1
|
Kim B, Woo DK, Jeong J, Sim MS. Vanadate reduction by gram-positive fermentative bacteria isolated from deep-sea sediments on the northern Central Indian Ridge. PLoS One 2025; 20:e0317320. [PMID: 39841639 PMCID: PMC11753629 DOI: 10.1371/journal.pone.0317320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism. A series of culture experiments revealed that the isolated strain efficiently reduces V(V) to V(IV) during fermentation, even at mM levels, and this reduction involves a direct biological process rather than indirect reduction via metabolic products. Vanadium affects microbial carbon and nitrogen metabolism. Notably, in the presence of vanadate, alanine production decreases, suggesting that metabolic flux is diverted from the transamination reaction to vanadate reduction. T. mesophilus VROV1 is the second Gram-positive bacterium identified to reduce vanadium, following Lactococcus raffinolactis, but these bacteria belong to different classes: T. mesophilus is classified as Clostridia, whereas L. raffinolactis is classified as Bacilli. The specific rate of vanadate removal by VROV1 was as high as 2.8 pmol/cell/day, which is comparable to that of metal-reducing bacteria and markedly exceeds that of L. raffinolactis. Our findings expand the distribution of vanadate-reducing organisms within the bacterial domain. Given the wide range of natural habitats of T. mesophilus and its close relatives, we speculate that fermentative vanadate reduction may have a greater impact on the global biogeochemical cycle of vanadium than previously thought.
Collapse
Affiliation(s)
- Bokyung Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| | - Dong Kyun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| | - Juhwan Jeong
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| | - Min Sub Sim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Majou D. Endopeptidase activities of Clostridium botulinum toxins in the development of this bacterium. Res Microbiol 2024; 175:104216. [PMID: 38897423 DOI: 10.1016/j.resmic.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
By-products like CO₂ and organic acids, produced during Clostridium botulinum growth, appear to inhibit its development and reduce ATP production. A decrease in ATP production creates an imbalance in the ATP/GTP ratio. GTP activates CodY, which regulates BoNT expression. This toxin is released into the extracellular medium. Its light chains act as a specific endopeptidase, targeting SNARE proteins. The specific amino acids released enter the cells and are metabolized by the Stickland reaction, resulting in the synthesis of ATP. This ATP might then be used by histidine kinases to activate Spo0A, the main regulator initiating sporulation, through phosphorylation.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, Rue de Bercy, 75595 Paris Cedex 12, France.
| |
Collapse
|
3
|
Gao J, Li L, Yuan S, Sun J, Chen S, Dong B. Reconceptualization of the mechanism of thermal hydrolysis pretreatment to enhance the anaerobic conversion of sludge organic nitrogen: Decisive role of organic nitrogen occurrence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165703. [PMID: 37487905 DOI: 10.1016/j.scitotenv.2023.165703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The occurrence state of organic nitrogen (ON) is the key to affect anaerobic biotransformation of sludge. ON in sludge was chemically classified as PA (easily accessible part), PB (moderately accessible) and PC (hardly accessible) according to the modified CNCPS method. The components of them were analyzed by PY-GCMS, and it was identified that PA was extracellular amino acids, peptides and proteins; PB was genetic material, cell wall peptidoglycans and intracellular proteins; PC was ON that cross-linked with complex macromolecules. The conversion characteristics of PA, PB and PC in sludge and their relationship with anaerobic digestion (AD) performance were investigated after thermal hydrolysis pretreatment (THP) at different temperatures (100-180 °C). With the increase of THP temperature, the hydrolysis of PA and the conversion of PB to PA were promoted. At 180-THP, part of PA was converted to PC due to thermochemical reactions. In the fast degradation stage of AD of ON (ON-fast), PA is the main component of degradation; while in the slow degradation stage (ON-slow), the degradation of ON is mainly dominated by PB. Therefore, THP can significantly increase the proportion of ON-fast and reduce the ON fraction in the digestate (ON-hard). Moreover, PA and PB, rather than PC, were identified as dominant in ON-hard with or without THP for the first time, overturning the traditional view (remaining ON after AD was that cross-linked with complex macromolecules). This is due to that PA and PB are the main ON that make up microbial cells. The findings upgraded our perspective on conversion of ON of sludge during AD and inspire the shifted focus from "degrading PC" to "PC accumulation" for later use, through targeted enhanced PA degradation.
Collapse
Affiliation(s)
- Jun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sisi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China.
| |
Collapse
|
4
|
Trutschel LR, Kruger BR, Sackett JD, Chadwick GL, Rowe AR. Determining resident microbial community members and their correlations with geochemistry in a serpentinizing spring. Front Microbiol 2023; 14:1182497. [PMID: 37396382 PMCID: PMC10308030 DOI: 10.3389/fmicb.2023.1182497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Terrestrial serpentinizing systems allow us insight into the realm of alkaliphilic microbial communities driven by geology in a way that is frequently more accessible than their deep subsurface or marine counterparts. However, these systems are also marked by geochemical and microbial community variation due to the interactions of serpentinized fluids with host geology and the surface environment. To separate the transient from the endemic microbes in a hyperalkaline environment, we assessed the Ney Springs terrestrial serpentinizing system microbial community and geochemistry at six time points over the span of a year. Using 16S rRNA gene surveys we observed 93 amplicon sequence variants (ASVs) that were found at every sampling event. This is compared to ~17,000 transient ASVs that were detected only once across the six sampling events. Of the resident community members, 16 of these ASVs were regularly greater than 1% of the community during every sampling period. Additionally, many of these core taxa experienced statistically significant changes in relative abundance with time. Variation in the abundance of some core populations correlated with geochemical variation. For example, members of the Tindallia group, showed a positive correlation with variation in levels of ammonia at the spring. Investigating the metagenome assembled genomes of these microbes revealed evidence of the potential for ammonia generation via Stickland reactions within Tindallia. This observation offers new insight into the origin of high ammonia concentrations (>70 mg/L) seen at this site. Similarly, the abundance of putative sulfur-oxidizing microbes like Thiomicrospira, Halomonas, and a Rhodobacteraceae species could be linked to changes observed in sulfur-oxidation intermediates like tetrathionate and thiosulfate. While these data supports the influence of core microbial community members on a hyperalkaline spring's geochemistry, there is also evidence that subsurface processes affect geochemistry and may impact community dynamics as well. Though the physiology and ecology of these astrobiologically relevant ecosystems are still being uncovered, this work helps identify a stable microbial community that impacts spring geochemistry in ways not previously observed in serpentinizing ecosystems.
Collapse
Affiliation(s)
- Leah R. Trutschel
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Brittany R. Kruger
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, Las Vegas, NV, United States
| | - Joshua D. Sackett
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Grayson L. Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Annette R. Rowe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
5
|
Adeniyi A, Bello I, Mukaila T, Monono E, Hammed A. Developing rumen mimicry process for biological ammonia synthesis. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02880-7. [PMID: 37166514 DOI: 10.1007/s00449-023-02880-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The ruminant rumen houses hyper-ammonia-producing bacteria (HAB) that produce ammonia with minimal energy use. Here we developed a mimicry process to produce bio-ammonia, a solution of ammonia and ammonium. The rumen microbes were used to ferment soybean (SYB), soybean protein isolate (SPI), and pepsin-hydrolysate (HP) for bio-ammonia production. The maximum bio-ammonia produced from SYB, SPI, and HP were 0.65, 1.2, and 1.1 g/L, respectively. The presence of non-protein in SYB hindered bio-ammonia production and the processing of SYB to SPI and HP significantly (p < 0.05) increased bio-ammonia production. HP was converted to bio-ammonia quicker than SPI suggesting that enzymatic hydrolysis increases bioprocessing efficiency. Metagenomic analysis of a sample culture revealed that the HAB population is predominantly Klebsiella quasivariicola (73%), Escherichia coli (6%), and Enterobacter cloacae (6%). The bioprocessing steps developed would enable industrial ammonia production to achieve a low CO2 footprint.
Collapse
Affiliation(s)
- Adewale Adeniyi
- Environmental and Conservation Sciences, North Dakota State University, Fargo, USA
| | - Ibrahim Bello
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA
| | - Taofeek Mukaila
- Environmental and Conservation Sciences, North Dakota State University, Fargo, USA
| | - Ewumbua Monono
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA
| | - Ademola Hammed
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA.
| |
Collapse
|
6
|
Ghosh D, Ghorai P, Sarkar S, Maiti KS, Hansda SR, Das P. Microbial assemblage for solid waste bioremediation and valorization with an essence of bioengineering. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16797-16816. [PMID: 36595166 DOI: 10.1007/s11356-022-24849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Environmental solid waste bioremediation is a method of treating contaminated solid waste that involves changing ecological conditions to foster the growth of a broad spectrum of microorganisms and the destruction of the target contaminants. A wide range of microorganisms creates metabolites that may break down and change solid waste-based pollution to various value-added molecules. Diverse bioremediation technologies, their limitations, and the procedure involve recycling solid waste materials from the environment. The existing environmental solid waste disposal services are insufficient and must be upgraded with more lucrative recovery, recycling, and reuse technologies to decrease the enormous expenditures in treatment procedures. Bioremediation of solid waste eliminates the toxic components. It restores the site with the advent of potential microbial communities towards solid waste valorization utilizing agriculture solid waste, organic food waste, plastic solid waste, and multiple industrial solid wastes.Bioengineering on diverse ranges of microbial regimes has accelerated to provide extra momentum toward solid waste recycling and valorization. This approach increases the activity of bioremediating microbes in the commercial development of waste treatment techniques and increases the cost-effective valuable product generation. This framework facilitates collaboration between solid waste and utilities. It can aid in establishing a long-term management strategy for recycling development with the advent of a broad spectrum of potential microbial assemblages, increasing solid waste contamination tolerance efficiency and solid waste degradability. The current literature survey extensively summarises solid waste remediation valorization using a broad spectrum of microbial assemblages with special emphasis on bioengineering-based acceleration. This approach is to attain sustainable environmental management and value-added biomolecule generation.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India.
| | - Palash Ghorai
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Soumita Sarkar
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Kumar Sagar Maiti
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Serma Rimil Hansda
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Parna Das
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| |
Collapse
|
7
|
Karishma S, Saravanan A, Senthil Kumar P, Rangasamy G. Sustainable production of biohydrogen from algae biomass: Critical review on pretreatment methods, mechanism and challenges. BIORESOURCE TECHNOLOGY 2022; 366:128187. [PMID: 36309177 DOI: 10.1016/j.biortech.2022.128187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The production of chemicals and energy from sustainable biomass with an important objective decreasing carbon impressions has recently become one of the key areas of attention. Algae biomass have been recognized and researched as a potential renewable biomass of biohydrogen production attributed to their limited multiplying time, fast growing qualities and ability of lipid accumulation. This review additionally envelops various key perspectives such as composition and properties of algae biomass and pretreatment strategies such as physical, chemical and biological methods adopted for the algae biomass. This review is mainly focused on pretreatment strategies which have been developed to enhance biohydrogen production. The present review deals with methods and mechanism, enzymes involved and factors influencing on biohydrogen production which help to grasp various bottlenecks, challenges and constraints. Finally, the significant progressions and economical perspective on improving biohydrogen yield because of the expansion of co-substrates and the current trends are examined.
Collapse
Affiliation(s)
- S Karishma
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
8
|
Chiang CJ, Huang ZC, Ta T, Chao YP. Deciphering glutamate and aspartate metabolism to improve production of succinate in Escherichia coli. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Comparative genomic analysis of hyper-ammonia producing Acetoanaerobium sticklandii DSM 519 with purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genomics 2021; 113:4196-4205. [PMID: 34780936 DOI: 10.1016/j.ygeno.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Acetoanaerobium sticklandii DSM519 (CST) is a hype-ammonia producing non-pathogenic anaerobe that can use amino acids as important carbon and energy sources through the Stickland reactions. Biochemical aspects of this organism have been extensively studied, but systematic studies addressing its metabolic discrepancy remain scant. In this perspective, we have intensively analyzed its genomic and metabolic characteristics to comprehend the evolutionary conservation of amino acid catabolism by a comparative genomic approach. The whole-genome data indicated that CST has shown a phylogenomic similarity with hyper-ammonia producing, purinolytic, and proteolytic pathogenic Clostridia. CST has shown to common genomic context sharing across the purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genome syntenic analysis described that syntenic orthologs might be originated from the recent ancestor at a slow evolution rate and syntenic-out paralogs evolved from either CDF or CAC via α-event and β-event. Collinearity of either gene orders or gene families was adjusted with syntenic out-paralogs across these genomes. The genome-wide metabolic analysis predicted 11 unique putative metabolic subsystems from the CST genome for amino acid catabolism and hydrogen production. The in silico analysis of our study revealed that a characteristic system for amino acid catabolism-directed biofuel synthesis might have slowly evolved and established as a core genomic content of CST.
Collapse
|
10
|
Chen S, Gao J, Dong B. Bottlenecks of anaerobic degradation of proteins in sewage sludge and the potential targeted enhancing strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143573. [PMID: 33203563 DOI: 10.1016/j.scitotenv.2020.143573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Proteins degradation plays a decisive role in the biogas production and subsequent dehydration of sewage sludge. And the anaerobic degradation of proteins in sewage sludge is limited by enzymatic hydrolysis barrier during hydrolysis process, selectivity and underutilization during amino acids fermentation, as well as molecular toxicity effects of metabolic products. Traditional pretreatments could solely improve the hydrolysis and even brought inhibition on the latter metabolism processes. In order to overcome the above bottlenecks, regulating microorganisms, secretion and activity of key enzymes, as well as interspecies electron transfer are proposed to be potential strategies of targeted enhancement of proteins degradation in sewage sludge. Since complex organic matters restricted the domestication of microorganisms and key enzymes that targeted degrade refractory proteins in sewage sludge, more profound investigations on regulating methods based on ORP control, bio-stimulation and AD-MEC etc. are needed to screen and domesticate the targeting microorganisms and enzymes related to refractory proteins degradation in AD systems. Moreover, more research should also be focused on the components and physical-chemical characteristics of refractory proteins in sludge and also their isolation strategies, especially which are remained in anaerobic digestate of sewage sludge after traditional pretreatments.
Collapse
Affiliation(s)
- Sisi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Sangavai C, Chellapandi P. Growth-associated catabolic potential of Acetoanaerobium sticklandii DSM 519 on gelatin and amino acids. J Basic Microbiol 2020; 60:882-893. [PMID: 32812241 DOI: 10.1002/jobm.202000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 11/07/2022]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyperammonia-producing anaerobe that catabolizes proteins and amino acids into organic solvents and volatile acids via the Stickland reactions. However, the specific growth rate and metabolic capability of this organism on proteins and amino acids are not yet known. Therefore, the present study was intended to evaluate its specific growth rate and metabolic potential on gelatin and amino acids in the experimental media. We carried out metabolic assay experiments to calculate its ability to utilize pure gelatin, single amino acids, and amino acid pairs at different growth phases. The results of this study show that complete assimilation of gelatin was achieved by its log-phase culture. The subsequent fermentation of amino acids was much faster than gelatin hydrolysis. The rate of gelatin degradation was associated with the growth and catabolic rates of this organism. Many amino acids were not assimilated completely for its growth and energy conservation. A log-phase culture of this organism preferably utilized l-cysteine, l-arginine, and l-serine, and released more fraction of ammonia. As shown by our analysis, the catabolic rates of these amino acids were determined by the rates of respective enzymes involved in amino acid catabolic pathways and feedback repression of ammonia. The growth kinetic data indicated that at the initial growth stage, a metabolic shift in its solventogenesis and acidogenesis phases was associated with catabolism of certain amino acids. Thus, the results of this study provide a new insight to exploit its log-phase culture as a starter for the production of biofuel components from gelatin processing industries.
Collapse
Affiliation(s)
- Chinnadurai Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Paulchamy Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
12
|
Nagarajan D, Chang JS, Lee DJ. Pretreatment of microalgal biomass for efficient biohydrogen production - Recent insights and future perspectives. BIORESOURCE TECHNOLOGY 2020; 302:122871. [PMID: 32007310 DOI: 10.1016/j.biortech.2020.122871] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Biohydrogen is a plausible alternative fuel solution for the contemporary issues regarding global warming and the steadily increasing greenhouse gas emissions, because of its high energy content and carbon-free combustion properties. Hydrogen does not exist in its natural state and the current hydrogen production technologies (steam methane reforming, water splitting) are energy-intensive, accompanied by a huge carbon footprint. Dark fermentative hydrogen production by anaerobic hydrogen-producing bacteria is a green, sustainable and emission-free pathway for hydrogen production. Microalgal biomass is considered as the third generation biofuel feedstock and is receiving academic and industrial research attention for its carbon sequestration abilities. This review discusses in detail about the pretreatment methods that could be adapted for microalgal biomass for effective biohydrogen production. Microalgal cell wall structure and the associated polymeric carbohydrates that offer certain recalcitrance are critically analyzed and future research perspectives are presented.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617 Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617 Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan
| |
Collapse
|
13
|
Nimbalkar PR, Khedkar MA, Kulkarni RK, Chavan PV, Bankar SB. Strategic intensification in butanol production by exogenous amino acid supplementation: Fermentation kinetics and thermodynamic studies. BIORESOURCE TECHNOLOGY 2019; 288:121521. [PMID: 31154278 DOI: 10.1016/j.biortech.2019.121521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Amino acids are vital precursors in many biochemical production pathways in addition to efficient nitrogen source which could enhance microbial growth yields. Therefore, in present study, the effect of amino acids from aliphatic and aromatic family was comprehensively evaluated in batch and integrated fed batch fermentation system. Clostridium acetobutylicum NRRL B-527 was able to utilize 54.15 ± 1.0 g/L glucose to produce 12.43 ± 0.10 g/L butanol under batch cultivation. Interestingly, a significant step up in butanol titer (20.82 ± 0.33 g/L) was achieved by using fed-batch fermentation process integrated with liquid-liquid extraction module. Besides, mathematical modeling studies demonstrated the best fitting of experimental data with first order reaction kinetics. Overall, an enhancement in solvent titer by induction of essential cellular components coupled with advance bioprocess strategy was successfully utilized in this study for its further applications.
Collapse
Affiliation(s)
- Pranhita R Nimbalkar
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Chemical Engineering, Bharati Vidyapeeth Deemed University College of Engineering, Pune 411043, India
| | - Manisha A Khedkar
- Department of Chemical Engineering, Bharati Vidyapeeth Deemed University College of Engineering, Pune 411043, India
| | - Rahul K Kulkarni
- Department of Chemical Engineering, Bharati Vidyapeeth Deemed University College of Engineering, Pune 411043, India
| | - Prakash V Chavan
- Department of Chemical Engineering, Bharati Vidyapeeth Deemed University College of Engineering, Pune 411043, India
| | - Sandip B Bankar
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
14
|
Sangavai C, Chellapandi P. A metabolic study to decipher amino acid catabolism-directed biofuel synthesis in Acetoanaerobium sticklandii DSM 519. Amino Acids 2019; 51:1397-1407. [PMID: 31471743 DOI: 10.1007/s00726-019-02777-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/22/2019] [Indexed: 01/15/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia-producing anaerobe. It has the ability to produce organic solvents and acids from protein catabolism through Stickland reactions and specialized pathways. Nevertheless, its protein catabolism-directed biofuel production has not yet been understood. The present study aimed to decipher such growth-associated metabolic potential of this organism at different growth phases using metabolic profiling. A seed culture of this organism was grown separately in metabolic assay media supplemented with gelatin and or a mixture of amino acids. The extracellular metabolites produced by this organism were qualitatively analyzed by gas chromatography-mass spectrometry platform. The residual amino acids after protein degradation and amino acids assimilation were identified and quantitatively measured by high-performance liquid chromatography (HPLC). Organic solvents and acids produced by this organism were detected and the quantity of them determined with HPLC. Metabolic profiling data confirmed the presence of amino acid catabolic products including tyramine, cadaverine, methylamine, and putrescine in fermented broth. It also found products including short-chain fatty acids and organic solvents of the Stickland reactions. It reported that amino acids were more appropriate for its growth yield compared to gelatin. Results of quantitative analysis of amino acids indicated that many amino acids either from gelatin or amino acid mixture were catabolised at a log-growth phase. Glycine and proline were poorly consumed in all growth phases. This study revealed that apart from Stickland reactions, a specialized system was established in A. sticklandii for protein catabolism-directed biofuel production. Acetone-butanol-ethanol (ABE), acetic acid, and butyric acid were the most important biofuel components produced by this organism. The production of these components was achieved much more on gelatin than amino acids. Thus, A. sticklandii is suggested herein as a potential organism to produce butyric acid along with ABE from protein-based wastes (gelatin) in bio-energy sectors.
Collapse
Affiliation(s)
- C Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
15
|
Functional prediction, characterization, and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe 2019; 61:102088. [PMID: 31425748 DOI: 10.1016/j.anaerobe.2019.102088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia producing anaerobic bacterium that can be able utilizes amino acids as sole carbon and energy sources for its growth and energetic metabolism. A lack of knowledge on its molecular machinery and 30.5% conserved hypothetical proteins (HPs; operome) hinders the successful utility in biofuel applications. In this study, we have predicted, characterized and categorized its operome whose functions are still not determined accurately using a combined bioinformatics approach. The functions of 64 of the 359 predicted HPs are involved in diverse metabolic subsystems. A. sticklandii operome has consisted of 16% Rossmann fold and 46% miscellaneous folds. Subsystems-based technology has classified 51 HPs contributing to the small-molecular reactions, 26 in macromolecular reactions and 12 in the biosynthesis of cofactors, prosthetic groups and electron carriers. A generality of functions predicted from its operome contributed to the cell cycle, amino acid metabolism, membrane transport, and regulatory processes. Many of them have duplicated functions as paralogs in this genome. A. sticklandii has the ability to compete with invading microorganisms and tolerate abiotic stresses, which can be overwhelmed by the predicted functions of its operome. Results of this study revealed that it has specialized systems for amino acid catabolism-directed solventogenesis and acidogenesis but the level of gene expression may determine the metabolic function in amino acid fermenting niches in the rumina of cattle. As shown by our analysis, the predicted functions of its operome allow us for a better understanding of the growth and physiology at systems-scale.
Collapse
|
16
|
El-Dalatony MM, Saha S, Govindwar SP, Abou-Shanab RA, Jeon BH. Biological Conversion of Amino Acids to Higher Alcohols. Trends Biotechnol 2019; 37:855-869. [DOI: 10.1016/j.tibtech.2019.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
|
17
|
Sangavai C, Bharathi M, Ganesh SP, Chellapandi P. Kinetic modeling of Stickland reactions-coupled methanogenesis for a methanogenic culture. AMB Express 2019; 9:82. [PMID: 31183623 PMCID: PMC6557928 DOI: 10.1186/s13568-019-0803-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/22/2019] [Indexed: 12/03/2022] Open
Abstract
Studying amino acid catabolism-coupled methanogenesis is the important standpoints to decipher the metabolic behavior of a methanogenic culture. l-Glycine and l-alanine are acted as sole carbon and nitrogen sources for acidogenic bacteria. One amino acid is oxidized and another one is reduced for acetate production via pyruvate by oxidative deamination process in the Stickland reactions. Herein, we have developed a kinetic model for the Stickland reactions-coupled methanogenesis (SRCM) and simulated objectively to maximize the rate of methane production. We collected the metabolic information from enzyme kinetic parameters for amino acid catabolism of Clostridium acetobutylicum ATCC 824 and methanogenesis of Methanosarcina acetivorans C2A. The SRCM model of this study consisted of 18 reactions and 61 metabolites with enzyme kinetic parameters derived experimental data. The internal or external metabolic flux rate of this system found to control the acidogenesis and methanogenesis in a methanogenic culture. Using the SRCM model, flux distributions were calculated for each reaction and metabolite in order to maximize the methane production rate from the glycine–alanine pair. Results of this study, we demonstrated the metabolic behavior, metabolite pairing while mutually interact, and advantages of syntrophic metabolism of amino acid-directed methane production in a methanogenic starter culture.
Collapse
|
18
|
Evaluation of the biomethanation potential of enriched methanogenic cultures on gelatin. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0247-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Li SY, Ng IS, Chen PT, Chiang CJ, Chao YP. Biorefining of protein waste for production of sustainable fuels and chemicals. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:256. [PMID: 30250508 PMCID: PMC6146663 DOI: 10.1186/s13068-018-1234-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
To mitigate the climate change caused by CO2 emission, the global incentive to the low-carbon alternatives as replacement of fossil fuel-derived products continuously expands the need for renewable feedstock. There will be accompanied by the generation of enormous protein waste as a result. The economical viability of the biorefinery platform can be realized once the surplus protein waste is recycled in a circular economy scenario. In this context, the present review focuses on the current development of biotechnology with the emphasis on biotransformation and metabolic engineering to refine protein-derived amino acids for production of fuels and chemicals. Its scope starts with the explosion of potential feedstock sources rich in protein waste. The availability of techniques is applied for purification and hydrolysis of various feedstock proteins to amino acids. Useful lessons are leaned from the microbial catabolism of amino acids and lay a foundation for the development of the protein-based biotechnology. At last, the future perspective of the biorefinery scheme based on protein waste is discussed associated with remarks on possible solutions to overcome the technical bottlenecks.
Collapse
Affiliation(s)
- Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Po Ting Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710 Taiwan
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354 Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| |
Collapse
|