1
|
Madhusudanan A, Iddon C, Cevik M, Naismith JH, Fitzgerald S. Non-pharmaceutical interventions for COVID-19: a systematic review on environmental control measures. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20230130. [PMID: 37611631 PMCID: PMC10446906 DOI: 10.1098/rsta.2023.0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 08/25/2023]
Abstract
The purpose of this review was to identify the effectiveness of environmental control (EC) non-pharmaceutical interventions (NPIs) in reducing transmission of SARS-CoV-2 through conducting a systematic review. EC NPIs considered in this review are room ventilation, air filtration/cleaning, room occupancy, surface disinfection, barrier devices, [Formula: see text] monitoring and one-way-systems. Systematic searches of databases from Web of Science, Medline, EMBASE, preprint servers MedRxiv and BioRxiv were conducted in order to identify studies reported between 1 January 2020 and 1 December 2022. All articles reporting on the effectiveness of ventilation, air filtration/cleaning, room occupancy, surface disinfection, barrier devices, [Formula: see text] monitoring and one-way systems in reducing transmission of SARS-CoV-2 were retrieved and screened. In total, 13 971 articles were identified for screening. The initial title and abstract screening identified 1328 articles for full text review. Overall, 19 references provided evidence for the effectiveness of NPIs: 12 reported on ventilation, 4 on air cleaning devices, 5 on surface disinfection, 6 on room occupancy and 1 on screens/barriers. No studies were found that considered the effectiveness of [Formula: see text] monitoring or the implementation of one-way systems. Many of these studies were assessed to have critical risk of bias in at least one domain, largely due to confounding factors that could have affected the measured outcomes. As a result, there is low confidence in the findings. Evidence suggests that EC NPIs of ventilation, air cleaning devices and reduction in room-occupancy may have a role in reducing transmission in certain settings. However, the evidence was usually of low or very low quality and certainty, and hence the level of confidence ascribed to this conclusion is low. Based on the evidence found, it was not possible to draw any specific conclusions regarding the effectiveness of surface disinfection and the use of barrier devices. From these results, we further conclude that community agreed standards for well-designed epidemiological studies with low risk of bias are needed. Implementation of such standards would enable more confident assessment in the future of the effectiveness of EC NPIs in reducing transmission of SARS-CoV-2 and other pathogens in real-world settings. This article is part of the theme issue 'The effectiveness of non-pharmaceutical interventions on the COVID-19 pandemic: the evidence'.
Collapse
Affiliation(s)
| | - Christopher Iddon
- Department of Civil, Environmental and Geomatic Engineering, University College London, WC1E 6BT, London, UK
| | - Muge Cevik
- Department of Infection and Global Health, School of Medicine, University of St Andrews, KY16 9TF, St Andrews, UK
| | | | - Shaun Fitzgerald
- Department of Engineering, University of Cambridge, CB2 1PZ, Cambridge, UK
| |
Collapse
|
2
|
Zhou J, Chen SLP, Shi WW, Kanrak M, Ge J. The impacts of COVID-19 on the cruise industry based on an empirical study in China. MARINE POLICY 2023; 153:105631. [PMID: 37152075 PMCID: PMC10099182 DOI: 10.1016/j.marpol.2023.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had an unprecedented impact on the entire cruise industry. This research aims to provide an understanding of the impacts of COVID-19 on the cruise industry from various stakeholders and recommend corresponding post-COVID recovery strategies for building a sustainable cruise industry. By conducting 22 semi-structured interviews in Shanghai, China and analysing the interview data using content analysis, this research finds five aspects of the impacts that are worth discussing, namely social, health and well-being, regulatory, operational, and financial aspects. Key findings include the impacts of different stakeholders' opinions, the problems existing in the current cruise industry, and the potential for future improvement. Recommendations and recovery strategies are proposed to mitigate the negative impacts. This research not only explores the impact of COVID-19 on cruise tourism and fosters recommendations in the most fast-developing region (China) but also facilitates researchers and policymakers to understand the effects of the pandemic and proposes future risk mitigation strategies.
Collapse
Affiliation(s)
- Jingen Zhou
- Department of Maritime and Logistics Management, Australian Maritime College, University of Tasmania, Newnham, Australia
| | - Shu-Ling Peggy Chen
- Department of Maritime and Logistics Management, Australian Maritime College, University of Tasmania, Newnham, Australia
| | - Wenming Wendy Shi
- Department of Maritime and Logistics Management, Australian Maritime College, University of Tasmania, Newnham, Australia
| | - Maneerat Kanrak
- Faculty of Interdisciplinary Studies, Khon Kaen University, Thailand
| | - Jiawei Ge
- College of Transport and Communications, Shanghai Maritime University, China
| |
Collapse
|
3
|
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant transmits much more rapidly than prior SARS-CoV-2 viruses. The primary mode of transmission is via short range aerosols that are emitted from the respiratory tract of an index case. There is marked heterogeneity in the spread of this virus, with 10% to 20% of index cases contributing to 80% of secondary cases, while most index cases have no subsequent transmissions. Vaccination, ventilation, masking, eye protection, and rapid case identification with contact tracing and isolation can all decrease the transmission of this virus.
Collapse
Affiliation(s)
- Eric A Meyerowitz
- Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA.
| | - Aaron Richterman
- Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022; 14:1075. [PMID: 35632816 PMCID: PMC9147922 DOI: 10.3390/v14051075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Patrick Frank Ottensmeyer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| |
Collapse
|
5
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022. [PMID: 35632816 DOI: 10.1101/2020.05.28.20114041] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
6
|
Wang Q, Lung DC, Chan PT, Jia W, Dung CH, Miao T, Huang J, Chen W, Wang Z, Leung KM, Xu P, Lin Z, Wong D, Tse H, Ying Wong SC, Choi GKY, To KKW, Cheng VCC, Yuen KY, Li Y. High attack rate in a Tong Lau house outbreak of COVID-19 with subdivided units in Hong Kong. Interface Focus 2022; 12:20210063. [PMID: 35261729 PMCID: PMC8831081 DOI: 10.1098/rsfs.2021.0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Poor housing conditions are known to be associated with infectious diseases such as high Coronavirus disease 2019 (COVID-19) incidences. Transmission causes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in poor housing conditions can be complex. An understanding of the exact mechanism of transmission can help to pinpoint contributing environmental issues. Here, we investigated a Hong Kong COVID-19 outbreak in early 2021 in four traditional Tong Lau houses with subdivided units. There are more than 80 subdivided units of less than 20 m2 floor area each on average. With a total of 34 confirmed COVID-19 cases, the outbreak had an attack rate of 25.4%, being one of the highest attack rates observed in Hong Kong, and ranked among the highest attack rates in reported outbreaks internationally. Tracer gas leakage and decay measurements were performed in the drainage system and in the subdivided units to determine the transport of infectious aerosols by the owner-modified sophisticated wastewater drainage pipe networks and the poor ventilation conditions in some subdivided units. The results show that the outbreak was probably due to multiple transmission routes, i.e. by the drainage pipe spread of stack aerosols, which is enhanced by poor ventilation in the subdivided units.
Collapse
Affiliation(s)
- Qun Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - David Christopher Lung
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong SAR, People's Republic of China
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong SAR, People's Republic of China
| | - Pak-To Chan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Wei Jia
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chung-Hin Dung
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Te Miao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jianxiang Huang
- Department of Urban Planning and Design, Faculty of Architecture, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Wenzhao Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zixuan Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Kai-Ming Leung
- Environmental Protection Department, Hong Kong SAR, People's Republic of China
| | - Pengcheng Xu
- Institute of Applied Mathematics, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhang Lin
- Division of Building Science and Technology, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Daniel Wong
- Estates office, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Herman Tse
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong SAR, People's Republic of China
| | - Sally Cheuk Ying Wong
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong SAR, People's Republic of China
| | - Garnet Kwan-Yue Choi
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong SAR, People's Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
7
|
Tang JW, Caniza MA, Dinn M, Dwyer DE, Heraud JM, Jennings LC, Kok J, Kwok KO, Li Y, Loh TP, Marr LC, Nara EM, Perera N, Saito R, Santillan-Salas C, Sullivan S, Warner M, Watanabe A, Zaidi SK. An exploration of the political, social, economic and cultural factors affecting how different global regions initially reacted to the COVID-19 pandemic. Interface Focus 2022; 12:20210079. [PMID: 35261734 PMCID: PMC8831085 DOI: 10.1098/rsfs.2021.0079] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Responses to the early (February-July 2020) COVID-19 pandemic varied widely, globally. Reasons for this are multiple but likely relate to the healthcare and financial resources then available, and the degree of trust in, and economic support provided by, national governments. Cultural factors also affected how different populations reacted to the various pandemic restrictions, like masking, social distancing and self-isolation or self-quarantine. The degree of compliance with these measures depended on how much individuals valued their needs and liberties over those of their society. Thus, several themes may be relevant when comparing pandemic responses across different regions. East and Southeast Asian populations tended to be more collectivist and self-sacrificing, responding quickly to early signs of the pandemic and readily complied with most restrictions to control its spread. Australasian, Eastern European, Scandinavian, some Middle Eastern, African and South American countries also responded promptly by imposing restrictions of varying severity, due to concerns for their wider society, including for some, the fragility of their healthcare systems. Western European and North American countries, with well-resourced healthcare systems, initially reacted more slowly, partly in an effort to maintain their economies but also to delay imposing pandemic restrictions that limited the personal freedoms of their citizens.
Collapse
Affiliation(s)
- Julian W. Tang
- Respiratory Sciences, University of Leicester, Leicester, UK
| | | | - Mike Dinn
- British Antarctic Survey Medical Unit, Emergency Department, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Dominic E. Dwyer
- NSW Health Pathology - Institute for Clinical Pathology and Medical Research, and University of Sydney, Westmead, New South Wales, Australia
| | | | - Lance C. Jennings
- Department of Pathology and Biomedical Science, University of Otago, and Canterbury Health Laboratories, Christchurch, New Zealand
| | - Jen Kok
- NSW Health Pathology - Institute for Clinical Pathology and Medical Research, and University of Sydney, Westmead, New South Wales, Australia
| | - Kin On Kwok
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Hong Kong Institute of Asia-Pacific Studies, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Tze Ping Loh
- Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Linsey C. Marr
- Civil and Environmental Engineering, Virginia Tech, VA, USA
| | - Eva Megumi Nara
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Nelun Perera
- Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Reiko Saito
- Division of International Health, Niigata University, Niigata, Japan
| | | | - Sheena Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Matt Warner
- British Antarctic Survey Medical Unit, Emergency Department, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Aripuanã Watanabe
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Sabeen Khurshid Zaidi
- Karachi Institute of Medical Sciences affiliated with National University of Medical Sciences, Karachi, Pakistan
| |
Collapse
|
8
|
Braidotti L, Bertagna S, Dodero M, Piu M, Marinò A, Bucci V. Identification of measures to contain the outbreaks on passenger ships using pedestrian simulations. PROCEDIA COMPUTER SCIENCE 2022; 200:1565-1574. [PMID: 35284027 PMCID: PMC8902520 DOI: 10.1016/j.procs.2022.01.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The SARS-CoV-2 pandemic, since the beginning of 2020, has had a strong effect on many industry sectors including maritime transport. In this context, the passenger transport industry was the most affected and it is still in a very critical situation. Starting from the "No Sail Order" issued in March 2020, cruise companies stopped their operations. Besides the international regulatory bodies issued several guidelines for the prevention and management of pandemics onboard in order to safely resume cruises. The present work addresses this topic, aiming to discuss procedures and best practices to reduce the risk of uncontrolled spreading of SARS-CoV-2 infection on large cruise vessels. Starting from the lessons learned from the representative case of Diamond Princess, here the tools developed in the framework of Industry 4.0 have been used to highlight and handle the criticalities risen on the internal layout of passenger vessels, opening new opportunities to operate existing vessels and improve the design new buildings for outbreaks prevention and control.
Collapse
Affiliation(s)
- Luca Braidotti
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
- Faculty of Engineering, University of Rijeka, Vukovarska 58, Rijeka 51000, Croatia
| | - Serena Bertagna
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
| | - Matteo Dodero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
| | - Michele Piu
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
| | - Alberto Marinò
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
| | - Vittorio Bucci
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, Trieste 34127, Italy
| |
Collapse
|
9
|
Nazaroff WW. Indoor aerosol science aspects of SARS-CoV-2 transmission. INDOOR AIR 2022; 32:e12970. [PMID: 34873752 DOI: 10.1111/ina.12970] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 05/04/2023]
Abstract
Knowledge about person-to-person transmission of SARS-CoV-2 is reviewed, emphasizing three components: emission of virus-containing particles and drops from infectious persons; transport and fate of such emissions indoors; and inhalation of viral particles by susceptible persons. Emissions are usefully clustered into three groups: small particles (diameter 0.1-5 µm), large particles (5-100 µm), and ballistic drops (>100 µm). Speaking generates particles and drops across the size spectrum. Small particles are removed from indoor air at room scale by ventilation, filtration, and deposition; large particles mainly deposit onto indoor surfaces. Proximate exposure enhancements are associated with large particles with contributions from ballistic drops. Masking and social distancing are effective in mitigating transmission from proximate exposures. At room scale, masking, ventilation, and filtration can contribute to limit exposures. Important information gaps prevent a quantitative reconciliation of the high overall global spread of COVID-19 with known transmission pathways. Available information supports several findings with moderate-to-high confidence: transmission occurs predominantly indoors; inhalation of airborne particles (up to 50 µm in diameter) contributes substantially to viral spread; transmission occurs in near proximity and at room scale; speaking is a major source of airborne SARS-CoV-2 virus; and emissions can occur without strong illness symptoms.
Collapse
Affiliation(s)
- William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
| |
Collapse
|
10
|
Cotman ZJ, Bowden MJ, Richter BP, Phelps JH, Dibble CJ. Factors affecting aerosol SARS-CoV-2 transmission via HVAC systems; a modeling study. PLoS Comput Biol 2021; 17:e1009474. [PMID: 34662342 PMCID: PMC8553169 DOI: 10.1371/journal.pcbi.1009474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 10/28/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The role of heating, ventilation, and air-conditioning (HVAC) systems in the transmission of SARS-CoV-2 is unclear. To address this gap, we simulated the release of SARS-CoV-2 in a multistory office building and three social gathering settings (bar/restaurant, nightclub, wedding venue) using a well-mixed, multi-zone building model similar to those used by Wells, Riley, and others. We varied key factors of HVAC systems, such as the Air Changes Per Hour rate (ACH), Fraction of Outside Air (FOA), and Minimum Efficiency Reporting Values (MERV) to examine their effect on viral transmission, and additionally simulated the protective effects of in-unit ultraviolet light decontamination (UVC) and separate in-room air filtration. In all building types, increasing the ACH reduced simulated infections, and the effects were seen even with low aerosol emission rates. However, the benefits of increasing the fraction of outside air and filter efficiency rating were greatest when the aerosol emission rate was high. UVC filtration improved the performance of typical HVAC systems. In-room filtration in an office setting similarly reduced overall infections but worked better when placed in every room. Overall, we found little evidence that HVAC systems facilitate SARS-CoV-2 transmission; most infections in the simulated office occurred near the emission source, with some infections in individuals temporarily visiting the release zone. HVAC systems only increased infections in one scenario involving a marginal increase in airflow in a poorly ventilated space, which slightly increased the likelihood of transmission outside the release zone. We found that improving air circulation rates, increasing filter MERV rating, increasing the fraction of outside air, and applying UVC radiation and in-room filtration may reduce SARS-CoV-2 transmission indoors. However, these mitigation measures are unlikely to provide a protective benefit unless SARS-CoV-2 aerosol emission rates are high (>1,000 Plaque-forming units (PFU) / min).
Collapse
Affiliation(s)
- Zachary J. Cotman
- Battelle Memorial Institute, Columbus, Ohio, United States of America
| | - Michael J. Bowden
- Battelle Memorial Institute, Columbus, Ohio, United States of America
| | | | - Joseph H. Phelps
- Battelle Memorial Institute, Columbus, Ohio, United States of America
| | | |
Collapse
|