1
|
Sytykiewicz H, Czerniewicz P, Ruszczyńska M, Kmieć K. The Interplay of Nitric Oxide and Nitrosative Modifications in Maize: Implications for Aphid Herbivory and Drought Stress. Int J Mol Sci 2024; 25:11280. [PMID: 39457062 PMCID: PMC11508608 DOI: 10.3390/ijms252011280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Nitric oxide (NO) and other reactive nitrogen species (RNS) are considered to be signaling molecules in higher plants involved in the regulation of growth and development processes. However, the molecular mechanisms of their formation, removal, and participation in plant responses to adverse environmental stimuli remain largely unclear. Therefore, the aim of this study was to assess the influence of selected single stresses and combined stresses (i.e., Rhopalosiphum padi L. aphid infestation, drought, aphid infestation, and drought) and post-stress recovery on the contents of NO and peroxynitrite anion (ONOO-), as well as the levels of mRNA and protein nitration (i.e., the 8-nitroguanine and protein 3-nitrotyrosine amounts, respectively), in maize seedlings (Zea mays L.). Moreover, the expression patterns of the two tested genes (nos-ip, encoding nitric oxide synthase-interacting protein, and nr1, encoding nitrate reductase 1) involved in NO metabolism in maize plants were quantified. We identified significant intervarietal, time-course, and stress-dependent differences in the levels of the quantified parameters. Under the investigated stress conditions, the aphid-resistant Waza cv. seedlings were characterized by a higher and earlier NO accumulation and mRNA nitration level and an increased expression of the two target genes (nos-ip and nr1), compared to the aphid-susceptible Złota Karłowa cv. seedlings. Conversely, the Złota Karłowa plants responded with a greater elevation in the content of ONOO- and protein 3-nitrotyrosine than the Waza cv. plants The multifaceted role of NO and its derivatives in maize plants challenged by single and combined stresses, as well as during post-stress recovery, is discussed.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland; (P.C.); (M.R.)
| | - Paweł Czerniewicz
- Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland; (P.C.); (M.R.)
| | - Magdalena Ruszczyńska
- Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland; (P.C.); (M.R.)
| | - Katarzyna Kmieć
- Department of Plant Protection, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland;
| |
Collapse
|
2
|
Zhou L, Wang E, Yang Y, Yang P, Xu L, Ming J. Antioxidant Enzyme, Transcriptomic, and Metabolomic Changes in Lily ( Lilium spp.) Leaves Induced by Aphis gossypii Glover. Genes (Basel) 2024; 15:1124. [PMID: 39336715 PMCID: PMC11431739 DOI: 10.3390/genes15091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Cotton aphids (Aphis gossypii Glover) cause harm by feeding on phloem sap and spreading plant viruses to lily. Understanding the mechanisms by which aphids infest lily plants is crucial for effective aphid management and control. In this study, we investigated the activity of antioxidants, integrated nontargeted metabolomes and transcriptomes of lilies infested by cotton aphids to explore the changes in lily leaves. Overall, the results indicated that the catalase (CAT) activity in the leaves of the lily plants was greater than that in the leaves of the control plants. A comprehensive identification of 604 substances was conducted in the leaves. Furthermore, the differentially abundant metabolite analysis revealed the enrichment of phenylalanine metabolism and α-linolenic acid metabolism. Moreover, 3574 differentially expressed genes (DEGs), whose expression tended to increase, were linked to glutathione metabolism and phenylpropanoid biosynthesis. In addition, the integrated analysis revealed that the defensive response of lily leaves to aphids is manifested through antioxidant reactions, phenylpropane and flavonoid biosynthesis, and α-linolenic acid metabolism. Finally, the key metabolites were CAT, glutathione, coumaric acid, and jasmonic acid, along with the key genes chalcone synthase (CHS), phenylalanine ammonia-lyase (PAL), and 12-oxo-phytodienoic acid reductase (OPR). Accordingly, the findings of this research elucidate the molecular and metabolic reactions of A. gossypii in lily plants, offering valuable insights for developing aphid resistance strategies in lily farming.
Collapse
Affiliation(s)
- Lihong Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (P.Y.); (L.X.)
- Flower Institution, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China;
| | - Erli Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Yingdong Yang
- Flower Institution, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China;
| | - Panpan Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (P.Y.); (L.X.)
| | - Leifeng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (P.Y.); (L.X.)
| | - Jun Ming
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (P.Y.); (L.X.)
| |
Collapse
|
3
|
Kaur S, Grewal SK, Taggar GK, Bhardwaj RD. Methylglyoxal metabolism is altered during defence response in pigeonpea ( Cajanus cajan (L.) Millsp.) against the spotted pod borer ( Maruca vitrata). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23155. [PMID: 38266279 DOI: 10.1071/fp23155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Pigeonpea (Cajanus cajan ) production can be affected by the spotted pod borer (Maruca vitrata ). Here, we identified biochemical changes in plant parts of pigeonpea after M. vitrata infestation. Two pigeonpea genotypes (AL 1747, moderately resistant; and MN 1, susceptible) were compared for glyoxalase and non-glyoxalase enzyme systems responsible for methylglyoxal (MG) detoxification, γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST) and glutathione content in leaves, flowers and pods under control and insect-infested conditions. MN 1 had major damage due to M. vitrata infestation compared to AL 1747. Lower accumulation of MG in AL 1747 was due to higher activities of enzymes of GSH-dependent (glyoxylase I, glyoxylase II), GSH-independent (glyoxalase III) pathway, and enzyme of non-glyoxalase pathway (methylglyoxal reductase, MGR), which convert MG to lactate. Decreased glyoxylase enzymes and MGR activities in MN 1 resulted in higher accumulation of MG. Higher lactate dehydrogenase (LDH) activity in AL 1747 indicates utilisation of MG detoxification pathway. Higher glutathione content in AL 1747 genotype might be responsible for efficient working of MG detoxification pathway under insect infestation. Higher activity of γ-GCS in AL 1747 maintains the glutathione pool, necessary for the functioning of glyoxylase pathway to carry out the detoxification of MG. Higher activities of GST and GPX in AL 1747 might be responsible for detoxification of toxic products that accumulates following insect infestation, and elevated activities of glyoxylase and non-glyoxylase enzyme systems in AL 1747 after infestation might be responsible for reducing reactive cabanoyl stress. Our investigation will help the future development of resistant cultivars.
Collapse
Affiliation(s)
- Sukhmanpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Gaurav Kumar Taggar
- Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
4
|
Sontsa-Donhoung AM, Bahdjolbe M, Hawaou, Nwaga D. Selecting Endophytes for Rhizome Production, Curcumin Content, Biocontrol Potential, and Antioxidant Activities of Turmeric (Curcuma longa). BIOMED RESEARCH INTERNATIONAL 2022; 2022:8321734. [PMID: 36051479 PMCID: PMC9427320 DOI: 10.1155/2022/8321734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
Beneficial endophytes may enhance plant growth and stress tolerance. Yet, the plant health benefits of endophytes can be altered by biotic and abiotic factors and, thus, favour the inhibition of turmeric growth and curcumin production. The double petri dish method and greenhouse pot experiments were conducted to assess the biocontrol potential and impact of endophytes on the output, curcumin levels, and antioxidant activities of turmeric (Curcuma longa L.). The results showed that endophytes could control some disease-causing plant pathogens: 52% of all isolates have an antagonistic action against Fusarium oxysporum, 43% against Pythium myriotylum, 35% against Phytophthora megakarya, and 56% against Ralstonia solanacearum in vitro. Eight months after sowing, most endophyte isolates can increase the yield of turmeric rhizomes on a sterile substrate after inoculation, with yields ranging from 42 to 105% higher than the control and 3 to 50% higher than the urea treatment. In addition, 52% endophytes isolate significantly raised curcumin levels after 8 months of culture (from 2.1 to 3.1%) compared to control (1.7%) and urea treatment (1.8%). These endophytes promote an increase in the levels of reduced glutathione (22%), total thiols (26%), and carotenoids (91%) in turmeric. The study concludes that, in general, the endophytes-turmeric association can stimulate turmeric rhizome production, curcumin, and the antioxidant activities of the plant. They can also be used as biocontrol agents for plant pathogens.
Collapse
Affiliation(s)
- Alain-Martial Sontsa-Donhoung
- Soil Microbiology Laboratory, Biotechnology Centre, Faculty of Sciences, University of Yaoundé I, BP. 17673 Yaoundé, Cameroon
- Department of Economic and Environmental Studies, National Education Centre, Ministry of Scientific Research and Innovation, BP. 6331 Yaoundé, Cameroon
| | - Marcelin Bahdjolbe
- Soil Microbiology Laboratory, Biotechnology Centre, Faculty of Sciences, University of Yaoundé I, BP. 17673 Yaoundé, Cameroon
| | - Hawaou
- Soil Microbiology Laboratory, Biotechnology Centre, Faculty of Sciences, University of Yaoundé I, BP. 17673 Yaoundé, Cameroon
| | - Dieudonné Nwaga
- Soil Microbiology Laboratory, Biotechnology Centre, Faculty of Sciences, University of Yaoundé I, BP. 17673 Yaoundé, Cameroon
| |
Collapse
|
5
|
Liu T, Zhang X. Comparative transcriptome and metabolome analysis reveal glutathione metabolic network and functional genes underlying blue and red-light mediation in maize seedling leaf. BMC PLANT BIOLOGY 2021; 21:593. [PMID: 34906076 PMCID: PMC8670197 DOI: 10.1186/s12870-021-03376-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Light quality severely affects biosynthesis and metabolism-associated process of glutathione. However, the role of specific light is still unclear on the glutathione metabolism. In this article, comparatively transcriptome and metabolome methods are used to fully understand the blue and red-light conditions working on the glutathione metabolism in maize seedling leaf. RESULTS There are 20 differently expressed genes and 4 differently expressed metabolites in KEGG pathway of glutathione metabolism. Among them, 12 genes belong to the glutathione S-transferase family, 3 genes belong to the ascorbate peroxidase gene family and 2 genes belong to the ribonucleoside-diphosphate reductase gene family. Three genes, G6PD, SPDS1, and GPX1 belong to the gene family of glucose 6-phosphate dehydrogenase, spermidine synthase, and glutathione peroxidase, respectively. Four differently expressed metabolites are identified. Three of them, Glutathione disulfide, Glutathione, and l-γ-Glutamyl-L-amino acid are decreased while L-Glutamate is increased. In addition, Through PPI analysis, two annotated genes gst16 and DAAT, and 3 unidentified genes 100381533, pco105094 and umc2770, identified as RPP13-like3, BCAT-like1and GMPS, were obtained. By the analysis of protein sequence and PPI network, we predict that pco105094 and umc2770 were involved in the GSSG-GSH and AsA-GSH cycle in the network of glutathione metabolism. CONCLUSIONS Compared to red light, blue light remarkably changed the transcription signal transduction and metabolism of glutathione metabolism. Differently expressed genes and metabolic mapped to the glutathione metabolism signaling pathways. In total, we obtained three unidentified genes, and two of them were predicted in current glutathione metabolism network. This result will contribute to the research of glutathione metabolism of maize.
Collapse
Affiliation(s)
- Tiedong Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xiwen Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
6
|
Pant S, Huang Y. Elevated production of reactive oxygen species is related to host plant resistance to sugarcane aphid in sorghum. PLANT SIGNALING & BEHAVIOR 2021; 16:1849523. [PMID: 33270502 PMCID: PMC7849690 DOI: 10.1080/15592324.2020.1849523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 05/29/2023]
Abstract
Sugarcane aphid (Melanaphis sacchari) is a phloem-feeding insect that severely affects the growth and productivity of sorghum and other related crops. While a growing body of knowledge is accumulating regarding plant, and insect interactions, the role of reactive oxygen species (ROS) against aphid infestation in sorghum has not been established yet. Here, the involvement of H2O2 and ROS detoxification enzymes in host plant resistance to sugarcane aphid in sorghum was demonstrated. The H2O2 accumulation and expression patterns of selected ROS scavenging enzymes including ascorbate peroxidase (APX), glutathione S transferase (GST), superoxide dismutase (SOD), and catalase (CAT) in response to sugarcane aphid infestation at 3, 6, 9, and 12 days post infestation (dpi) in resistant (Tx2783) and susceptible (Tx7000) sorghum genotypes were assessed, respectively. A significant increase in H2O2 accumulation was observed in resistant genotypes at all time points studied as compared to susceptible plants. Furthermore, gene expression analysis revealed that in responding to attack by sugarcane aphid, antioxidant genes were induced in both genotypes, but much stronger in the resistant line. Furthermore, aphid survival and fecundity were significantly inhibited in resistant plants compared to susceptible plants. Taken together, our results suggest that the elevated accumulation of H2O2 and the strong upregulation of the antioxidant genes in sorghum may have contributed to host plant resistance in Tx2783 against sugarcane aphid but the weak expression of those antioxidant genes in Tx7000 resulted in the failure of attempting defense against sugarcane aphid. This report also provides the experimental evidence for the role of ROS involvement in the early defensive response to an attack by sugarcane aphid in sorghum.
Collapse
Affiliation(s)
- Shankar Pant
- Plant Science Research Laboratory, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Stillwater, OK, USA
| | - Yinghua Huang
- Plant Science Research Laboratory, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Stillwater, OK, USA
| |
Collapse
|
7
|
Cheah BH, Lin HH, Chien HJ, Liao CT, Liu LYD, Lai CC, Lin YF, Chuang WP. SWATH-MS-based quantitative proteomics reveals a uniquely intricate defense response in Cnaphalocrocis medinalis-resistant rice. Sci Rep 2020; 10:6597. [PMID: 32759951 PMCID: PMC7406494 DOI: 10.1038/s41598-020-63470-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cnaphalocrocis medinalis is a major insect pest of rice in Asia. A few defensive enzymes were reported to show higher activities in a resistant rice line (Qingliu) than in a susceptible rice line (TN1) upon leaffolder infestation. However, the overall molecular regulation of the rice defense response against leaffolder herbivory is unknown. Here, differential proteomic analysis by SWATH-MS was performed to identify differentially expressed proteins between the two rice varieties, Qingliu and TN1, at four time points of leaffolder herbivory, 0, 6, 24, and 72 h. Gene Ontology (GO) enrichment of the differentially expressed proteins indicated overrepresentation of (1) photosynthesis, (2) amino acid and derivative metabolic process, and (3) secondary metabolic process. Phenylalanine ammonia lyase and chalcone synthase, which catalyze flavonoid biosynthesis, and lipoxygenase, which catalyzes jasmonic acid biosynthesis, exhibited higher expression in Qingliu than in TN1 even before insect herbivory. Momentary activation of the light reaction and Calvin cycle was detected in Qingliu at 6 h and 24 h of insect herbivory, respectively. At 72 h of insect herbivory, amino acid biosynthesis and glutathione-mediated antioxidation were activated in Qingliu. A defense response involving jasmonic acid signaling, carbon remobilization, and the production of flavonoids and glutathione could underlie the resistance of Qingliu to leaffolder.
Collapse
Affiliation(s)
- Boon Huat Cheah
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Hou-Ho Lin
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chung-Ta Liao
- Crop Enviroment Division, Taichung District Agricultural Research and Extension Station, Changhua County, 51544, Taiwan
| | - Li-Yu D Liu
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ya-Fen Lin
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan.
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
8
|
Kot I, Sempruch C, Rubinowska K, Michałek W. Effect of Neuroterus quercusbaccarum (L.) galls on physiological and biochemical response of Quercus robur leaves. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:34-43. [PMID: 31190653 DOI: 10.1017/s0007485319000221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gall formation is associated with multiple changes in plant cells, which still requires a better understanding. In this study, galls caused by sexual generation (♀♂) of Neuroterus quercusbaccarum (L.) (Hymenoptera: Cynipidae) on pedunculate oak trees (Quercus robur L.) were used as a model. Cytoplasmic membrane condition, concentration of hydrogen peroxide (H2O2), the activity of antioxidant enzymes and amino acid decarboxylase as well as chlorophyll fluorescence parameters were determined. Changes in physiological and biochemical parameters were analyzed in foliar tissues with galls and gall tissues themselves and compared to control. The presence of galls on oak leaves caused an increase of lipid peroxidation level. A significant decline in H2O2 and TBARS content with the reduction of guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) activity were observed in gall tissues. The activity amino acid decarboxylase, i.e., LDC, ODC and TyDC varied between samples, which may affect the content of amino acids. The presence of N. quercusbaccarum galls caused an insignificant increase of the chlorophylls, carotenoids and anthocyanin contents, while the content of pigments and their ratios in gall tissues was extremely low. Moreover, photosynthetic parameters (F0, Fm, Fv/Fm, Y, qP) were significantly decreased. Data generated in this study indicate that the development of N. quercusbaccarum galls on pedunculate oak leaves has a negative effect on host plant related to the disruption of cell membrane integrity, disturbance of photosynthesis and reduction of the antioxidant potential of the host plant.
Collapse
Affiliation(s)
- I Kot
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
| | - C Sempruch
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
| | - K Rubinowska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - W Michałek
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| |
Collapse
|
9
|
Łukasik I, Wołoch A, Sytykiewicz H, Sprawka I, Goławska S. Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation. PLoS One 2019; 14:e0221160. [PMID: 31412084 PMCID: PMC6693767 DOI: 10.1371/journal.pone.0221160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/31/2019] [Indexed: 11/18/2022] Open
Abstract
The rose-grass aphid (Methopolophium dirhodum Walk.) is a major pest of maize (Zea mays L.), but little is known about the biochemical interactions between M. dirhodum and its host plant. Thiol compounds and glutathione S-transferase (GST) play a crucial role in the defense responses of maize to biotic stress factors, including aphids. The purpose of this research was to evaluate the impact of M. dirhodum herbivory on the total thiol (TT), protein bound thiol (PT), reduced glutathione (GSH) and oxidized glutathione (GSSG) contents as well as the activity of GST in three varieties of Z. mays (Złota Karłowa, Ambrozja and Płomyk), that were classified as aphid-susceptible, aphid-relatively resistant and aphid-resistant, respectively. The earliest and strongest aphid-triggered alterations in the levels of TT, PT and GSH, and the greatest induction of GST activity, were recorded in the resistant Płomyk seedlings in relation to the relatively resistant Ambrozja and the susceptible Złota Karłowa.
Collapse
Affiliation(s)
- Iwona Łukasik
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
- * E-mail:
| | - Aleksandra Wołoch
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
| | - Hubert Sytykiewicz
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
| | - Iwona Sprawka
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
| | - Sylwia Goławska
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
| |
Collapse
|
10
|
Sytykiewicz H, Łukasik I, Goławska S, Chrzanowski G. Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize ( Zea mays L.) Seedlings. Int J Mol Sci 2019; 20:ijms20153742. [PMID: 31370193 PMCID: PMC6696134 DOI: 10.3390/ijms20153742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose of the current study was to evaluate the scale of oxidative damages of genomic DNA, total RNA and mRNA, proteins, and lipids in seedling leaves of two maize genotypes (Złota Karłowa and Waza cvs—susceptible and relatively resistant to the aphids, respectively). The content of oxidized guanosine residues (8-hydroxy-2′-deoxyguanosine; 8-OHdG) in genomic DNA, 8-hydroxyguanosine (8-OHG) in RNA molecules, protein carbonyl groups, total thiols (T-SH), protein-bound thiols (PB-SH), non-protein thiols (NP-SH), malondialdehyde (MDA) and electrolyte leakage (EL) levels in maze plants were determined. In addition, the electrical penetration graphs (EPG) technique was used to monitor and the aphid stylet positioning and feeding modes in the hosts. Maize seedlings were infested with 0 (control), 30 or 60 R. padi adult apterae per plant. Substantial increases in the levels of RNA, protein and lipid oxidation markers in response to aphid herbivory, but no significant oxidative damages of genomic DNA, were found. Alterations in the studied parameters were dependent on maize genotype, insect abundance and infestation time.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland.
| | - Iwona Łukasik
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland
| | - Sylwia Goławska
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland
| | - Grzegorz Chrzanowski
- Department of Molecular Biotechnology, University of Rzeszow, 1 Pigonia St., 35-310 Rzeszow, Poland
| |
Collapse
|