1
|
Nur MMA, Mahreni, Murni SW, Setyoningrum TM, Hadi F, Widayati TW, Jaya D, Sulistyawati RRE, Puspitaningrum DA, Dewi RN, Hadiyanto, Hasanuzzaman M. Innovative strategies for utilizing microalgae as dual-purpose biofertilizers and phycoremediators in agroecosystems. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00870. [PMID: 39758973 PMCID: PMC11700267 DOI: 10.1016/j.btre.2024.e00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
The increasing need for sustainable agricultural practices due to the overuse of chemical fertilizers has prompted interest in microalgae as biofertilizers. This review investigates the potential of microalgae as biofertilizers and phycoremediators within sustainable agroecosystems, addressing both soil fertility and wastewater management. Microalgae provide a dual benefit by absorbing excess nutrients and contaminants from wastewater, generating nutrient-rich biomass that can replace chemical fertilizers and support plant growth. Implementation strategies include cultivating microalgae in wastewater to offset production costs, using closed photobioreactor systems to enhance growth efficiency, and applying microalgal biomass directly to soil or crops. Additionally, microalgae extracts provide essential bioactive compounds, such as phytohormones and amino acids, that enhance plant growth and resilience. While microalgae offer an eco-friendly solution for nutrient recycling and crop productivity, challenges in scalability, production cost, and regulatory frameworks hinder widespread adoption. This review highlights the potential pathways and technological advancements necessary for integrating microalgae into sustainable agriculture, emphasizing the need for interdisciplinary collaboration and innovative approaches to overcome these barriers. Ultimately, microalgae biofertilizers represent a promising approach to reducing environmental impact and advancing sustainable farming practices.
Collapse
Affiliation(s)
| | - Mahreni
- Chemical Engineering Department, UPN Veteran Yogyakarta, Depok, Sleman, Yogyakarta, 55283, Indonesia
| | - Sri Wahyu Murni
- Chemical Engineering Department, UPN Veteran Yogyakarta, Depok, Sleman, Yogyakarta, 55283, Indonesia
| | - Tutik Muji Setyoningrum
- Chemical Engineering Department, UPN Veteran Yogyakarta, Depok, Sleman, Yogyakarta, 55283, Indonesia
| | - Faizah Hadi
- Chemical Engineering Department, UPN Veteran Yogyakarta, Depok, Sleman, Yogyakarta, 55283, Indonesia
| | - Tunjung Wahyu Widayati
- Chemical Engineering Department, UPN Veteran Yogyakarta, Depok, Sleman, Yogyakarta, 55283, Indonesia
| | - Danang Jaya
- Chemical Engineering Department, UPN Veteran Yogyakarta, Depok, Sleman, Yogyakarta, 55283, Indonesia
| | | | | | - Resti Nurmala Dewi
- Marine Product Processing Department, Polytechnics of Marine and Fisheries of Jembrana, Pengambengan, Negara, Jembrana, Bali, 82218, Indonesia
| | - Hadiyanto
- Chemical Engineering Department, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
| | - M. Hasanuzzaman
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur, 59990, Malaysia
| |
Collapse
|
2
|
Francioso O, Schiavon M, Nardi S, Castellani D, Ferrari E, Estrada MTR, Della Lucia MC, Zuffi V, Ertani A. Mitigation of Salt Stress in Lactuca sativa L. var. Gentile Rossa Using Microalgae as Priming Agents. PLANTS (BASEL, SWITZERLAND) 2024; 13:3311. [PMID: 39683104 DOI: 10.3390/plants13233311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Using renewable biomass in agriculture, particularly microalgae as a biostimulant, offers economic and environmental sustainability benefits by reducing costs, improving nutrient cycling, and enhancing water use efficiency. Microalgae contain bioactive compounds that boost crop tolerance to environmental stresses, including salinity. Saline soils, characterized by elevated sodium chloride (NaCl) levels, negatively impact many crops, resulting in low productivity and high remediation costs. Therefore, this study evaluates the biostimulant properties of a microalgae-based commercial preparation (MR) on lettuce (Lactuca sativa L.) plants grown hydroponically and exposed to saline stress. The extract was chemically characterized through elemental analysis, lipid composition (gas chromatography with flame ionization detector-GC-FID), the determination of functional groups (Fourier Transformed Infrared-FT-IR), structure (1H,13C Nuclear Magnetic Resonance-NMR), with their hormone-like activity also assessed. Lettuce plants were treated with or without the microalgae blend, in combination with 0, 50 mM, or 100 mM NaCl. The contents of nutrients, soluble proteins, chlorophylls, and phenols, as well as the lipid peroxidation, antioxidants and root traits of lettuce plants, were estimated. The microalgae applied to salt-stressed plants resulted in a significant increase in biomass, protein, and chlorophyll contents. Additionally, significant effects on the secondary metabolism and mitigation of salinity stress were observed in terms of increased phenol content and the activity of antioxidant enzymes, as well as decreased lipid peroxidation. The potassium (K+) content was increased significantly in plants treated with 100 mM NaCl after addition of microalgae, while the content of sodium (Na+) was concurrently reduced. In conclusion, our results demonstrate that using microalgae can be a potent approach for improving the cultivation of Lactuca sativa L. under saline stress conditions.
Collapse
Affiliation(s)
- Ornella Francioso
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Serenella Nardi
- Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
| | - Davide Castellani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
- Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Maria Teresa Rodriguez Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
| | - Veronica Zuffi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Andrea Ertani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| |
Collapse
|
3
|
Boulogne I, Mirande‐Ney C, Bernard S, Bardor M, Mollet J, Lerouge P, Driouich A. Glycomolecules: from "sweet immunity" to "sweet biostimulation"? PHYSIOLOGIA PLANTARUM 2024; 176:e14640. [PMID: 39618250 PMCID: PMC11609761 DOI: 10.1111/ppl.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Climate changes and environmental contaminants are daunting challenges that require an urgent change from current agricultural practices to sustainable agriculture. Biostimulants are natural solutions that adhere to the principles of organic farming and are believed to have low impacts on the environment and human health. Further, they may contribute to reducing the use of chemical inputs while maintaining productivity in adverse environments. Biostimulants are generally defined as formulated substances and microorganisms showing benefits for plant growth, yield, rhizosphere function, nutrient-use efficiency, quality of harvested products, or abiotic stress tolerance. These biosolutions are categorized in different subclasses. Several of them are enriched in glycomolecules and their oligomers. However, very few studies have considered them as active molecules in biostimulation and as a subclass on their own. Herein, we describe the structure and the functions of complex polysaccharides, glycoproteins, and glycolipids in relation to plant defense or biostimulation. We also discuss the parallels between sugar-enhanced plant defense and biostimulation with glycomolecules and introduce the concept of sweet biostimulation or glycostimulation.
Collapse
Affiliation(s)
- I. Boulogne
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
- ECOTERCA ‐ ÉCOlogie TERrestre CAribéenneUniversité des Antilles, Faculté des Sciences Exactes et NaturellesPointe‐à‐Pitre CedexFrance
| | - C. Mirande‐Ney
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - S. Bernard
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - M. Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - J.‐C. Mollet
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - P. Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - A. Driouich
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| |
Collapse
|
4
|
Ferrera E, Ruigómez I, Vela-Bastos C, Ferreira A, Gouveia L, Vera L. Resources recovery from domestic wastewater by a combined process: anaerobic digestion and membrane photobioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49560-49573. [PMID: 39080174 PMCID: PMC11324692 DOI: 10.1007/s11356-024-34468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Anaerobic and membrane technologies are a promising combination to decrease the energy consumption associated with wastewater treatment, allowing the recovery of resources: organic matter as biomethane, nutrient assimilation by microalgae and reclaimed water. In this study, domestic wastewater was treated using a combination of an upflow anaerobic sludge blanket sludge reactor (UASB) and a membrane photobioreactor (MPBR). The outdoor facilities were operated continuously for three months under unfavourable environmental conditions such as lack of temperature control, winter season with lower solar irradiation and lower daylight hours which was a challenge for the present work, not previously described. The energetic valorisation of the organic matter present in the wastewater by biomethane produced in the UASB would contribute to reducing overall facilities' energy requirements. The ultrafiltration (UF) membrane facilitated the harvesting of biomass, operating at 10 L·h-1·m-2 during the experimental period. Although the main contribution to fouling was irreversible, chemical cleanings were not necessary due to effective fouling control, which prevented the final TMP from exceeding 25 kPa. In addition, microalgae-bacterial consortium developed without prior inoculation were harvested from the MPBR using membrane assistance. The obtained biomass was also successfully tested as a biostimulant for corn germination/growth, as well as a biopesticide against Rhizoctonia solani and Fusarium oxysporum.
Collapse
Affiliation(s)
- Elvira Ferrera
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38206, La Laguna, Spain
| | - Ignacio Ruigómez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38206, La Laguna, Spain
| | - Carolina Vela-Bastos
- LNEG - UBB - National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada Do Paço Do Lumiar 22, 1649-038, Lisbon, Portugal
- GreenCoLab - Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, Faro, Portugal
| | - Alice Ferreira
- LNEG - UBB - National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada Do Paço Do Lumiar 22, 1649-038, Lisbon, Portugal
| | - Luisa Gouveia
- LNEG - UBB - National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada Do Paço Do Lumiar 22, 1649-038, Lisbon, Portugal
- GreenCoLab - Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, Faro, Portugal
| | - Luisa Vera
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38206, La Laguna, Spain.
| |
Collapse
|
5
|
Renganathan P, Puente EOR, Sukhanova NV, Gaysina LA. Hydroponics with Microalgae and Cyanobacteria: Emerging Trends and Opportunities in Modern Agriculture. BIOTECH 2024; 13:27. [PMID: 39051342 PMCID: PMC11270261 DOI: 10.3390/biotech13030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The global population is expected to reach 9.5 billion, which means that crop productivity needs to double to meet the growing population's food demand. Soil degradation and environmental factors, such as climate events, significantly threaten crop production and global food security. Furthermore, rapid urbanization has led to 55% of the world's population migrating to cities, and this proportion is expected to increase to 75% by 2050, which presents significant challenges in producing staple foods through conventional hinterland farming. Numerous studies have proposed various sustainable farming techniques to combat the shortage of farmable land and increase food security in urban areas. Soilless farming techniques such as hydroponics have gained worldwide popularity due to their resource efficiency and production of superior-quality fresh products. However, using chemical nutrients in a conventional hydroponic system can have significant environmental impacts, including eutrophication and resource depletion. Incorporating microalgae into hydroponic systems as biostimulants offers a sustainable and ecofriendly approach toward circular bioeconomy strategies. The present review summarizes the plant growth-promoting activity of microalgae as biostimulants and their mechanisms of action. We discuss their effects on plant growth parameters under different applications, emphasizing the significance of integrating microalgae into a closed-loop circular economy model to sustainably meet global food demands.
Collapse
Affiliation(s)
- Prabhaharan Renganathan
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Edgar Omar Rueda Puente
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico;
| | - Natalia V. Sukhanova
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
6
|
El-Khawaga HA, Mustafa AE, El Khawaga MA, Mahfouz AY, Daigham GE. Bio-stimulating effect of endophytic Aspergillus flavus AUMC 16068 and its respective ex-polysaccharides in lead stress tolerance of Triticum aestivum plant. Sci Rep 2024; 14:11952. [PMID: 38796501 PMCID: PMC11127936 DOI: 10.1038/s41598-024-61936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/11/2024] [Indexed: 05/28/2024] Open
Abstract
Heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety. As a result, metal-induced phytotoxicity concerns require quick and urgent action to retain and maintain the physiological activities of microorganisms, the nitrogen pool of soils, and the continuous yields of wheat in a constantly worsening environment. The current study was conducted to evaluate the plant growth-promoting endophytic Aspergillus flavus AUMC 16,068 and its EPS for improvement of plant growth, phytoremediation capacity, and physiological consequences on wheat plants (Triticum aestivum) under lead stress. After 60 days of planting, the heading stage of wheat plants, data on growth metrics, physiological properties, minerals content, and lead content in wheat root, shoot, and grains were recorded. Results evoked that lead pollution reduced wheat plants' physiological traits as well as growth at all lead stress concentrations; however, inoculation with lead tolerant endophytic A. flavus AUMC 16,068 and its respective EPS alleviated the detrimental impact of lead on the plants and promoted the growth and physiological characteristics of wheat in lead-contaminated conditions and also lowering oxidative stress through decreasing (CAT, POD, and MDA), in contrast to plants growing in the un-inoculated lead polluted dealings. In conclusion, endophytic A. flavus AUMC 16,068 spores and its EPS are regarded as eco-friendly, safe, and powerful inducers of wheat plants versus contamination with heavy metals, with a view of protecting plant, soil, and human health.
Collapse
Affiliation(s)
- Hend A El-Khawaga
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| | - Abeer E Mustafa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| | - Maie A El Khawaga
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt.
| | - Ghadir E Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| |
Collapse
|
7
|
Sandor R, Wagh SG, Kelterborn S, Großkinsky DK, Novak O, Olsen N, Paul B, Petřík I, Wu S, Hegemann P, Strnad M, Červený J, Roitsch T. Cytokinin-deficient Chlamydomonas reinhardtii CRISPR-Cas9 mutants show reduced ability to prime resistance of tobacco against bacterial infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14311. [PMID: 38715208 DOI: 10.1111/ppl.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.
Collapse
Affiliation(s)
- Roman Sandor
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Simon Kelterborn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for translational physiology, Berlin, Germany
| | - Dominik K Großkinsky
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| | - Ondrej Novak
- Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Niels Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Bichitra Paul
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Ivan Petřík
- Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Shujie Wu
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Peter Hegemann
- Humboldt Universität zu Berlin, Institute of Biology, Experimental Biophysics, Berlin, Germany
| | - Miroslav Strnad
- Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Jan Červený
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas Roitsch
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
8
|
Song M, Yin D, Zhao J, Li R, Yu J, Chen X. Proteomics reveals toxin tolerance and polysaccharide accumulation in Chlorococcum humicola under high CO 2 concentration. ENVIRONMENTAL RESEARCH 2024; 243:117738. [PMID: 37993048 DOI: 10.1016/j.envres.2023.117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Algae have great application prospects in excess sludge reclamation and recovery of high-value biomass. Chlorococcum humicola was cultivated in this research, using sludge extract (mixed with SE medium) with additions of 10%, 20%, and 30% CO2 (v/v). Results showed that under 20% CO2, the dry weight and polysaccharide yield reached 1.389 ± 0.070 g/L and 313.49 ± 10.77 mg/L, respectively. 10% and 20% CO2 promoted the production of cellular antioxidant molecules to resist the toxic stress and the toxicity of 20% CO2 group decreased from 62.16 ± 3.11% to 33.02 ± 3.76%. 10% and 20% CO2 accelerated the electron transfer, enhanced carbon assimilation, and promoted the photosynthetic efficiency, while 30% CO2 led to photosystem damage and disorder of antioxidant system. Proteomic analysis showed that 20% CO2 mainly affected energy metabolism and the oxidative stress level on the early stage (10 d), while affected photosynthesis and organic substance metabolism on the stable stage (30 d). The up-regulation of PSII photosynthetic protein subunit 8 (PsbA, PsbO), A0A383W1S5 and A0A383VRI4 promoted the efficiency of PSII and chlorophyll synthesis, and the up-regulation of A0A383WH74 and A0A2Z4THB7 led to the accumulation of polysaccharides. The up-regulation of A0A383VDH1, A0A383VX37 and A0A383VA86 promoted respiration. Collectively, this work discloses the regulatory mechanism of high-concentration CO2 on Chlorococcum humicola to overcome toxicity and accumulate polysaccharides.
Collapse
Affiliation(s)
- Meijing Song
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Danning Yin
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiamin Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Renjie Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiayu Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
9
|
Nabi A, Aftab T, Khan MMA, Naeem M. Depolymerized carrageenan expresses elicitor-like activity on Mentha arvensis L. under arsenic stress: Insights into arsenic resilience and monoterpene synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108376. [PMID: 38354526 DOI: 10.1016/j.plaphy.2024.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Heavy metals contaminate agricultural land by limiting the productivity of crops and making them or their products unfit for consumption. Arsenic (As) is a potentially hazardous metalloid that severely impacts plants' survival. Menthol mint (Mentha arvensis L.) bears volatile compounds that are harshly exaggerated by diverse environmental factors like drought, salinity, heavy metal, temperature, photoperiod, and luminosity stresses. In this study, the phytotoxicity of As was examined in M. arvensis L. and its alleviation through the supplementation of oligomers of carrageenan. Noticeably, scanty information is available regarding the effect of irradiated carrageenan (ICA) on As-stressed plants. In order to observe the same in the case of M. arvensis L., the effect of ICA on As-treated plants was explored. The ICA concentration (foliar-applied) selected for the study was 80 mg L-1, 100 mg L-1 and 120 mg L-1, and that of As (soil-applied) was 80 mg kg-1 soil. Excess accumulation of As resulted in reduced growth, enzymatic activities, and yield and quality parameters of M. arvensis L. under As toxicity. However, the foliage application of ICA strengthens the antioxidant machinery and other physiological and oxidative stress biomarkers of the plant by facilitating the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and proline, and, therefore aids in alleviating the toxicity generated by As. Nevertheless, ICA supplementation proves beneficial in enhancing the monoterpene synthesis (essential oil production and its active constituents) of M. arvensis L. by maintaining a steady-state equilibrium between reactive oxygen species (ROS) production and its scavenging process.
Collapse
Affiliation(s)
- Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
10
|
Alhashimi A, Abdelkareem A, Amin MA, Nowwar AI, Fouda A, Ismail MA, Mustafa AE, Alharbi M, Elkelish A, Sayed AM, Said HA. Eco-friendly approach to decrease the harmful effects of untreated wastewater on growth, yield, biochemical constituents, and heavy metal contents of carrot (Daucus carota L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14043-14058. [PMID: 38273079 DOI: 10.1007/s11356-024-31869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Here, the impact of irrigation using untreated wastewater (WW) on carrots (Daucus carota L.) was examined. We hypothesized that the addition of ethylenediaminetetraacetic acid (EDTA), dry algal powder (Spirulina platensis or Chlorella vulgaris), and Salix alba leaves powder would function as chelators for harmful contaminants in wastewater. The findings showed that irrigation of carrot plants with the sampled untreated wastewater led to significant decreases in the shoot lengths, fresh, dry weights of shoots and roots at stage I, the diameter of roots, pigment content, carotenoids, total soluble carbohydrate content, and soluble protein content. Furthermore, a significantly increased level of proline, total phenols, and the activities of polyphenol oxidase (PPO), peroxidase (POX), superoxide dismutase (SOD), and catalase (CAT) was identified in stage I samples. In contrast to the stage I, the length of the roots, the number of leaves on each plant, wet and dry weights of the stage II roots were all greatly enhanced. In spite of the increased yield due to the wastewater irrigation, carrot roots irrigated with wastewater had significantly more cadmium (Cd), nickel (Ni), cobalt (Co), and lead (Pb) than is considered safe. Our data clearly show that the application of Spirulina platensis, Chlorella vulgaris, EDTA, and leaves powder of salix was able to alleviate the toxicity of wastewater on carrot plants. For example, we recorded a significant decrease in the accumulation of carrot's Cd, Ni, Co, and Pb contents. We conclude that the treatments with Spirulina platensis and Chlorella vulgaris can be utilized as eco-friendly tools to lessen the damaging effects of wastewater irrigation on carrot plants.
Collapse
Affiliation(s)
- Abdulrahman Alhashimi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ayman Abdelkareem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed A Amin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abdelatti I Nowwar
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed A Ismail
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abeer E Mustafa
- Department of Botany and Microbiology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Maha Alharbi
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Abdelrahman M Sayed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Hanan A Said
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
11
|
Ansari M, Devi BM, Sarkar A, Chattopadhyay A, Satnami L, Balu P, Choudhary M, Shahid MA, Jailani AAK. Microbial Exudates as Biostimulants: Role in Plant Growth Promotion and Stress Mitigation. J Xenobiot 2023; 13:572-603. [PMID: 37873814 PMCID: PMC10594471 DOI: 10.3390/jox13040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Microbes hold immense potential, based on the fact that they are widely acknowledged for their role in mitigating the detrimental impacts of chemical fertilizers and pesticides, which were extensively employed during the Green Revolution era. The consequence of this extensive use has been the degradation of agricultural land, soil health and fertility deterioration, and a decline in crop quality. Despite the existence of environmentally friendly and sustainable alternatives, microbial bioinoculants encounter numerous challenges in real-world agricultural settings. These challenges include harsh environmental conditions like unfavorable soil pH, temperature extremes, and nutrient imbalances, as well as stiff competition with native microbial species and host plant specificity. Moreover, obstacles spanning from large-scale production to commercialization persist. Therefore, substantial efforts are underway to identify superior solutions that can foster a sustainable and eco-conscious agricultural system. In this context, attention has shifted towards the utilization of cell-free microbial exudates as opposed to traditional microbial inoculants. Microbial exudates refer to the diverse array of cellular metabolites secreted by microbial cells. These metabolites enclose a wide range of chemical compounds, including sugars, organic acids, amino acids, peptides, siderophores, volatiles, and more. The composition and function of these compounds in exudates can vary considerably, depending on the specific microbial strains and prevailing environmental conditions. Remarkably, they possess the capability to modulate and influence various plant physiological processes, thereby inducing tolerance to both biotic and abiotic stresses. Furthermore, these exudates facilitate plant growth and aid in the remediation of environmental pollutants such as chemicals and heavy metals in agroecosystems. Much like live microbes, when applied, these exudates actively participate in the phyllosphere and rhizosphere, engaging in continuous interactions with plants and plant-associated microbes. Consequently, they play a pivotal role in reshaping the microbiome. The biostimulant properties exhibited by these exudates position them as promising biological components for fostering cleaner and more sustainable agricultural systems.
Collapse
Affiliation(s)
- Mariya Ansari
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - B. Megala Devi
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Ankita Sarkar
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Anirudha Chattopadhyay
- Pulses Research Station, S.D. Agricultural University, Sardarkrushinagar 385506, Gujarat, India;
| | - Lovkush Satnami
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Pooraniammal Balu
- Department of Biotechnology, Sastra Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA;
| | - A. Abdul Kader Jailani
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
- Plant Pathology Department, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| |
Collapse
|
12
|
Abidizadegan M, Blomster J, Peltomaa E. Effect of micronutrient iron on bioactive compounds isolated from cryptophytes. FRONTIERS IN PLANT SCIENCE 2023; 14:1208724. [PMID: 37575946 PMCID: PMC10413267 DOI: 10.3389/fpls.2023.1208724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
Iron is one of the important micronutrients affecting algal growth due to its fundamental role in the physiological processes, including photosynthetic electron transport, respiration, and nitrogen fixation. In this study, the effect of different iron levels on growth and the production of bioactive compounds (phycoerythrin (PE), extracellular polymeric substances (EPS), and phenolic compounds (PCs)) of five cryptophyte strains were investigated. Also, the antioxidant capacity of the bioactive compounds was explored. The results showed species-specific responses to the impact of iron on growth of cryptophytes and accumulation of bioactive compounds. The growth rates of C. pyrenoidifera and Cryptomonas sp. varied significantly at different iron levels, and a reduction in the PE content was observed for several cryptophytes cultured at the highest iron level. However, no significant differences were detected in EPS content at different iron levels. Differences in PC contents of C. pyrenoidifera and Cryptomonas sp. at medium iron level were statistically significant compared with the other two treatments. The results also revealed species-specific differences in antioxidant activity at different iron levels; each studied strain followed its own pattern in response to change in iron level, and each bioactive compound had a different antioxidant activity. Overall, however, PCs demonstrated higher antioxidant activity than PE and EPS. In summary, iron has an impact on growth, bioactive compound accumulation, and antioxidant activity. However, the species-specific responses to changes in iron level should not be ignored when modifying culture conditions for optimal harvest of bioactive compounds.
Collapse
Affiliation(s)
- Maryam Abidizadegan
- Ecosystem and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Jaanika Blomster
- Ecosystem and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elina Peltomaa
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Chovanček E, Salazar J, Şirin S, Allahverdiyeva Y. Microalgae from Nordic collections demonstrate biostimulant effect by enhancing plant growth and photosynthetic performance. PHYSIOLOGIA PLANTARUM 2023; 175:e13911. [PMID: 37043258 DOI: 10.1111/ppl.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
We investigated the biostimulant potential of six microalgal species from Nordic collections extracted with two different procedures: thermal hydrolysis with a weak solution of sulfuric acid accompanied by ultrasonication and bead-milling with aqueous extraction followed by centrifugation. To this aim, we designed a phenotyping pipeline consisting of a root growth assay in the model plant Arabidopsis thaliana, complemented with greenhouse experiments to evaluate lettuce yield (Lactuca sativa L. cv. Finstar) and photosynthetic performance. The best-performing hydrolyzed extracts stimulated Arabidopsis root elongation by 8%-13% and lettuce yield by 12%-15%. The in situ measured photosynthetic performance of lettuce was upregulated in the efficient extracts: PSII quantum yield increased by 26%-34%, and thylakoid proton flux increase was in the range of 34%-60%. In contrast, aqueous extracts acquired by bead-milling showed high dependence on biomass concentration in the extract and an overall plant growth enhancement was not attained in any of the applied dosages. Our results indicate that hydrolysis of the biomass can be a decisive factor for rendering effective plant biostimulants from microalgae.
Collapse
Affiliation(s)
- Erik Chovanček
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - João Salazar
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Sema Şirin
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Algal Biomass Accumulation in Waste Digestate after Anaerobic Digestion of Wheat Straw. FERMENTATION 2022. [DOI: 10.3390/fermentation8120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cultivation of microalgae in waste digestate is a promising cost-effective and environmentally friendly strategy for algal biomass accumulation and valuable product production. Two different digestates obtained as by-products of the anaerobic fermentation at 35 °C and 55 °C of wheat straw as a renewable source for biogas production in laboratory-scale bioreactors were tested as cultivation media for microalgae after pretreatment with active carbon for clarification. The strains of microalgae involved were the red marine microalga Porphyridium cruentum, which reached 4.7 mg/mL dry matter when grown in thermophilic digestate and green freshwater microalga-Scenedesmus acutus, whose growth was the highest—7.3 mg/mL in the mesophilic digestate. During cultivation, algae reduced the available nutrient components in the liquid digestate at the expense of increasing their biomass. This biomass can find further applications in cosmetics, pharmacy, and feed. The nitrogen and phosphorus uptake from both digestates during algae cultivation was monitored and modeled. The results led to the idea of nonlinear dynamic approximations with an exponential character. The purpose was to develop relatively simple nonlinear dynamic models based on available experimental data, as knowing the mechanisms of the considered processes can permit creating protocols for industrial-scale algal production toward obtaining economically valuable products from microalgae grown in organic waste digestate.
Collapse
|
16
|
Gedeon S, Ioannou A, Balestrini R, Fotopoulos V, Antoniou C. Application of Biostimulants in Tomato Plants ( Solanum lycopersicum) to Enhance Plant Growth and Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223082. [PMID: 36432816 PMCID: PMC9693373 DOI: 10.3390/plants11223082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 05/27/2023]
Abstract
Under the era of climate change, plants are forced to survive under increasingly adverse conditions. Application of biostimulants in plants is shown to mitigate the deleterious effects of abiotic stresses including salinity, enhancing plant tolerance and performance. The present study focuses on the effects of five biostimulants based on biocompost and biofertilizer compounds that have been applied to tomato plants grown in the presence (salt-stressed plants) or absence of salt stress (control plants). To study the beneficial effects of the biostimulants in tomato plants, a series of analyses were performed, including phenotypic and agronomic observations, physiological, biochemical and enzymatic activity measurements, as well as gene expression analysis (RT-qPCR) including genes involved in antioxidant defense (SlCu/ZnSOD, SlFeSOD, SlCAT1, SlcAPX), nitrogen (SlNR, SlNiR, SlGTS1) and proline metabolism (p5CS), potassium transporters (HKT1.1, HKT1.2), and stress-inducible TFs (SlWRKY8, SlWRKY31). Among all the biostimulant solutions applied to the plants, the composition of 70% biofertilizer and 30% biocompost (Bf70/Bc30) as well as 70% biocompost and 30% biofertilizer (Bc70/Bf30) formulations garnered interest, since the former showed growth promoting features while the latter displayed better defense responses at the time of harvesting compared with the other treatments and controls. Taken together, current findings provide new insight into the beneficial effects of biostimulants, encouraging future field studies to further evaluate the biostimulant effects in plants under a real environment which is compromised by a combination of abiotic and biotic stresses.
Collapse
Affiliation(s)
- Stella Gedeon
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, 10135 Torino, Italy
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
17
|
Effect of the Application of Hydrolysate of Chlorella vulgaris Extracted by Different Techniques on the Growth of Pelargonium × hortorum. PLANTS 2022; 11:plants11172308. [PMID: 36079690 PMCID: PMC9460244 DOI: 10.3390/plants11172308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
The extraction method used to obtain biologically active compounds from microalgal biomass may affect the biostimulant capacity of the microalgae. The objective of this assay was to determine the most efficient extraction method to release the active components of the biomass of Chlorella vulgaris (C. vulgaris). Plantlets of Pelargonium × hortorum were grown in a greenhouse and five treatments were applied: C-application with water; M-application with untreated C. vulgaris microalgae; M-US-application with C. vulgaris microalgae treated with ultrasound; M-USHY-application with C. vulgaris microalgae treated with ultrasound and enzymatic hydrolysis; and M-USHYAU-application with C. vulgaris microalgae treated with ultrasound, enzymatic hydrolysis, and autoclaving. All microalgae treatments increased shoot number and stem and plant diameter. The US-treated biomass increased the inflorescence of the plant significantly compared to the control. To extract bioactive compounds from eukaryotic microalgae for plant biostimulating purposes, the US-treatment (or any other method damaging the plasma membrane) of microalgae cell is, or seems to be, suitable.. Macronutrient content in leaves was not affected by the microalgae treatment, except for K.
Collapse
|
18
|
Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Carbohydrates or polysaccharides are the main products derived from photosynthesis and carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microalgae are safe, biocompatible, biodegradable, stable, and versatile. These polymeric macromolecules present complex biochemical structures according to each microalgal species. In addition, they exhibit emulsifying properties and biological characteristics that include antioxidant, anti-inflammatory, antitumor, and antimicrobial activities. Some microalgal species have a naturally high concentration of carbohydrates. Other species can adapt their metabolism to produce more sugars from changes in temperature and light, carbon source, macro and micronutrient limitations (mainly nitrogen), and saline stress. In addition to growing in adverse conditions, microalgae can use industrial effluents as an alternative source of nutrients. Microalgal polysaccharides are predominantly composed of pentose and hexose monosaccharide subunits with many glycosidic bonds. Microalgae polysaccharides can be structural constituents of the cell wall, energy stores, or protective polysaccharides and cell interaction. The industrial use of microalgae polysaccharides is on the rise. These microorganisms present rheological and biological properties, making them a promising candidate for application in the food industry and agriculture. Thus, microalgae polysaccharides are promising sustainable alternatives for potential applications in several sectors, and the choice of producing microalgal species depends on the required functional activity. In this context, this review article aims to provide an overview of microalgae technology for polysaccharide production, emphasizing its potential in the food, animal feed, and agriculture sector.
Collapse
|
19
|
Laroche C. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Mar Drugs 2022; 20:md20050336. [PMID: 35621987 PMCID: PMC9148076 DOI: 10.3390/md20050336] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic organisms that can produce/accumulate biomolecules with industrial interest. Among these molecules, EPSs are macromolecular polysaccharidic compounds that present biological activities and physico-chemical properties, allowing to consider their valorization in diverse commercial markets, such as cosmetic, therapeutic, nutraceutic, or hydrocolloids areas. The number of microalgae and cyanobacteria strains described to produce such EPSs has increased in recent years as, among the 256 producing strains gathered in this review, 86 were published in the last 10 years (~33%). Moreover, with the rise of research on microalgae EPSs, a variety of monosaccharides compositions have been discovered, highlighting the versatility of these organisms. If some production strategies can be applied to increase EPS production yields, it appears that case by case studies are needed to promote EPS synthesis by a strain, as many responses exist. This paper proposes an up-to-date state of the art of the diversity of microalgae and cyanobacteria EPS-producing strains, associated to the variability of compositions. The strategies for the production and extraction of the polymers are also discussed. Finally, an overview of the biological activities and physico-chemical properties allow one to consider their use on several commercial markets.
Collapse
Affiliation(s)
- Céline Laroche
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
20
|
Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microalgae are a known source of proteins, prebiotics, lipids, small molecules, anti-oxidants and bioactives with health benefits that can be harnessed for the development of functional foods, feeds, cosmeceuticals and pharmaceuticals. This review collates information on the supply, processing costs, target markets and value of microalgae, as well as microalgal proteins, lipids, vitamins and minerals. It discusses the potential impact that microalgae could have on global food and feed supply and highlights gaps that exist with regards to the use of microalgal proteins and ingredients as foods and supplements.
Collapse
|
21
|
Microalga Biofertilizer Triggers Metabolic Changes Improving Onion Growth and Yield. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seeking the development of nature-friendly agronomic techniques, the use of natural sources to promote plant growth and increase agricultural yield has gained relevance. In this context, the use of biofertilizers or biostimulants obtained from microalgae has been studied, as these microorganisms have in their composition a great diversity of bioactive molecules. This study aimed to evaluate the effect of microalga Asterarcys quadricellulare (CCAP 294/1) on organic onion production, verifying its action on metabolism, growth and yield of two cultivars. Thus, two experiments were carried out: (i) foliar applications on onion plants grown in pots in a greenhouse; (ii) foliar applications on field-grown onion under an organic system. Both experiments were undertaken using solutions with spray-dried microalga biomass at concentrations of 0.05, 0.15, 0.25 and 0.4 g L−1. Biometric variables, yield of bulbs and biochemical variables were evaluated indicating that the use of A. quadricellulare promoted plant growth and increases in bulb caliber and yield of both onion cultivars. The microalga biomass stimulated plant metabolism by increases in contents of chlorophyll, carotenoids, amino acids, and the nitrate reductase enzyme activity in leaves, also free amino acids and total sugar contents in bulbs, highlighting the biomass concentration of 0.25 g L−1.
Collapse
|
22
|
Salvi L, Cataldo E, Niccolai A, Rodolfi L, Tredici MR, Storchi P, Mattii GB. Trattamenti fogliari con Arthrospira platensis in viticoltura: primi risultati da esperimenti in campo. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224402011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biostimulants are increasingly assuming a key role in viticulture, thanks to the well-known ability to influence the physiological behavior of plants, promoting the quality of the grapes and improving vine response to abiotic stress. Seaweed extracts are among the most used and studied biostimulants, while there are very few cyanobacterial-based biostimulants currently available on the market. This work had the purpose of investigating the effects of an extract of Arthrospira platensis on eco-physiology, water potential, yield and quality of grapes in Vitis vinifera Experiments were conducted in open field (seasons 2017 and 2018) in Tuscany, carrying out foliar treatments with the A. platensis extract 20 days and ten days before the expected harvest. Following the treatments, gas exchanges and water potential were monitored, and berry samples were collected to evaluate the technological and phenolic quality of the grapes. In general, the treatments only marginally influenced gas exchanges and water potential, with diversified results in relation to the seasonal climatic trend (2017 season, hot and drought; 2018 milder season), indicating a more conservative behavior of the treated vines compared to the control vines. In addition, A. platensis always increased the berry weight, maintaining unchanged or improving the technological and phenolic quality of the grapes at harvest compared to the control. Although no univocal response to treatment emerges, the results globally suggest a positive impact of the leaf distribution of A. platensis on the eco-physiology and quanti-qualitative characteristics in V. vinifera candidating cyanobacteria for the formulation of new biostimulants.
Collapse
|
23
|
Çakirsoy I, Miyamoto T, Ohtake N. Physiology of microalgae and their application to sustainable agriculture: A mini-review. FRONTIERS IN PLANT SCIENCE 2022; 13:1005991. [PMID: 36466259 PMCID: PMC9712798 DOI: 10.3389/fpls.2022.1005991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Concern that depletion of fertilizer feedstocks, which are a finite mineral resource, threatens agricultural sustainability has driven the exploration of sustainable methods of soil fertilization. Given that microalgae, which are unicellular photosynthetic organisms, can take up nutrients efficiently from water systems, their application in a biological wastewater purification system followed by the use of their biomass as a fertilizer alternative has attracted attention. Such applications of microalgae would contribute to the accelerated recycling of nutrients from wastewater to farmland. Many previous reports have provided information on the physiological characteristics of microalgae that support their utility. In this review, we focus on recent achievements of studies on microalgal physiology and relevant applications and outline the prospects for the contribution of microalgae to the establishment of sustainable agricultural practices.
Collapse
Affiliation(s)
- Iffet Çakirsoy
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takuji Miyamoto
- Sakeology Center, Niigata University, Niigata, Japan
- *Correspondence: Takuji Miyamoto, ; Norikuni Ohtake,
| | - Norikuni Ohtake
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- *Correspondence: Takuji Miyamoto, ; Norikuni Ohtake,
| |
Collapse
|
24
|
Behera B, Venkata Supraja K, Paramasivan B. Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy. BIORESOURCE TECHNOLOGY 2021; 339:125588. [PMID: 34298244 DOI: 10.1016/j.biortech.2021.125588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/13/2023]
Abstract
Adverse detrimental impacts of environmental pollution over the health regimen of people has driven a shift in lifestyle towards cleaner and natural resources, especially in the aspects of food production and consumption. Microalgae are considered a rich source of high value metabolites to be utilized as plant growth biostimulants. These organisms however, are underrated compared to other microbial counterparts, due to inappropriate knowledge on the technical, enviro-economical constrains leading to low market credibility. Thus, to avert these issues, the present review comprehensively discusses the biostimulatory potential of microalgae interactively combined with circular bio-economy perspectives. The biochemical content and intracellular action mechanism of microalgal biostimulants were described. Furthermore, detailed country-wise market trends along with the description of the existing regulatory policies are included. Enviro-techno-economic challenges are discussed, and the consensus need for shift to biorefinery and circular bio-economy concept are emphasized to achieve sustainable impacts during the commercialization of microalgal biostimulants.
Collapse
Affiliation(s)
- Bunushree Behera
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Kolli Venkata Supraja
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Balasubramanian Paramasivan
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
25
|
Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2040046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic microorganisms capable of synthesizing several biocompounds, including polysaccharides with antioxidant, antibacterial, and antiviral properties. At the same time that the accumulation of biomolecules occurs, microalgae can use wastewater and gaseous effluents for their growth, mitigating these pollutants. The increase in the production of polysaccharides by microalgae can be achieved mainly through nutritional limitations, stressful conditions, and/or adverse conditions. These compounds are of commercial interest due to their biological and rheological properties, which allow their application in various sectors, such as pharmaceuticals and foods. Thus, to increase the productivity and competitiveness of microalgal polysaccharides with commercial hydrocolloids, the cultivation parameters and extraction/purification processes have been optimized. In this context, this review addresses an overview of the production, characterization, and potential applications of polysaccharides obtained by microalgae and cyanobacteria. Moreover, the main opportunities and challenges in relation to obtaining these compounds are highlighted.
Collapse
|
26
|
Colusse GA, Carneiro J, Duarte MER, Carvalho JCD, Noseda MD. Advances in microalgal cell wall polysaccharides: a review focused on structure, production, and biological application. Crit Rev Biotechnol 2021; 42:562-577. [PMID: 34320897 DOI: 10.1080/07388551.2021.1941750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microalgae have been shown to be useful in several biotechnological fields due to their feasible cultivation and high-value biomolecules production. Several substances of interest produced by microalgae, such as: proteins, lipids, and natural colorants, have already been explored. Based on the continuing demand for new natural molecules, microalgae could also be a valuable source of polysaccharides. Polysaccharides are extremely important in aquaculture, cosmetics, pharmaceutical, and food industries, and have great economic impact worldwide. Despite this, reviews on microalgal polysaccharide production, biological activity, and chemical structure are not abundant. Moreover, techniques of microalgal cultivation, coupled with carbohydrate production, need to be clarified in order to develop forward-looking technologies. The present review provides an overview of the main advances in microalgal cell wall polysaccharide production, as well as their associated potential biological applications and chemical structure. Several studies on future prospects, related to microalgae are presented, highlighting the key challenges in microalgal polysaccharide production.
Collapse
Affiliation(s)
- Guilherme Augusto Colusse
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Biochemistry and Molecular Biology Department, Federal University of Paraná, Curitiba, Brazil
| | - Jaqueline Carneiro
- Biochemistry and Molecular Biology Department, Federal University of Paraná, Curitiba, Brazil
| | | | - Julio Cesar de Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, Brazil
| | - Miguel Daniel Noseda
- Biochemistry and Molecular Biology Department, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
27
|
Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021; 11:biom11050698. [PMID: 34067181 PMCID: PMC8150747 DOI: 10.3390/biom11050698] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Biostimulants, are a diverse class of compounds including substances or microorganism which have positive impacts on plant growth, yield and chemical composition as well as boosting effects to biotic and abiotic stress tolerance. The major plant biostimulants are hydrolysates of plant or animal protein and other compounds that contain nitrogen, humic substances, extracts of seaweeds, biopolymers, compounds of microbial origin, phosphite, and silicon, among others. The mechanisms involved in the protective effects of biostimulants are varied depending on the compound and/or crop and mostly related with improved physiological processes and plant morphology aspects such as the enhanced root formation and elongation, increased nutrient uptake, improvement in seed germination rates and better crop establishment, increased cation exchange, decreased leaching, detoxification of heavy metals, mechanisms involved in stomatal conductance and plant transpiration or the stimulation of plant immune systems against stressors. The aim of this review was to provide an overview of the application of plant biostimulants on different crops within the framework of sustainable crop management, aiming to gather critical information regarding their positive effects on plant growth and yield, as well as on the quality of the final product. Moreover, the main limitations of such practice as well as the future prospects of biostimulants research will be presented.
Collapse
|
28
|
Kapoore RV, Wood EE, Llewellyn CA. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol Adv 2021; 49:107754. [PMID: 33892124 DOI: 10.1016/j.biotechadv.2021.107754] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
For the growing human population to be sustained during present climatic changes, enhanced quality and quantity of crops are essential to enable food security worldwide. The current consensus is that we need to make a transition from a petroleum-based to a bio-based economy via the development of a sustainable circular economy and biorefinery approaches. Both macroalgae (seaweeds) and microalgae have been long considered a rich source of plant biostimulants with an attractive business opportunity in agronomy and agro-industries. To date, macroalgae biostimulants have been well explored. In contrast, microalgal biostimulants whilst known to have positive effects on development, growth and yields of crops, their commercial implementation is constrained by lack of research and cost of production. The present review highlights the current knowledge on potential biostimulatory compounds, key sources and their quantitative information from algae. Specifically, we provide an overview on the prospects of microalgal biostimulants to advance crop production and quality. Key aspects such as specific biostimulant effects caused by extracts of microalgae, feasibility and potential of co-cultures and later co-application with other biostimulants/biofertilizers are highlighted. An overview of the current knowledge, recent advances and achievements on extraction techniques, application type, application timing, current market and regulatory aspects are also discussed. Moreover, aspects involved in circular economy and biorefinery approaches are also covered, such as: integration of waste resources and implementation of high-throughput phenotyping and -omics tools in isolating novel strains, exploring synergistic interactions and illustrating the underlying mode of microalgal biostimulant action. Overall, this review highlights the current and future potential of microalgal biostimulants, algal biochemical components behind these traits and finally bottlenecks and prospects involved in the successful commercialisation of microalgal biostimulants for sustainable agricultural practices.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - Eleanor E Wood
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Carole A Llewellyn
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|
29
|
Kang Y, Kim M, Shim C, Bae S, Jang S. Potential of Algae-Bacteria Synergistic Effects on Vegetable Production. FRONTIERS IN PLANT SCIENCE 2021; 12:656662. [PMID: 33912211 PMCID: PMC8072153 DOI: 10.3389/fpls.2021.656662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Modern agriculture has become heavily dependent on chemical fertilizers, which have caused environmental pollution and the loss of soil fertility and sustainability. Microalgae and plant growth-promoting bacteria (PGPB) have been identified as alternatives to chemical fertilizers for improving soil fertility. This is because of their biofertilizing properties, through the production of bioactive compounds (e.g., phytohormones, amino acids, and carotenoids) and their ability to inhibit plant pathogens. Although treatment based on a single species of microalgae or bacteria is commonly used in agriculture, there is growing experimental evidence suggesting that a symbiotic relationship between microalgae and bacteria synergistically affects each other's physiological and metabolomic processes. Moreover, the co-culture/combination treatment of microalgae and bacteria is considered a promising approach in biotechnology for wastewater treatment and efficient biomass production, based on the advantage of the resulting synergistic effects. However, much remains unexplored regarding the microalgal-bacterial interactions for agricultural applications. In this review, we summarize the effects of microalgae and PGPB as biofertilizing agents on vegetable cultivation. Furthermore, we present the potential of the microalgae-PGPB co-culture/combination system for the environmentally compatible production of vegetables with improved quality.
Collapse
Affiliation(s)
- Yeeun Kang
- World Vegetable Center Korea Office, Wanju-gun, Jeollabuk-do, South Korea
| | - Minjeong Kim
- Organic Agricultural Division, National Institute of Agricultural Sciences, RDA, Wanju-gun, Jeollabuk-do, South Korea
| | - Changki Shim
- Organic Agricultural Division, National Institute of Agricultural Sciences, RDA, Wanju-gun, Jeollabuk-do, South Korea
| | - Suyea Bae
- World Vegetable Center Korea Office, Wanju-gun, Jeollabuk-do, South Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, Jeollabuk-do, South Korea
| |
Collapse
|
30
|
Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102200] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Plant Biostimulants from Cyanobacteria: An Emerging Strategy to Improve Yields and Sustainability in Agriculture. PLANTS 2021; 10:plants10040643. [PMID: 33805266 PMCID: PMC8065465 DOI: 10.3390/plants10040643] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Cyanobacteria can be considered a promising source for the development of new biostimulants as they are known to produce a variety of biologically active molecules that can positively affect plant growth, nutrient use efficiency, qualitative traits of the final product, and increase plant tolerance to abiotic stresses. Moreover, the cultivation of cyanobacteria in controlled and confined systems, along with their metabolic plasticity, provides the possibility to improve and standardize composition and effects on plants of derived biostimulant extracts or hydrolysates, which is one of the most critical aspects in the production of commercial biostimulants. Faced with these opportunities, research on biostimulant properties of cyanobacteria has undergone a significant growth in recent years. However, research in this field is still scarce, especially as regards the number of investigated cyanobacterial species. Future research should focus on reducing the costs of cyanobacterial biomass production and plant treatment and on identifying the molecules that mediate the biostimulant effects in order to optimize their content and stability in the final product. Furthermore, the extension of agronomic trials to a wider number of plant species, different application doses, and environmental conditions would allow the development of tailored microbial biostimulants, thus facilitating the diffusion of these products among farmers.
Collapse
|
32
|
Lee SM, Ryu CM. Algae as New Kids in the Beneficial Plant Microbiome. FRONTIERS IN PLANT SCIENCE 2021; 12:599742. [PMID: 33613596 PMCID: PMC7889962 DOI: 10.3389/fpls.2021.599742] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
Previously, algae were recognized as small prokaryotic and eukaryotic organisms found only in aquatic habitats. However, according to a recent paradigm shift, algae are considered ubiquitous organisms, occurring in plant tissues as well as in soil. Accumulating evidence suggests that algae represent a member of the plant microbiome. New results indicate that plants respond to algae and activate related downstream signaling pathways. Application of algae has beneficial effects on plant health, such as plant growth promotion and disease control. Although accumulating evidence suggests that secreted compounds and cell wall components of algae induce physiological and structural changes in plants that protect against biotic and abiotic stresses, knowledge of the underlying mechanisms and algal determinants is limited. In this review, we discuss recent studies on this topic, and highlight the bioprotectant and biostimulant roles of algae as a new member of the plant beneficial microbiome for crop improvement.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|