1
|
Dehghani A, Bango C, Murphy EK, Halter RJ, Wager TD. Independent effects of transcranial direct current stimulation and social influence on pain. Pain 2025; 166:87-98. [PMID: 39167466 PMCID: PMC11649493 DOI: 10.1097/j.pain.0000000000003338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/28/2024] [Indexed: 08/23/2024]
Abstract
ABSTRACT Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulatory technique with the potential to provide pain relief. However, tDCS effects on pain are variable across existing studies, possibly related to differences in stimulation protocols and expectancy effects. We investigated the independent and joint effects of contralateral motor cortex tDCS (anodal vs cathodal) and socially induced expectations (analgesia vs hyperalgesia) about tDCS on thermal pain. We employed a double-blind, randomized 2 × 2 factorial cross-over design, with 5 sessions per participant on separate days. After calibration in Session 1, Sessions 2 to 5 crossed anodal or cathodal tDCS (20 minutes 2 mA) with socially induced analgesic or hyperalgesic expectations, with 6 to 7 days between the sessions. The social manipulation involved videos of previous "participants" (confederates) describing tDCS as inducing a low-pain state ("analgesic expectancy") or hypersensitivity to sensation ("hyperalgesic expectancy"). Anodal tDCS reduced pain compared with cathodal stimulation (F(1,19.9) = 19.53, P < 0.001, Cohen d = 0.86) and analgesic expectancy reduced pain compared with hyperalgesic expectancy (F(1,19.8) = 5.62, P = 0.027, Cohen d = 0.56). There was no significant interaction between tDCS and social expectations. Effects of social suggestions were related to expectations, whereas tDCS effects were unrelated to expectancies. The observed additive effects provide novel evidence that tDCS and socially induced expectations operate through independent processes. They extend clinical tDCS studies by showing tDCS effects on controlled nociceptive pain independent of expectancy effects. In addition, they show that social suggestions about neurostimulation effects can elicit potent placebo effects.
Collapse
Affiliation(s)
- Amin Dehghani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Carmen Bango
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Ethan K. Murphy
- Thayer School of Engineering and Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Ryan J. Halter
- Thayer School of Engineering and Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
2
|
Su S, Huang R, Liu Y. The effects of transcranial direct current stimulation on global cognition in patients with Alzheimer's disease: An update meta-analysis. J Alzheimers Dis 2025; 103:19-37. [PMID: 39784680 DOI: 10.1177/13872877241298303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease. At present, there are currently no drugs that can cure AD. OBJECTIVE A number of empirical studies have shown that transcranial direct current stimulation (tDCS) may be used to treat cognitive abnormalities in patients with AD. We will through meta-analysis reviews tDCS overall research on the effects of cognitive function in patients with AD. METHODS Systematic searches were performed in the PubMed, Embase, and Cochrane Library databases from their creation until 8 March 2024. Using a fixed effect model and random effect model to evaluate the average difference between the treatment group and control group (MD) and its 95% confidence interval (CI). RESULTS The study included 10 randomized controlled trials (Nactive = 165, Nsham = 167). The results of the overall analysis showed that tDCS did not significantly improve the overall cognitive function (SMD = 0.17; 95%CI = -0.05, 0.39; p = 0.14; I² = 51%). Quality of life of AD patients after treatment was also evaluated, but no improvement was seen. Subgroup analysis showed no significant improvement in global cognitive function after tDCS treatment. The sensitivity analysis to confirm the reliability of the data, risk assessment did not find any high-risk projects. CONCLUSIONS The tDCS treatment did not improve cognitive function in patients with AD. Further empirical research in the future will help to explore new schemes for tDCS to improve cognitive function of patients.
Collapse
Affiliation(s)
- Siyuan Su
- School of Clinical Medicine, Qilu Medical University, Zibo, Shandong, China
| | - Ruihan Huang
- School of Public Health, Qilu Medical University, Zibo, Shandong, China
| | - Yongsheng Liu
- School of Clinical Medicine, Qilu Medical University, Zibo, Shandong, China
| |
Collapse
|
3
|
Huang X, Wei X, Wang J, Yi G. Effects of dendritic Ca 2+ spike on the modulation of spike timing with transcranial direct current stimulation in cortical pyramidal neurons. J Comput Neurosci 2024:10.1007/s10827-024-00886-y. [PMID: 39688634 DOI: 10.1007/s10827-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Transcranial direct current stimulation (tDCS) generates a weak electric field (EF) within the brain, which induces opposite polarization in the soma and distal dendrite of cortical pyramidal neurons. The somatic polarization directly affects the spike timing, and dendritic polarization modulates the synaptically evoked dendritic activities. Ca2+ spike, the most dramatic dendritic activity, is crucial for synaptic integration and top-down signal transmission, thereby indirectly influencing the output spikes of pyramidal cells. Nevertheless, the role of dendritic Ca2+ spike in the modulation of neural spike timing with tDCS remains largely unclear. In this study, we use morphologically and biophysically realistic models of layer 5 pyramidal cells (L5 PCs) to simulate the dendritic Ca2+ spike and somatic Na+ spike in response to distal dendritic synaptic inputs under weak EF stimulation. Our results show that weak EFs modulate the spike timing through the modulation of dendritic Ca2+ spike and somatic polarization, and such field effects are dependent on synaptic inputs. At weak synaptic inputs, the spike timing is advanced due to the facilitation of dendritic Ca2+ spike by field-induced dendritic depolarization. Conversely, it is delayed by field-induced dendritic hyperpolarization. In this context, the Ca2+ spike exhibits heightened sensitivity to weak EFs, thereby governing the changes in spike timing. At strong synaptic inputs, somatic polarization dominates the changes in spike timing due to the decreased sensitivity of Ca2+ spike to EFs. Consequently, the spike timing is advanced/delayed by field-induced somatic depolarization/hyperpolarization. Moreover, EFs have significant effects on the changes in the timing of somatic spike and Ca2+ spike when synaptic current injection coincides with the onset of EFs. Field effects on spike timing follow a cosine dependency on the field polar angle, with maximum effects in the field direction parallel to the somato-dendritic axis. Furthermore, our results are robust to morphological and biological diversity. These findings clarify the modulation of spike timing with weak EFs and highlight the crucial role of dendritic Ca2+ spike. These predictions shed light on the neural basis of tDCS and should be considered when understanding the effect of tDCS on population dynamics and cognitive behavior.
Collapse
Affiliation(s)
- Xuelin Huang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Takada N, Hagiwara S, Abe N, Yamazaki R, Tsuneishi K, Yasuda K. Open-End Control of Neurite Outgrowth Lengths with Steep Bending Confinement Microchannel Patterns for Miswiring-Free Neuronal Network Formation. MICROMACHINES 2024; 15:1374. [PMID: 39597186 PMCID: PMC11596160 DOI: 10.3390/mi15111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Wiring technology to control the length and direction of neurite outgrowth and to connect them is one of the most crucial development issues for forming single-cell-based neuronal networks. However, with current neurite wiring technology, it has been difficult to stop neurite extension at a specific length and connect it to other neurites without causing miswiring due to over-extension. Here, we examined a novel method of wiring neurites without miswiring by controlling the length of neurites in open-ended bending microchannel arrays connected beyond the maximum bending angle of neurite outgrowth. First, we determined the maximum bending angle of neurite elongation to pass through the bending point of a bending microfluidic channel; the maximum angle (the critical angle) was 90°. Next, we confirmed the control of neurite outgrowth length in open-ended microchannels connected at 120°, an angle beyond the maximum bending angle. The neurites stopped when elongated to the bend point, and no further elongation was observed. Finally, we observed that in bending microchannel arrays connected at an angle of 120°, two neurite outgrowths stopped and contacted each other without crossing over the bend point. The results show that the steep bending connection pattern is a robust open-end neurite wiring technique that prevents over-extension and miswiring.
Collapse
Affiliation(s)
- Naoya Takada
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Soya Hagiwara
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Nanami Abe
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Ryohei Yamazaki
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Kazuhiro Tsuneishi
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Franco-Rosado P, Callejón MA, Reina-Tosina J, Roa LM, Martin-Rodriguez JF, Mir P. Addressing the sources of inter-subject variability in E-field parameters in anodal tDCS stimulation over motor cortical network. Phys Med Biol 2024; 69:145013. [PMID: 38917834 DOI: 10.1088/1361-6560/ad5bb9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Objetive: .Although transcranial direct current stimulation constitutes a non-invasive neuromodulation technique with promising results in a great variety of applications, its clinical implementation is compromised by the high inter-subject variability reported. This study aims to analyze the inter-subject variability in electric fields (E-fields) over regions of the cortical motor network under two electrode montages: the classical C3Fp2 and an alternative P3F3, which confines more the E-field over this region.Approach.Computational models of the head of 98 healthy subjects were developed to simulate the E-field under both montages. E-field parameters such as magnitude, focality and orientation were calculated over three regions of interest (ROI): M1S1, supplementary motor area (SMA) and preSMA. The role of anatomical characteristics as a source of inter-subject variability on E-field parameters and individualized stimulation intensity were addressed using linear mixed-effect models.Main results.P3F3 showed a more confined E-field distribution over M1S1 than C3Fp2; the latter elicited higher E-fields over supplementary motor areas. Both montages showed high inter-subject variability, especially for the normal component over C3Fp2. Skin, bone and CSF ROI volumes showed a negative association with E-field magnitude irrespective of montage. Grey matter volume and montage were the main sources of variability for focality. The curvature of gyri was found to be significantly associated with the variability of normal E-fields.Significance.Computational modeling proves useful in the assessment of E-field variability. Our simulations predict significant differences in E-field magnitude and focality for C3Fp2 and P3F3. However, anatomical characteristics were also found to be significant sources of E-field variability irrespective of electrode montage. The normal E-field component better captured the individual variability and low rate of responder subjects observed in experimental studies.
Collapse
Affiliation(s)
- Pablo Franco-Rosado
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
- Departamento de Psicología Experimental, Universidad de Sevilla, Sevilla, Spain
| | - M Amparo Callejón
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
- Servicio de Otorrinolaringología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Javier Reina-Tosina
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
| | - Laura M Roa
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
| | - Juan F Martin-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Psicología Experimental, Universidad de Sevilla, Sevilla, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Huang X, Wei X, Wang J, Yi G. Frequency-dependent membrane polarization across neocortical cell types and subcellular elements by transcranial alternating current stimulation. J Neural Eng 2024; 21:016034. [PMID: 38382101 DOI: 10.1088/1741-2552/ad2b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Objective.Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that directly interacts with ongoing brain oscillations in a frequency-dependent manner. However, it remains largely unclear how the cellular effects of tACS vary between cell types and subcellular elements.Approach.In this study, we use a set of morphologically realistic models of neocortical neurons to simulate the cellular response to uniform oscillating electric fields (EFs). We systematically characterize the membrane polarization in the soma, axons, and dendrites with varying field directions, intensities, and frequencies.Main results.Pyramidal cells are more sensitive to axial EF that is roughly parallel to the cortical column, while interneurons are sensitive to axial EF and transverse EF that is tangent to the cortical surface. Membrane polarization in each subcellular element increases linearly with EF intensity, and its slope, i.e. polarization length, highly depends on the stimulation frequency. At each frequency, pyramidal cells are more polarized than interneurons. Axons usually experience the highest polarization, followed by the dendrites and soma. Moreover, a visible frequency resonance presents in the apical dendrites of pyramidal cells, while the other subcellular elements primarily exhibit low-pass filtering properties. In contrast, each subcellular element of interneurons exhibits complex frequency-dependent polarization. Polarization phase in each subcellular element of cortical neurons lags that of field and exhibits high-pass filtering properties. These results demonstrate that the membrane polarization is not only frequency-dependent, but also cell type- and subcellular element-specific. Through relating effective length and ion mechanism with polarization, we emphasize the crucial role of cell morphology and biophysics in determining the frequency-dependent membrane polarization.Significance.Our findings highlight the diverse polarization patterns across cell types as well as subcellular elements, which provide some insights into the tACS cellular effects and should be considered when understanding the neural spiking activity by tACS.
Collapse
Affiliation(s)
- Xuelin Huang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|