1
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Banik SP, Kumar P, Basak P, Goel A, Ohia SE, Bagchi M, Chakraborty S, Kundu A, Bagchi D. A critical insight into the physicochemical stability of macular carotenoids with respect to their industrial production, safety profile, targeted tissue delivery, and bioavailability. Toxicol Mech Methods 2024:1-15. [PMID: 39252190 DOI: 10.1080/15376516.2024.2401924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Lutein, zeaxanthin, and mesozeaxanthin, collectively termed as macular pigments, are key carotenoids integral to optimized central vision of the eye. Therefore, nutraceuticals and functional foods have been developed commercially using carotenoid rich flowers, such as marigold and calendula or single celled photosynthetic algae, such as the Dunaliella. Industrial formulation of such products enriched in macular pigments have often suffered from serious bottlenecks in stability, delivery, and bioavailability. The two chief factors largely responsible for decreasing the shelf-life have been solubility and oxidation of these pigments owing to their strong lipophilic nature and presence of conjugated double bonds. In this regard, oil-based formulations have often been found to be more suitable than powder-based formulations in terms of shelf life and targeted delivery. In some cases, addition of phenolic acids in the formulations have also augmented the product value by enhancing micellization. In this regard, a novel proprietary formulation of these pigments has been developed in our laboratory utilizing marigold extracts in a colloidal solution of extra virgin olive oil and canola oil fortified with antioxidants like thyme oil, tocopherol, and ascorbyl palmitate. This review article presents an updated insight into the stability and bioavailability of industrially manufactured macular carotenoids together with their safety and solubility issues.
Collapse
Affiliation(s)
- Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Pijush Basak
- Jagadis Bose National Science Talent Search, Kolkata, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, India
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | | | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Arijit Kundu
- Department of Chemistry, Maulana Azad College, Kolkata, India
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
3
|
Romo-Tovar J, Belmares Cerda R, Chávez-González ML, Rodríguez-Jasso RM, Lozano-Sepulveda SA, Govea-Salas M, Loredo-Treviño A. Importance of Certain Varieties of Cucurbits in Enhancing Health: A Review. Foods 2024; 13:1142. [PMID: 38672815 PMCID: PMC11048896 DOI: 10.3390/foods13081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The Cucurbitaceae family is an extensive group of fruits and vegetables that exhibit common characteristics; for example, they are farmed on a global scale and exhibit a wide range of applications, including fresh consumption and use in various food and beverage products. As is frequent, many species or genera share a common name, and this can lead to some confusion when looking for information about a specific variety. In this review, we describe the findings about the biological activity, like antibacterial, antiviral, antidiabetic, and anticancer properties, of two genera of this family, Cucumis and Momordica, which have been characterized and evaluated in several research studies and regarding which information is readily accessible. Those activities rely on the various physicochemical qualities and nutritional content of each variety, including factors like β-carotene and polyphenols, among others. The goal of this review is to provide a rapid search for each activity examined in the literature, enabling future research on their potential uses in functional foods and nutraceutical supplements.
Collapse
Affiliation(s)
- Jaqueline Romo-Tovar
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| | - Ruth Belmares Cerda
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| | - Mónica L. Chávez-González
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| | - Rosa M. Rodríguez-Jasso
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| | - Sonia A. Lozano-Sepulveda
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Mayela Govea-Salas
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| | - Araceli Loredo-Treviño
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico; (J.R.-T.); (R.B.C.); (M.L.C.-G.); (R.M.R.-J.); (M.G.-S.)
| |
Collapse
|
4
|
Zhang J, Zhong Y, Wang D, Zhu J, Deng Y, Li Y, Liu C, Wang JLT, Zhang M. Wallace melon juice fermented with Lactobacillus alleviates dextran sulfate sodium-induced ulcerative colitis in mice through modulating gut microbiota and the metabolism. J Food Sci 2024; 89:2450-2464. [PMID: 38462851 DOI: 10.1111/1750-3841.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 03/12/2024]
Abstract
Fermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.
Collapse
Affiliation(s)
- Junwei Zhang
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhong
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Wang
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangxiong Zhu
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Deng
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
- Inner Mongolia Research Institute, Shanghai Jiao Tong University, Hohhot City, Inner Mongolia, China
| | - Yuncheng Li
- Inner Mongolia Research Institute, Shanghai Jiao Tong University, Hohhot City, Inner Mongolia, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cong Liu
- Department of Agriculture, Hetao College, Bayannur, Inner Mongolia, China
| | - Ji-Li-Te Wang
- Department of Agriculture, Hetao College, Bayannur, Inner Mongolia, China
| | - Minyan Zhang
- Eryuan County Inspection and Testing Institute, Yunnan, China
| |
Collapse
|
5
|
de Carvalho Gomes C, Lima MSR, de Oliveira GL, Medeiros I, Xavier HST, dos Santos Pais T, Costa IDS, de Carvalho FMC, Serquiz AC, de Souza Lima MC, de Araújo Morais AH, Passos TS. Nanoparticles Loaded with a Carotenoid-Rich Extract from Cantaloupe Melon Improved Hepatic Retinol Levels in a Diet-Induced Obesity Preclinical Model. ACS OMEGA 2023; 8:28475-28486. [PMID: 37576634 PMCID: PMC10413461 DOI: 10.1021/acsomega.3c02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023]
Abstract
The study evaluated the effect of the carotenoid-rich extract from cantaloupe melon (CE) nanoencapsulated in porcine gelatin (EPG) on hepatic retinol concentration and liver damage scores in Wistar rats with obesity induced by high glycemic index and high glycemic load diet (HGLI diet). For 17 days, animals were fed the HGLI diet. They were divided into three groups and treated for 10 days [HGLI diet + water, HGLI diet + CE (12.5 mg/kg), and HGLI diet + EPG (50 mg/kg)]. The groups were evaluated for dietary intake, retinol, weight variation, hematological parameters, fasting glucose, lipid profile, hepatic retinol concentration, AST/ALT ratio, FIB-4 (Fibrosis-4 Index for Liver Fibrosis), and APRI (AST to Platelet Ratio Index) scores to evaluate the effects on the liver. Animals treated with EPG showed a lower dietary intake (p < 0.05). No significant weight change was detected in the evaluated groups (p > 0.05). The EPG-treated group had significantly higher concentrations (p < 0.05) of hepatic retinol [266 (45) μg/g] than the untreated group [186 (23.8) μg/g] and the one treated with CE [175 (8.08) μg/g]. Liver damage assessment scores did not show significant differences, but the lowest means were observed in the group treated with EPG. The nanoencapsulation of the extract rich in beta-carotene promoted reduced food consumption and increased hepatic retinol without causing significant changes in liver damage scores. Thus, EPG is a candidate for future clinical studies to evaluate the beneficial effects of treating diseases involving vitamin A deficiencies.
Collapse
Affiliation(s)
- Camila de Carvalho Gomes
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Mayara Santa Rosa Lima
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | | | - Isaiane Medeiros
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | | | - Tatiana dos Santos Pais
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Izael de Sousa Costa
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Nutrition
Course, Potiguar University, Natal, RN 59056-000, Brazil
| | - Fabiana Maria Coimbra de Carvalho
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Nutrition
Course, Potiguar University, Natal, RN 59056-000, Brazil
| | | | | | - Ana Heloneida de Araújo Morais
- Postgraduate
Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Postgraduate
Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Nutrition
Department, Health Sciences Center, Federal
University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Thaís Souza Passos
- Postgraduate
Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Nutrition
Department, Health Sciences Center, Federal
University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| |
Collapse
|
6
|
Queiroz JLCD, Medeiros I, Lima MSR, Carvalho FMCD, Camillo CS, Santos PPDA, Guerra GCB, da Silva VC, Schroeder HT, Krause M, Morais AHDA, Passos TS. Efficacy of Carotenoid-Loaded Gelatin Nanoparticles in Reducing Plasma Cytokines and Adipocyte Hypertrophy in Wistar Rats. Int J Mol Sci 2023; 24:10657. [PMID: 37445834 DOI: 10.3390/ijms241310657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 07/15/2023] Open
Abstract
The present study investigated the effect of gelatin-based nanoparticles (EPG) loaded with a carotenoid-rich crude extract (CE) on systemic and adipose tissue inflammatory response in a model with inflammation induced by a high glycemic index and high glycemic load diet (HGLI). Nanoparticles synthesized were characterized by different physical and chemical methods. The in vivo investigation evaluated Wistar rats (n = 20, 11 days, adult male with 21 weeks) subdivided into untreated (HGLI diet), conventional treatment (nutritionally adequate diet), treatment 1 (HGLI + crude extract (12.5 mg/kg)), and treatment 2 (HGLI + EPG (50 mg/kg)) groups. Dietary intake, caloric intake and efficiency, weight, inflammatory cytokines tissue concentration, visceral adipose tissue (VAT) weight, histopathological analysis, and antioxidant activity in plasma and VAT were investigated. EPG showed the same physical and chemical characteristics as previous batches (95.2 nm, smooth surface, and chemical interactions between materials). The EPG-treated group was the only group promoting negative ∆dietary intake, ∆caloric efficiency, and ∆weight. In addition, it presented a significant reduction (p < 0.05) in IL-6 and leptin levels and a greater presence of multilocular adipocytes. The results suggest that EPG can act as a nutraceutical in adjuvant therapy for treating inflammatory diseases associated with adipose tissue accumulation.
Collapse
Affiliation(s)
- Jaluza Luana C de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Mayara S R Lima
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Fabiana Maria C de Carvalho
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Nutrition Course, Potiguar University, Natal 59056-000, Brazil
| | - Christina S Camillo
- Postgraduate Program in Structural and Functional Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Pedro Paulo de A Santos
- Postgraduate Program in Structural and Functional Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Gerlane C B Guerra
- Development and Technological Innovation in Medicines Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Valéria C da Silva
- Development and Technological Innovation in Medicines Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Helena T Schroeder
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Ana Heloneida de A Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Thaís S Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
7
|
Jimenez-Gonzalez O, Luna-Guevara JJ, Ramírez-Rodrigues MM, Luna-Vital D, Luna-Guevara ML. Microencapsulation of Renealmia alpinia (Rottb.) Maas pulp pigment and antioxidant compounds by spray-drying and its incorporation in yogurt. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1162-1172. [PMID: 35185214 PMCID: PMC8814249 DOI: 10.1007/s13197-021-05121-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023]
Abstract
Renealmia alpinia (Rottb.) Maas pulp was processed by spray drying using Maltodextrin (MDX), and Gum Arabic (GA), and the mixture of both encapsulating agents (MDX-GA). Yield, moisture, water activity (a w ), apparent and bulk densities, size and morphology of capsules, color, and antioxidant potential (antioxidant activity, total carotenoids, and phenolic compounds) were analyzed. The encapsulates were incorporated as pigments in yogurt and the stability of antioxidant compounds (1, 7, 14, 21, and 28 days of storage) and the sensory properties were evaluated. The yields of all formulations (MDX, GA, MDX-GA) were around 17.86% with low moisture and a w range values (2.62-3.29% and 0.276-0.309, respectively). The microcapsules presented multiples particle sizes (0.67-27.13 µm) with irregular and smooth surfaces. Furthermore, these capsulates preserved yellow color and the retention of carotenoids was significantly higher with MDX (34.12 mg/100 g of powder), while the phenolic compounds and antioxidant activity increased with GA (474.17 mg GAE/100 g and 552.63 mg TE/100 g of powder, respectively). The main compounds β-carotene and gallic acid were identified and quantified in positive and negative mode respectively using LC-MS/MS. Finally, the addition of the encapsulated pigments to yogurt allowed to obtain a yellow coloration and the yogurt added with MDX-GA presented the best formulation with not significant changes in antioxidant activity and acceptable sensory attributes up 28 days of storage.
Collapse
Affiliation(s)
- O. Jimenez-Gonzalez
- Department of Food Engineering, Faculty of Chemical Engineering, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - J. J. Luna-Guevara
- Department of Food Engineering, Faculty of Chemical Engineering, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - M. M. Ramírez-Rodrigues
- Department of Chemical, Food and Environmental Engineering, Universidad de Las Américas Puebla, Puebla, Mexico
| | - D. Luna-Vital
- Department of Bioengineering and Science, Tecnologico de Monterrey, Campus Puebla, Puebla, Mexico
| | - M. L. Luna-Guevara
- Department of Food Engineering, Faculty of Chemical Engineering, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| |
Collapse
|