia nigra pars compacta, ventral tegmental area, and striatum. We found that PD rats exhibited akinesia-like immobility and > 90% reduction in tyrosine hydroxylase immuno-staining ipsilateral to the lesioned side. PD rats also demonstrated anhedonic-like behavior in the sucrose preference test compared to sham rats. No 6-OHDA lesion effect on immobility in the forced swim test limited conclusions about the efficacy of ultrasound on despair-like behavior. However, ultrasound improved anhedonic-like behavior in PD rats and this efficacy was sustained through the end of the 1-week recovery period. The greatest number of animals demonstrating increased sucrose preference was in the PD group receiving ultrasound. Our findings here are the first to posit that peripheral non-invasive focused ultrasound to the celiac plexus may improve anhedonia in PD with further investigation needed to reveal its potential for clinical applicability.
Collapse
Affiliation(s)
- Rachael A Herlihy
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Francisco Alicandri
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Hudy Berger
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Huda Rehman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Yifan Kao
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Kainat Akhtar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Elizabeth Dybas
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Emily Mahoney-Rafferty
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Kassie Von Stein
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Raven Kirby
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Angela Tawfik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Rachel Skumurski
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Eric S Molho
- Department of Neurology, Albany Medical Center, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
- Department of Neurology, Albany Medical Center, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
3
|
Zhang L, Guo Y, Liu J, Li L, Wang Y, Wu X, Bai Y, Li J, Zhang Q, Hui Y. Transcranial direct current stimulation of the prefrontal cortex improves depression-like behaviors in rats with Parkinson's disease. Brain Res 2024; 1822:148649. [PMID: 37923003 DOI: 10.1016/j.brainres.2023.148649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Depression associated with Parkinson's disease (PD) seriously affects patients, and there is a lack of effective treatments. Transcranial direct current stimulation (tDCS) is increasingly used as a new non-invasive neuromodulation technique in the treatment of neuropsychiatric diseases. However, there is a paucity of research on tDCS for PD-related depression. Our study used PD model rats established with unilateral destruction of the medial forebrain bundle (MFB) to observe the modulatory effects of tDCS acting on the mPFC on depression-like behaviors. We found that tDCS acting on the mPFC improved depression-like behaviors in PD model rats by increasing sucrose intake in sucrose preference test (n = 7-10 rats/group) and shortening immobility time in forced swimming test (n = 7-8 rats/group). Meanwhile, tDCS decreased the expression of c-Fos protein (n = 8-11 rats/group) and the excitation of glutamatergic neurons (n = 6-8 rats/group) in the PrL and LHb of PD model rats. Western blots showed that tDCS decreased the overexpression of serine 845 phosphorylation site of AMPA receptor GluR1 (p-GluR1-S845) in the PrL and LHb of PD model rats (n = 8-11 rats/group), and the overexpression of p-GluR1-S831 in the LHb (n = 8-11 rats/group). The results of this study show that tDCS acting on the mPFC helps to improve PD-related depression, which involves the modulation of excitability and AMPA receptor phosphorylation on the PrL and LHb neurons.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiang Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yihua Bai
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Jing Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Yanping Hui
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
4
|
Akçay G, Aslan M, Kipmen Korgun D, Çeker T, Akan E, Derin N. Effects of transcranial direct current stimulation on the glutamatergic pathway in the male rat hippocampus after experimental focal cerebral ischemia. J Neurosci Res 2024; 102:e25247. [PMID: 37800665 DOI: 10.1002/jnr.25247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 10/07/2023]
Abstract
This study aimed to assess the focal cerebral ischemia-induced changes in learning and memory together with glutamatergic pathway in rats and the effects of treatment of the animals with transcranial Direct Current Stimulation (tDCS). One hundred male rats were divided into five groups as sham, tDCS, Ischemia/Reperfusion (IR), IR + tDCS, and IR + E-tDCS groups. Learning, memory, and locomotor activity functions were evaluated by behavioral experiments in rats. Glutamate and glutamine levels, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptor (AMPAR1), N-Methyl-D-Aspartate receptors (NMDAR1 and NMDAR2A), vesicular glutamate transporter-1 (VGLUT-1), and excitatory amino acid transporters (EAAT1-3) mRNA expressions in hippocampus tissues were measured. Ischemic areas were analyzed by TTC staining. The increase was observed in IR + tDCS, and IR + E-tDCS groups compared to the IR group while a significant decrease was observed in IR group compared to the sham in the locomotor activity, learning, and memory tests. While glutamate and glutamine levels, AMPAR1, NMDAR1, NMDAR2A, VGLUT1, and EAAT1 mRNA expressions were significantly higher in IR group compared to the sham group, it was found to be significantly lower in IR + tDCS and IR + E-tDCS groups compared to the IR group. EAAT2 and EAAT3 mRNA expressions were significantly higher in IR + tDCS and IR + E-tDCS groups compared to the IR group. Ischemic areas were significantly decreased in IR + tDCS and IR + E-tDCS groups compared to the IR group. Current results suggest that tDCS application after ischemia improves learning and memory disorders and these effects of tDCS may be provided through transporters that regulate glutamate levels.
Collapse
Affiliation(s)
- Guven Akçay
- Faculty of Medicine, Department of Biophysics, Hitit University, Çorum, Turkey
| | - Mutay Aslan
- Faculty of Medicine, Department of Biochemistry, Akdeniz University, Antalya, Turkey
| | - Dijle Kipmen Korgun
- Faculty of Medicine, Department of Biochemistry, Akdeniz University, Antalya, Turkey
| | - Tugçe Çeker
- Faculty of Medicine, Department of Biochemistry, Akdeniz University, Antalya, Turkey
| | - Ezgi Akan
- Faculty of Medicine, Department of Biochemistry, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Boi L, Fisone G. Investigating affective neuropsychiatric symptoms in rodent models of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:119-186. [PMID: 38341228 DOI: 10.1016/bs.irn.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Affective neuropsychiatric disorders such as depression, anxiety and apathy are among the most frequent non-motor symptoms observed in people with Parkinson's disease (PD). These conditions often emerge during the prodromal phase of the disease and are generally considered to result from neurodegenerative processes in meso-corticolimbic structures, occurring in parallel to the loss of nigrostriatal dopaminergic neurons. Depression, anxiety, and apathy are often treated with conventional medications, including selective serotonin reuptake inhibitors, tricyclic antidepressants, and dopaminergic agonists. The ability of these pharmacological interventions to consistently counteract such neuropsychiatric symptoms in PD is still relatively limited and the development of reliable experimental models represents an important tool to identify more effective treatments. This chapter provides information on rodent models of PD utilized to study these affective neuropsychiatric symptoms. Neurotoxin-based and genetic models are discussed, together with the main behavioral tests utilized to identify depression- and anxiety-like behaviors, anhedonia, and apathy. The ability of various therapeutic approaches to counteract the symptoms observed in the various models is also reviewed.
Collapse
Affiliation(s)
- Laura Boi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Muksuris K, Scarisbrick DM, Mahoney JJ, Cherkasova MV. Noninvasive Neuromodulation in Parkinson's Disease: Insights from Animal Models. J Clin Med 2023; 12:5448. [PMID: 37685514 PMCID: PMC10487610 DOI: 10.3390/jcm12175448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The mainstay treatments for Parkinson's Disease (PD) have been limited to pharmacotherapy and deep brain stimulation. While these interventions are helpful, a new wave of research is investigating noninvasive neuromodulation methods as potential treatments. Some promising avenues have included transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electroconvulsive therapy (ECT), and focused ultrasound (FUS). While these methods are being tested in PD patients, investigations in animal models of PD have sought to elucidate their therapeutic mechanisms. In this rapid review, we assess the available animal literature on these noninvasive techniques and discuss the possible mechanisms mediating their therapeutic effects based on these findings.
Collapse
Affiliation(s)
- Katherine Muksuris
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - David M. Scarisbrick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Mahoney
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Mariya V. Cherkasova
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
7
|
Rajneesh CP, Hsieh TH, Chen HC, Liou JC, Lin BS, George Wu CW, Lai CH, Peng CW. A time-course study of urodynamic analyses in rat models with dopaminergic depletion induced through unilateral and bilateral 6-hydroxydopamine injections. J Formos Med Assoc 2023; 122:239-248. [PMID: 36180322 DOI: 10.1016/j.jfma.2022.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bladder dysfunction is a common non-motor disorder in Parkinson's disease (PD). This study attempted to determine the bladder dysfunction with disease progression in the PD rat model produced from unilateral/bilateral injections of 6-hydroxydopamine (6-OHDA). METHODS Cystometrographic (CMG) and external urethral sphincter electromyographic (EUS-EMG) measurements were scheduled in a time-course manner to determine the disease timing, onset, and severity. Animals were allotted into normal control, unilateral, bilateral 6-OHDA injected groups and subjected to scheduled CMG, EUS-EMG analyses at weeks 1, 2, and 4. RESULTS The urodynamic results concluded that voiding efficiency (VE) was reduced in both unilateral and bilateral PD rats at all-time points. VE had decreased from 57 ± 11% to 31 ± 7% in unilateral PD rats and in bilateral PD rats, a decreased VE of 20 ± 6% was observed compared to control and unilateral PD rats. The EMG results in unilateral PD rats indicated declines in bursting period (BP) (3.78-2.94 s), active period (AP) (93.38-88.75 ms), and silent period (SP) (161.62-114.30 ms). A sudden reduction was noticed in BP (3.62-2.82 s), AP (92.21-86.01 ms), and SP (128.61-60.16 ms) of bilateral PD rats than in control and unilateral PD rats. Histological evidence exhibited a progressive dopaminergic neurons (DA) depletion in the substantia nigra (SN) region in 6-OHDA lesioned rats. CONCLUSION The experimental outcomes strongly implied that significant variations in bladder function and VE decline were due to the depletion of DA neurons in the SN region of the brain.
Collapse
Affiliation(s)
- Chellappan Praveen Rajneesh
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33305, Taiwan
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan; School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei City 11031, Taiwan
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 23741, Taiwan
| | - Chun-Wei George Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chien-Hung Lai
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei City 11031, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan; School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei City 11031, Taiwan; Research Center of Biomedical Device, Taipei Medical University, Taipei City 11031, Taiwan.
| |
Collapse
|
8
|
Feng X, Wang T, Jiang Y, Liu Y, Yang H, Duan Z, Ji L, Wei J. Cerebral Theta-Burst Stimulation Combined with Physiotherapy in Patients with Incomplete Spinal Cord Injury: A Pilot Randomized Controlled Trial. J Rehabil Med 2023; 55:jrm00375. [PMID: 36779636 PMCID: PMC9941982 DOI: 10.2340/jrm.v55.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/04/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE To measure the effects of cerebral intermittent theta-burst stimulation with physiotherapy on lower extremity motor recovery in patients with incomplete spinal cord injury. DESIGN Randomized, double-blinded, sham-controlled trial. SUBJECTS Adults with incomplete spinal cord injury. METHODS A total of 38 patients with incomplete spinal cord injury were randomized into either an intermittent theta-burst stimulation or a sham group. Both groups participated in physiotherapy 5 times per week for 9 weeks, and cerebral intermittent theta-burst stimulation or sham intermittent theta-burst stimulation was performed daily, immediately before physiotherapy. The primary outcomes were lower extremity motor score (LEMS), root-mean square (RMS), RMS of the quadriceps femoris muscle, walking speed (WS), and stride length (SL). Secondary outcomes comprised Holden Walking Ability Scale (HWAS) and modified Barthel Index (MBI). The outcomes were assessed before the intervention and 9 weeks after the start of the intervention. RESULTS Nine weeks of cerebral intermittent theta-burst stimulation with physiotherapy intervention resulted in improved recovery of lower extremity motor recovery in patients with incomplete spinal cord injury. Compared with baseline, the changes in LEMS, WS, SL, RMS, HWAS, and MBI were significant in both groups after intervention. The LEMS, WS, SL, RMS, HWAS, and MBI scores were improved more in the intermittent theta-burst stimulation group than in the sham group. CONCLUSION Cerebral intermittent theta-burst stimulation with physiotherapy promotes lower extremity motor recovery in patients with incomplete spinal cord injury. However, this study included a small sample size and lacked a comparison of the treatment effects of multiple stimulation modes, the further research will be required in the future.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Rehabilitation Medicine; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province; Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China.
| | - Tingting Wang
- Department of Rehabilitation Medicine; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province; Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China
| | - Yan Jiang
- Department of Rehabilitation Medicine
| | - Yi Liu
- Department of Rehabilitation Medicine
| | - Haifeng Yang
- Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China
| | - Zongyu Duan
- Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China
| | - Leilei Ji
- Department of Rehabilitation Medicine
| | - Juan Wei
- Department of Rehabilitation Medicine
| |
Collapse
|
9
|
Chan SY, Kuo CW, Liao TT, Peng CW, Hsieh TH, Chang MY. Time-course gait pattern analysis in a rat model of foot drop induced by ventral root avulsion injury. Front Hum Neurosci 2022; 16:972316. [PMID: 36601128 PMCID: PMC9806139 DOI: 10.3389/fnhum.2022.972316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Foot drop is a common clinical gait impairment characterized by the inability to raise the foot or toes during walking due to the weakness of the dorsiflexors of the foot. Lumbar spine disorders are common neurogenic causes of foot drop. The accurate prognosis and treatment protocols of foot drop are not well delineated in the scientific literature due to the heterogeneity of the underlying lumbar spine disorders, different severities, and distinct definitions of the disease. For translational purposes, the use of animal disease models could be the best way to investigate the pathogenesis of foot drop and help develop effective therapeutic strategies for foot drops. However, no relevant and reproducible foot drop animal models with a suitable gait analysis method were developed for the observation of foot drop symptoms. Therefore, the present study aimed to develop a ventral root avulsion (VRA)-induced foot drop rat model and record detailed time-course changes of gait pattern following L5, L6, or L5 + L6 VRA surgery. Our results suggested that L5 + L6 VRA rats exhibited changes in gait patterns, as compared to sham lesion rats, including a significant reduction of walking speed, step length, toe spread, and swing phase time, as well as an increased duration of the stance phase time. The ankle kinematic data exhibited that the ankle joint angle increased during the mid-swing stage, indicating a significant foot drop pattern during locomotion. Time-course observations displayed that these gait impairments occurred as early as the first-day post-lesion and gradually recovered 7-14 days post-injury. We conclude that the proposed foot drop rat model with a video-based gait analysis approach can precisely detect the foot drop pattern induced by VRA in rats, which can provide insight into the compensatory changes and recovery in gait patterns and might be useful for serving as a translational platform bridging human and animal studies for developing novel therapeutic strategies for foot drop.
Collapse
Affiliation(s)
- Shu-Yen Chan
- Department of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Wei Kuo
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Tsen Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan,*Correspondence: Ming-Yuan Chang Tsung-Hsun Hsieh
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan,Discipline of Marketing, College of Management, Yuan Ze University, Taoyuan, Taiwan,*Correspondence: Ming-Yuan Chang Tsung-Hsun Hsieh
| |
Collapse
|
10
|
Neuroprotection and Non-Invasive Brain Stimulation: Facts or Fiction? Int J Mol Sci 2022; 23:ijms232213775. [PMID: 36430251 PMCID: PMC9692544 DOI: 10.3390/ijms232213775] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Non-Invasive Brain Stimulation (NIBS) techniques, such as transcranial Direct Current Stimulation (tDCS) and repetitive Magnetic Transcranial Stimulation (rTMS), are well-known non-pharmacological approaches to improve both motor and non-motor symptoms in patients with neurodegenerative disorders. Their use is of particular interest especially for the treatment of cognitive impairment in Alzheimer's Disease (AD), as well as axial disturbances in Parkinson's (PD), where conventional pharmacological therapies show very mild and short-lasting effects. However, their ability to interfere with disease progression over time is not well understood; recent evidence suggests that NIBS may have a neuroprotective effect, thus slowing disease progression and modulating the aggregation state of pathological proteins. In this narrative review, we gather current knowledge about neuroprotection and NIBS in neurodegenerative diseases (i.e., PD and AD), just mentioning the few results related to stroke. As further matter of debate, we discuss similarities and differences with Deep Brain Stimulation (DBS)-induced neuroprotective effects, and highlight possible future directions for ongoing clinical studies.
Collapse
|
11
|
Mou YK, Guan LN, Yao XY, Wang JH, Song XY, Ji YQ, Ren C, Wei SZ. Application of Neurotoxin-Induced Animal Models in the Study of Parkinson's Disease-Related Depression: Profile and Proposal. Front Aging Neurosci 2022; 14:890512. [PMID: 35645772 PMCID: PMC9136050 DOI: 10.3389/fnagi.2022.890512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 01/17/2023] Open
Abstract
Depression can be a non-motor symptom, a risk factor, and even a co-morbidity of Parkinson's disease (PD). In either case, depression seriously affects the quality of life of PD patients. Unfortunately, at present, a large number of clinical and basic studies focused on the pathophysiological mechanism of PD and the prevention and treatment of motor symptoms. Although there has been increasing attention to PD-related depression, it is difficult to achieve early detection and early intervention, because the clinical guidelines mostly refer to depression developed after or accompanied by motor impairments. Why is there such a dilemma? This is because there has been no suitable preclinical animal model for studying the relationship between depression and PD, and the assessment of depressive behavior in PD preclinical models is as well a very challenging task since it is not free from the confounding from the motor impairment. As a common method to simulate PD symptoms, neurotoxin-induced PD models have been widely used. Studies have found that neurotoxin-induced PD model animals could exhibit depression-like behaviors, which sometimes manifested earlier than motor impairments. Therefore, there have been attempts to establish the PD-related depression model by neurotoxin induction. However, due to a lack of unified protocol, the reported results were diverse. For the purpose of further promoting the improvement and optimization of the animal models and the study of PD-related depression, we reviewed the establishment and evaluation strategies of the current animal models of PD-related depression based on both the existing literature and our own research experience, and discussed the possible mechanism and interventions, in order to provide a reference for future research in this area.
Collapse
Affiliation(s)
- Ya-Kui Mou
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Li-Na Guan
- Department of Neurosurgical Intensive Care Unit, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Jia-Hui Wang
- Department of Central Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yu Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yong-Qiang Ji
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Chao Ren
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
12
|
Kuo CW, Chang MY, Chou MY, Pan CY, Peng CW, Tseng HC, Jen TY, He XK, Liu HH, Nguyen TXD, Chang PK, Hsieh TH. Long-Term Motor Cortical Electrical Stimulation Ameliorates 6-Hydroxydopamine-Induced Motor Dysfunctions and Exerts Neuroprotective Effects in a Rat Model of Parkinson's Disease. Front Aging Neurosci 2022; 14:848380. [PMID: 35250550 PMCID: PMC8888954 DOI: 10.3389/fnagi.2022.848380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Cortical electrical stimulation (CES) can modulate cortical excitability through a plasticity-like mechanism and is considered to have therapeutic potentials in Parkinson's disease (PD). However, the precise therapeutic value of such approach for PD remains unclear. Accordingly, we adopted a PD rat model to determine the therapeutic effects of CES. The current study was thus designed to identify the therapeutic potential of CES in PD rats. METHODS A hemiparkinsonian rat model, in which lesions were induced using unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, was applied to identify the therapeutic effects of long-term (4-week) CES with intermittent theta-burst stimulation (iTBS) protocol (starting 24 h after PD lesion observation, 1 session/day, 5 days/week) on motor function and neuroprotection. After the CES intervention, detailed functional behavioral tests including gait analysis, akinesia, open-field locomotor activity, apomorphine-induced rotation as well as degeneration level of dopaminergic neurons were performed weekly up to postlesion week 4. RESULTS After the CES treatment, we found that the 4-week CES intervention ameliorated the motor deficits in gait pattern, akinesia, locomotor activity, and apomorphine-induced rotation. Immunohistochemistry and tyrosine hydroxylase staining analysis demonstrated that the number of dopamine neurons was significantly greater in the CES intervention group than in the sham treatment group. CONCLUSION This study suggests that early and long-term CES intervention could reduce the aggravation of motor dysfunction and exert neuroprotective effects in a rat model of PD. Further, this preclinical model of CES may increase the scope for the potential use of CES and serve as a link between animal and PD human studies to further identify the therapeutic mechanism of CES for PD or other neurological disorders.
Collapse
Affiliation(s)
- Chi-Wei Kuo
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan City, Taiwan
- Department of Early Childhood and Family Educare, Chung Chou University of Science and Technology, Yuanlin City, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan
| | - Hui-Chiun Tseng
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Tsu-Yi Jen
- Department of Psychology, National Taiwan University, Taipei City, Taiwan
| | - Xiao-Kuo He
- Department of Rehabilitation Medicine, The Fifth Hospital of Xiamen, Xiamen, China
| | - Hui-Hua Liu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Thi Xuan Dieu Nguyen
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan
| | - Pi-Kai Chang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
13
|
Chen M, Peng L, Gong P, Zheng X, Sun T, Zhang X, Huo J. Baicalein Induces Mitochondrial Autophagy to Prevent Parkinson's Disease in Rats via miR-30b and the SIRT1/AMPK/mTOR Pathway. Front Neurol 2022; 12:646817. [PMID: 35237220 PMCID: PMC8883053 DOI: 10.3389/fneur.2021.646817] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a prevailing neurodegenerative disorder. Baicalein has neuroprotective effects on PD animals, but its mechanism is not clarified. We explored baicalein effects on PD rats. PD rat models were established by injecting 6-hydroxydopamine into the striatum of substantia nigra on the left side of the rat brain and treated with baicalein. Dopamine (DA) content, neuronal apoptosis, neuronal injury, neuronal mitochondria, and autophagy were assessed. Baicalein-treated PD rats were treated with autophagy inhibitor 3-methyladenine to identify the role of autophagy in PD. PD rats were injected with AgomiR-30b-5p or sh-SIRT1 plasmids and treated with baicalein. PD rats elicited decreased neurological score and DA secretion of the striatum, increased neuronal apoptosis, and injury, and reduced number of mitochondria and autophagy, whereas baicalein alleviated neuronal injury and partly recovered mitochondrial dysfunction, 3-methyladenine inhibited the protection of baicalein. miR-30b-5p was elevated and SIRT1 was diminished in PD rats and inhibited by baicalein. miR-30b-5p targeted SIRT1. miR-30b-5p overexpression or SIRT1 silencing annulled the protection of baicalein. The phosphorylation level of AMPK in the substantia nigra of PD rats was decreased and mTOR was increased, whereas baicalein annulled these trends. Briefly, baicalein activated mitochondrial autophagy via miR-30b-5p and the SIRT1/AMPK/mTOR pathway, thus protecting PD rats.
Collapse
Affiliation(s)
- Min Chen
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Li Peng
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Ping Gong
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xiaoli Zheng
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Tao Sun
- Department of Surgery, Traditional Chinese Medicine Hospital, Guizhou, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Jiangtao Huo
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
- *Correspondence: Jiangtao Huo
| |
Collapse
|
14
|
Santana-Gómez CE, Pérez-Pérez D, Fonseca-Barriendos D, Arias-Carrión O, Besio W, Rocha L. Transcranial Focal Electrical Stimulation Modifies Biogenic Amines' Alterations Induced by 6-Hydroxydopamine in Rat Brain. Pharmaceuticals (Basel) 2021; 14:ph14080706. [PMID: 34451804 PMCID: PMC8401891 DOI: 10.3390/ph14080706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023] Open
Abstract
Transcranial focal stimulation (TFS) is a non-invasive neuromodulation strategy with neuroprotective effects. On the other hand, 6-hidroxidopamine (6-OHDA) induces neurodegeneration of the nigrostriatal system producing modifications in the dopaminergic, serotoninergic, and histaminergic systems. The present study was conducted to test whether repetitive application of TFS avoids the biogenic amines' changes induced by the intrastriatal injection of 6-OHDA. Experiments were designed to determine the tissue content of dopamine, serotonin, and histamine in the brain of animals injected with 6-OHDA and then receiving daily TFS for 21 days. Tissue content of biogenic amines was evaluated in the cerebral cortex, hippocampus, amygdala, and striatum, ipsi- and contralateral to the side of 6-OHDA injection. Results obtained were compared to animals with 6-OHDA, TFS alone, and a Sham group. The present study revealed that TFS did not avoid the changes in the tissue content of dopamine in striatum. However, TFS was able to avoid several of the changes induced by 6-OHDA in the tissue content of dopamine, serotonin, and histamine in the different brain areas evaluated. Interestingly, TFS alone did not induce significant changes in the different brain areas evaluated. The present study showed that repetitive TFS avoids the biogenic amines' changes induced by 6-OHDA. TFS can represent a new therapeutic strategy to avoid the neurotoxicity induced by 6-OHDA.
Collapse
Affiliation(s)
| | - Daniel Pérez-Pérez
- Plan of Combined Studies in Medicine (PECEM), Faculty of Medicine, UNAM, México City 04510, Mexico;
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Secretaria de Salud, Mexico City 14080, Mexico;
| | - Walter Besio
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (W.B.); (L.R.)
| | - Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, México City 14330, Mexico;
- Correspondence: (W.B.); (L.R.)
| |
Collapse
|
15
|
Kuo CW, Chang MY, Liu HH, He XK, Chan SY, Huang YZ, Peng CW, Chang PK, Pan CY, Hsieh TH. Cortical Electrical Stimulation Ameliorates Traumatic Brain Injury-Induced Sensorimotor and Cognitive Deficits in Rats. Front Neural Circuits 2021; 15:693073. [PMID: 34194304 PMCID: PMC8236591 DOI: 10.3389/fncir.2021.693073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022] Open
Abstract
Objective: Individuals with different severities of traumatic brain injury (TBI) often suffer long-lasting motor, sensory, neurological, or cognitive disturbances. To date, no neuromodulation-based therapies have been used to manage the functional deficits associated with TBI. Cortical electrical stimulation (CES) has been increasingly developed for modulating brain plasticity and is considered to have therapeutic potential in TBI. However, the therapeutic value of such a technique for TBI is still unclear. Accordingly, an animal model of this disease would be helpful for mechanistic insight into using CES as a novel treatment approach in TBI. The current study aims to apply a novel CES scheme with a theta-burst stimulation (TBS) protocol to identify the therapeutic potential of CES in a weight drop-induced rat model of TBI. Methods: TBI rats were divided into the sham CES treatment group and CES treatment group. Following early and long-term CES intervention (starting 24 h after TBI, 1 session/day, 5 days/week) in awake TBI animals for a total of 4 weeks, the effects of CES on the modified neurological severity score (mNSS), sensorimotor and cognitive behaviors and neuroinflammatory changes were identified. Results: We found that the 4-week CES intervention significantly alleviated the TBI-induced neurological, sensorimotor, and cognitive deficits in locomotor activity, sensory and recognition memory. Immunohistochemically, we found that CES mitigated the glial fibrillary acidic protein (GFAP) activation in the hippocampus. Conclusion: These findings suggest that CES has significant benefits in alleviating TBI-related symptoms and represents a promising treatment for TBI.
Collapse
Affiliation(s)
- Chi-Wei Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan.,Department of Early Childhood and Family Educare, Chung Chou University of Science and Technology, Yuanlin, Taiwan
| | - Hui-Hua Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Kuo He
- Fifth Hospital of Xiamen, Xiamen, China.,Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shu-Yen Chan
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei, Taiwan.,College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Pi-Kai Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
16
|
Early Repetitive Transcranial Magnetic Stimulation Exerts Neuroprotective Effects and Improves Motor Functions in Hemiparkinsonian Rats. Neural Plast 2021; 2021:1763533. [PMID: 34987572 PMCID: PMC8723880 DOI: 10.1155/2021/1763533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a popular noninvasive technique for modulating motor cortical plasticity and has therapeutic potential for the treatment of Parkinson's disease (PD). However, the therapeutic benefits and related mechanisms of rTMS in PD are still uncertain. Accordingly, preclinical animal research is helpful for enabling translational research to explore an effective therapeutic strategy and for better understanding the underlying mechanisms. Therefore, the current study was designed to identify the therapeutic effects of rTMS on hemiparkinsonian rats. A hemiparkinsonian rat model, induced by unilateral injection of 6-hydroxydopamine (6-OHDA), was applied to evaluate the therapeutic potential of rTMS in motor functions and neuroprotective effect of dopaminergic neurons. Following early and long-term rTMS intervention with an intermittent theta burst stimulation (iTBS) paradigm (starting 24 h post-6-OHDA lesion, 1 session/day, 7 days/week, for a total of 4 weeks) in awake hemiparkinsonian rats, the effects of rTMS on the performance in detailed functional behavioral tests, including video-based gait analysis, the bar test for akinesia, apomorphine-induced rotational analysis, and tests of the degeneration level of dopaminergic neurons, were identified. We found that four weeks of rTMS intervention significantly reduced the aggravation of PD-related symptoms post-6-OHDA lesion. Immunohistochemically, the results showed that tyrosine hydroxylase- (TH-) positive neurons in the substantia nigra pars compacta (SNpc) and fibers in the striatum were significantly preserved in the rTMS treatment group. These findings suggest that early and long-term rTMS with the iTBS paradigm exerts neuroprotective effects and mitigates motor impairments in a hemiparkinsonian rat model. These results further highlight the potential therapeutic effects of rTMS and confirm that long-term rTMS treatment might have clinical relevance and usefulness as an additional treatment approach in individuals with PD.
Collapse
|