1
|
Ziaullah SM, Hamayun M, Iqbal A, Hussain A. Overcoming the challenge of invasive Parthenium hysterophorus management through integration of Aspergillus allahabadii (Eurotiales: Aspergillaceae) and Zygogramma bicolorata (Coleoptera: Chrysomelidae) as biocontrol agents. Heliyon 2024; 10:e38624. [PMID: 39634386 PMCID: PMC11616525 DOI: 10.1016/j.heliyon.2024.e38624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Parthenium hysterophorus is an invasive weed posing significant environmental challenges. This study explores the synergistic effects of the fungal strain Aspergillus allahabadii (P-Ph-13) and its interaction with the beetle Zygogramma bicolorata in controlling the weed. The combined action of A. allahabadii (P-Ph-13) and Z. bicolorata significantly suppressed the weed's germination and growth. Interaction with Z. bicolorata further boosted its effectiveness, decreasing seedling vigor by 78 % and increasing mortality by up to 42 % compared to the control group. Additionally, the interactive treatment severely disrupted the weed's physiological processes, causing extensive damage and ultimately leading to seedling death. These findings indicate that the synergistic effect of A. allahabadii and Z. bicolorata presents a promising strategy for managing Parthenium.
Collapse
Affiliation(s)
- Syed Muhammad Ziaullah
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Sytykiewicz H, Czerniewicz P, Ruszczyńska M, Kmieć K. The Interplay of Nitric Oxide and Nitrosative Modifications in Maize: Implications for Aphid Herbivory and Drought Stress. Int J Mol Sci 2024; 25:11280. [PMID: 39457062 PMCID: PMC11508608 DOI: 10.3390/ijms252011280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Nitric oxide (NO) and other reactive nitrogen species (RNS) are considered to be signaling molecules in higher plants involved in the regulation of growth and development processes. However, the molecular mechanisms of their formation, removal, and participation in plant responses to adverse environmental stimuli remain largely unclear. Therefore, the aim of this study was to assess the influence of selected single stresses and combined stresses (i.e., Rhopalosiphum padi L. aphid infestation, drought, aphid infestation, and drought) and post-stress recovery on the contents of NO and peroxynitrite anion (ONOO-), as well as the levels of mRNA and protein nitration (i.e., the 8-nitroguanine and protein 3-nitrotyrosine amounts, respectively), in maize seedlings (Zea mays L.). Moreover, the expression patterns of the two tested genes (nos-ip, encoding nitric oxide synthase-interacting protein, and nr1, encoding nitrate reductase 1) involved in NO metabolism in maize plants were quantified. We identified significant intervarietal, time-course, and stress-dependent differences in the levels of the quantified parameters. Under the investigated stress conditions, the aphid-resistant Waza cv. seedlings were characterized by a higher and earlier NO accumulation and mRNA nitration level and an increased expression of the two target genes (nos-ip and nr1), compared to the aphid-susceptible Złota Karłowa cv. seedlings. Conversely, the Złota Karłowa plants responded with a greater elevation in the content of ONOO- and protein 3-nitrotyrosine than the Waza cv. plants The multifaceted role of NO and its derivatives in maize plants challenged by single and combined stresses, as well as during post-stress recovery, is discussed.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland; (P.C.); (M.R.)
| | - Paweł Czerniewicz
- Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland; (P.C.); (M.R.)
| | - Magdalena Ruszczyńska
- Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland; (P.C.); (M.R.)
| | - Katarzyna Kmieć
- Department of Plant Protection, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland;
| |
Collapse
|
3
|
Zhou L, John Martin JJ, Li R, Zeng X, Wu Q, Li Q, Fu D, Li X, Liu X, Ye J, Cao H. Catalase (CAT) Gene Family in Oil Palm ( Elaeis guineensis Jacq.): Genome-Wide Identification, Analysis, and Expression Profile in Response to Abiotic Stress. Int J Mol Sci 2024; 25:1480. [PMID: 38338758 PMCID: PMC10855858 DOI: 10.3390/ijms25031480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Jerome Jeyakumar John Martin
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qihong Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Dengqiang Fu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xinyu Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaoyu Liu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Jianqiu Ye
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Hongxing Cao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
4
|
Gong M, Jiang D, Liu R, Tian S, Xing H, Chen Z, Shi R, Li HL. Influence of High-Temperature and Intense Light on the Enzymatic Antioxidant System in Ginger ( Zingiber officinale Roscoe) Plantlets. Metabolites 2023; 13:992. [PMID: 37755272 PMCID: PMC10534589 DOI: 10.3390/metabo13090992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Environmental stressors such as high temperature and intense light have been shown to have negative effects on plant growth and productivity. To survive in such conditions, plants activate several stress response mechanisms. The synergistic effect of high-temperature and intense light stress has a significant impact on ginger, leading to reduced ginger production. Nevertheless, how ginger responds to this type of stress is not yet fully understood. In this study, we examined the phenotypic changes, malonaldehyde (MDA) content, and the response of four vital enzymes (superoxide dismutase (SOD), catalase (CAT), lipoxygenase (LOX), and nitrate reductase (NR)) in ginger plants subjected to high-temperature and intense light stress. The findings of this study indicate that ginger is vulnerable to high temperature and intense light stress. This is evident from the noticeable curling, yellowing, and wilting of ginger leaves, as well as a decrease in chlorophyll index and an increase in MDA content. Our investigation confirms that ginger plants activate multiple stress response pathways, including the SOD and CAT antioxidant defenses, and adjust their response over time by switching to different pathways. Additionally, we observe that the expression levels of genes involved in different stress response pathways, such as SOD, CAT, LOX, and NR, are differently regulated under stress conditions. These findings offer avenues to explore the stress mechanisms of ginger in response to high temperature and intense light. They also provide interesting information for the choice of genetic material to use in breeding programs for obtaining ginger genotypes capable of withstanding high temperatures and intense light stress.
Collapse
Affiliation(s)
- Min Gong
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (M.G.); (S.T.)
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (H.X.)
| | - Dongzhu Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (H.X.)
- College of Horticulture and Gardening, Yangtze University, Jingzhou 433200, China
| | - Ran Liu
- Chongqing Tianyuan Agricultural Technology Co., Ltd., Chongqing 402100, China;
| | - Shuming Tian
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (M.G.); (S.T.)
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (H.X.)
| | - Haitao Xing
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (H.X.)
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Rujie Shi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (M.G.); (S.T.)
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (H.X.)
| |
Collapse
|
5
|
Zhang Y, Zheng L, Yun L, Ji L, Li G, Ji M, Shi Y, Zheng X. Catalase ( CAT) Gene Family in Wheat ( Triticum aestivum L.): Evolution, Expression Pattern and Function Analysis. Int J Mol Sci 2022; 23:ijms23010542. [PMID: 35008967 PMCID: PMC8745605 DOI: 10.3390/ijms23010542] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Catalases (CATs) are present in almost all living organisms and play important roles in plant development and response to various stresses. However, there is relatively little information on CAT genes in wheat and related Triticeae species. A few studies on CAT family genes in wheat have been reported. In this study, ten CAT proteins (TaCATs) were identified in wheat and classified into three groups based on their phylogenetic features and sequence analysis. The analysis of the structure and motif composition of the TaCAT proteins suggested that a segmental duplication event occurred in the TaCAT gene family. Collinearity relationship analysis among different species showed that there were three orthologous CAT genes in rice and in maize. By analyzing the cis-elements in the promoter regions, we speculated that TaCAT genes expression might be regulated by light, oxygen deficit, methyl jasmonate and abscisic acid, and by transcription factors such as MYB. A Gene Ontology (GO)-based analysis showed that TaCAT proteins may be related to the response to various stresses, are cytoplasm localized, and may function as antioxidant enzymes. RT-qPCR and transcriptome data analyses exhibited distinct expression patterns of TaCAT genes in different tissues and in response to various treatments. In this study, a comprehensive analysis of wheat CAT genes was performed, enriching our knowledge of CAT genes and providing a foundation for further functional analyses of this gene family in wheat.
Collapse
|
6
|
Goggin FL, Fischer HD. Reactive Oxygen Species in Plant Interactions With Aphids. FRONTIERS IN PLANT SCIENCE 2021; 12:811105. [PMID: 35251065 PMCID: PMC8888880 DOI: 10.3389/fpls.2021.811105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are produced in plants in response to many biotic and abiotic stressors, and they can enhance stress adaptation in certain circumstances or mediate symptom development in others. The roles of ROS in plant-pathogen interactions have been extensively studied, but far less is known about their involvement in plant-insect interactions. A growing body of evidence, however, indicates that ROS accumulate in response to aphids, an economically damaging group of phloem-feeding insects. This review will cover the current state of knowledge about when, where, and how ROS accumulate in response to aphids, which salivary effectors modify ROS levels in plants, and how microbial associates influence ROS induction by aphids. We will also explore the potential adaptive significance of intra- and extracellular oxidative responses to aphid infestation in compatible and incompatible interactions and highlight knowledge gaps that deserve further exploration.
Collapse
|
7
|
Sytykiewicz H, Łukasik I, Goławska S, Sprawka I, Goławski A, Sławianowska J, Kmieć K. Expression of Thioredoxin/Thioredoxin Reductase System Genes in Aphid-Challenged Maize Seedlings. Int J Mol Sci 2020; 21:ijms21176296. [PMID: 32878074 PMCID: PMC7503728 DOI: 10.3390/ijms21176296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/16/2022] Open
Abstract
Thioredoxins (Trxs) and thioredoxin reductases (TrxRs) encompass a highly complex network involved in sustaining thiol-based redox homeostasis in plant tissues. The purpose of the study was to gain a new insight into transcriptional reprogramming of the several genes involved in functioning of Trx/TrxR system in maize (Zea mays L.) seedlings, exposed to the bird cherry-oat aphid (Rhopalosiphum padi L.) or the rose-grass aphid (Metopolophium dirhodum Walk.) infestation. The biotests were performed on two maize genotypes (susceptible Złota Karłowa and relatively resistant Waza). The application of real-time qRT-PCR technique allowed to identify a molecular mechanism triggered in more resistant maize plants, linked to upregulation of thioredoxins-encoding genes (Trx-f, Trx-h, Trx-m, Trx-x) and thioredoxin reductase genes (Ftr1, Trxr2). Significant enhancement of TrxR activity in aphid-infested Waza seedlings was also demonstrated. Furthermore, we used an electrical penetration graph (EPG) recordings of M. dirhodum stylet activities in seedlings of the two studied maize varieties. Duration of phloem phase (E1 and E2 models) of rose-grass aphids was about three times longer while feeding in Waza plants, compared to Złota Karłowa cv. The role of activation of Trx/TrxR system in maintaining redox balance and counteracting oxidative-induced damages of macromolecules in aphid-stressed maize plants is discussed.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
- Correspondence: ; Tel.: +48-25-643-12-98
| | - Iwona Łukasik
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Sylwia Goławska
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Iwona Sprawka
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Artur Goławski
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Julia Sławianowska
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Katarzyna Kmieć
- Department of Plant Protection, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland;
| |
Collapse
|
8
|
Protective Responses Induced by Chiral 3-Dichloroacetyl Oxazolidine Safeners in Maize ( Zea mays L.) and the Detoxification Mechanism. Molecules 2019; 24:molecules24173060. [PMID: 31443550 PMCID: PMC6749458 DOI: 10.3390/molecules24173060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/16/2023] Open
Abstract
Herbicide safeners selectively protect crops from herbicide injury while maintaining the herbicidal effect on the target weed. To some extent, the detoxification of herbicides is related to the effect of herbicide safeners on the level and activity of herbicide target enzymes. In this work, the expression of the detoxifying enzyme glutathione S-transferase (GST) and antioxidant enzyme activities in maize seedlings were studied in the presence of three potential herbicide safeners: 3-dichloroacetyl oxazolidine and its two optical isomers. Further, the protective effect of chiral herbicide safeners on detoxifying chlorsulfuron in maize was evaluated. All safeners increased the expression levels of herbicide detoxifying enzymes, including GST, catalase (CAT), and peroxidase (POD) to reduce sulfonylurea herbicide phytotoxicity in maize seedlings. Our results indicate that the R-isomer of 3-(dichloroacetyl)-2,2,5-trimethyl-1,3-oxazolidine can induce glutathione (GSH) production, GST activity, and the ability of GST to react with the substrate 1-chloro-2,4-dinitrobenzene (CDNB) in maize, meaning that the R-isomer can protect maize from damage by chlorsulfuron. Information about antioxidative enzyme activity was obtained to determine the role of chiral safeners in overcoming the oxidative stress in maize attributed to herbicides. The interaction of safeners and active target sites of acetolactate synthase (ALS) was demonstrated by molecular docking modeling, which indicated that both isomers could form a good interaction with ALS. Our findings suggest that the detoxification mechanism of chiral safeners might involve the induction of the activity of herbicide detoxifying enzymes as well as the completion of the target active site between the safener and chlorsulfuron.
Collapse
|
9
|
Sytykiewicz H, Łukasik I, Goławska S, Chrzanowski G. Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize ( Zea mays L.) Seedlings. Int J Mol Sci 2019; 20:ijms20153742. [PMID: 31370193 PMCID: PMC6696134 DOI: 10.3390/ijms20153742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose of the current study was to evaluate the scale of oxidative damages of genomic DNA, total RNA and mRNA, proteins, and lipids in seedling leaves of two maize genotypes (Złota Karłowa and Waza cvs—susceptible and relatively resistant to the aphids, respectively). The content of oxidized guanosine residues (8-hydroxy-2′-deoxyguanosine; 8-OHdG) in genomic DNA, 8-hydroxyguanosine (8-OHG) in RNA molecules, protein carbonyl groups, total thiols (T-SH), protein-bound thiols (PB-SH), non-protein thiols (NP-SH), malondialdehyde (MDA) and electrolyte leakage (EL) levels in maze plants were determined. In addition, the electrical penetration graphs (EPG) technique was used to monitor and the aphid stylet positioning and feeding modes in the hosts. Maize seedlings were infested with 0 (control), 30 or 60 R. padi adult apterae per plant. Substantial increases in the levels of RNA, protein and lipid oxidation markers in response to aphid herbivory, but no significant oxidative damages of genomic DNA, were found. Alterations in the studied parameters were dependent on maize genotype, insect abundance and infestation time.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland.
| | - Iwona Łukasik
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland
| | - Sylwia Goławska
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland
| | - Grzegorz Chrzanowski
- Department of Molecular Biotechnology, University of Rzeszow, 1 Pigonia St., 35-310 Rzeszow, Poland
| |
Collapse
|
10
|
Sytykiewicz H, Kozak A, Leszczyński B, Sempruch C, Łukasik I, Sprawka I, Kmieć K, Kurowska M, Kopczyńska A, Czerniewicz P. Transcriptional profiling of catalase genes in juglone-treated seeds of maize (Zea mays L.) and wheat (Triticum aestivum L.). ACTA BIOLOGICA HUNGARICA 2018; 69:449-463. [PMID: 30587016 DOI: 10.1556/018.69.2018.4.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The major aim of the present study was to investigate the influence of juglone (JU; 5-hydroxy-1,4-naphthoquinone) treatments on the expression level of Cat1, Cat2 and Cat3 genes, encoding the respective catalase isozymes in maize (Zea mays L.) and wheat (Triticum aestivum L.) seeds. In parallel, germination efficiency, catalase (CAT) activity and hydrogen peroxide (H2O2) content in juglone-exposed cereal seeds were assessed. Juglone applications significantly stimulated abundance of three target catalase transcripts as well as induced CAT activity and generation of H2O2 in both maize and wheat kernels. Furthermore, germination process of juglone-affected maize seeds was more severe suppressed than in case of wheat kernels. The role of juglone in triggering the oxidative stress as well as antioxidative responses in seeds of the studied model cereal species are discussed.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Agnieszka Kozak
- Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Bogumił Leszczyński
- Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Cezary Sempruch
- Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Iwona Łukasik
- Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Iwona Sprawka
- Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Katarzyna Kmieć
- Department of Entomology, University of Life Sciences, Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Monika Kurowska
- Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Aldona Kopczyńska
- Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Paweł Czerniewicz
- Department of Biochemistry and Molecular Biology, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| |
Collapse
|
11
|
Ye F, Cao HF, Chen XS, Zhang M, Fu Y, Li CY, Gao S. Effects of Chiral 3-Dichloroacetyl Oxazolidine on Glutathione S-Transferase and Antioxidant Enzymes Activity in Maize Treated with Acetochlor. ACTA ACUST UNITED AC 2018. [DOI: 10.15832/ankutbd.456671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Brachycorynella asparagi (Mordv.) Induced-Oxidative Stress and Antioxidative Defenses of Asparagus officinalis L. Int J Mol Sci 2016; 17:ijms17101740. [PMID: 27775613 PMCID: PMC5085768 DOI: 10.3390/ijms17101740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate whether and to what extent oxidative stress is induced in leaves of one- and two-month-old plants of Asparagus officinalis L. cv. Argenteuil infested by Brachycorynella asparagi (Mordvilko) at a varied population size. The pest B. asparagi has been described as the most damaging species feeding on asparagus. Analyses using electron paramagnetic resonance (EPR) demonstrated generally higher concentrations of semiquinone radicals with g-values of 2.0045 ± 0.0005 and 2.0026 ± 0.0005 in Asparagus officinalis (A. officinalis) leaves after Brachycorynella asparagi (B. asparagi) infestation than in the control. Observations of leaves under a confocal microscope showed a post-infestation enhanced generation of the superoxide anion radical (O₂•-) and hydrogen peroxide (H₂O₂) in comparison to the control. Strong fluctuations in Mn2+ ion levels detected by EPR spectroscopy versus time were detected in leaves infested by aphids, which may indicate the involvement of these ions in the control of O₂•- production. An enhanced superoxide dismutase activity is an important element in leaf defense against oxidative stress. Visible symptoms were found in aphid-infested A. officinalis. Damage to leaves of one- and two-month-old A. officinalis plants by the aphid B. asparagi was dependent on the intensity, duration of infestation and plant age.
Collapse
|
13
|
Sytykiewicz H. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids. Biochem Biophys Res Commun 2016; 476:90-5. [PMID: 27178208 DOI: 10.1016/j.bbrc.2016.05.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023]
Abstract
Plant NADPH oxidases (NOXs) encompass a group of membrane-bound enzymes participating in formation of reactive oxygen species (ROS) under physiological conditions as well as in response to environmental stressors. The purpose of the survey was to unveil the role of NADPH oxidase in pro-oxidative responses of maize (Zea mays L.) seedling leaves exposed to cereal aphids' infestation. The impact of apteral females of bird cherry-oat aphid (Rhopalosiphum padi L.) and grain aphid (Sitobion avenae F.) feeding on expression levels of all four NADPH oxidase genes (rbohA, rbohB, rbohC, rbohD) and total activity of NOX enzyme in maize plants were investigated. In addition, inhibitory effect of diphenylene iodonium (DPI) pre-treatment on NOX activity and hydrogen peroxide content in aphid-stressed maize seedlings was studied. Leaf infestation biotests were accomplished on 14-day-old seedlings representing two aphid-resistant varieties (Ambrozja and Waza) and two aphid-susceptible ones (Tasty Sweet and Złota Karłowa). Insects' attack led to profound upregulation of rbohA and rbohD genes in tested host plants, lower elevations were noted in level of rbohB mRNA, whereas abundance of rbohC transcript was not significantly altered. It was uncovered aphid-induced enhancement of NOX activity in examined plants. Higher increases in expression of all investigated rboh genes and activity of NADPH oxidase occurred in tissues of more resistant maize cultivars than in susceptible ones. Furthermore, DPI treatment resulted in strong reduction of NOX activity and H2O2 accumulation in aphid-infested Z. mays plants, thus evidencing circumstantial role of the enzyme in insect-elicited ROS generation.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Prusa 12, 08-110 Siedlce, Poland.
| |
Collapse
|
14
|
Sytykiewicz H. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings. Int J Mol Sci 2016; 17:268. [PMID: 26907270 PMCID: PMC4813132 DOI: 10.3390/ijms17030268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland.
| |
Collapse
|