1
|
Yang YF, Lin YJ, You SH, Lu TH, Chen CY, Wang WM, Ling MP, Chen SC, Liao CM. A Regional-Scale Assessment-Based SARS-CoV-2 Variants Control Modeling with Implications for Infection Risk Characterization. Infect Drug Resist 2024; 17:4791-4805. [PMID: 39498414 PMCID: PMC11533883 DOI: 10.2147/idr.s480086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024] Open
Abstract
Background The emergence and progression of highly divergent SARS-CoV-2 variants have posed increased risks to global public health, triggering the significant impacts on countermeasures since 2020. However, in addition to vaccination, the effectiveness of non-pharmaceutical interventions, such as social distancing, masking, or hand washing, on different variants of concern (VOC) remains largely unknown. Objective This study provides a mechanistic approach by implementing a control measure model and a risk assessment framework to quantify the impacts of control measure combinations on the transmissions of five VOC (Alpha, Beta, Delta, Gamma, and Omicron), along with a different perspective of risk assessment application. Materials and Methods We applied uncontrollable ratios as an indicator by adopting basic reproduction number (R 0) data collected from a regional-scale survey. A risk assessment strategy was established by constructing VOC-specific dose-response profiles to implicate practical uses in risk characterization when exposure data are available. Results We found that social distancing alone was ineffective without vaccination in almost all countries and VOC when the median R 0 was greater than two. Our results indicated that Omicron could not be contained, even when all control measure combinations were applied, due to its low threshold of infectivity (~3×10-4 plague-forming unit (PFU) mL-1). Conclusion To facilitate better decision-making in future interventions, we provide a comprehensive evaluation of how combined control measures impact on different countries and various VOC. Our findings indicate the potential application of threshold estimates of infectivity in the context of risk communication and policymaking for controlling future emerging SARS-CoV-2 variant infections.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11230, Taiwan
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Tien-Hsuan Lu
- Department of Science Education and Application, National Taichung University of Education, Taichung, 403514, Taiwan
| | - Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32608, USA
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Min-Pei Ling
- Department of Food Science, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Limaheluw J, Dollmann S, Folpmers S, Beltrán Beut L, Lazarakou A, Vermeulen LC, de Roda Husman AM. Associations between meteorological factors and COVID-19: a global scoping review. Front Public Health 2024; 12:1183706. [PMID: 39091528 PMCID: PMC11291467 DOI: 10.3389/fpubh.2024.1183706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Background Many respiratory viruses and their associated diseases are sensitive to meteorological factors. For SARS-CoV-2 and COVID-19, evidence on this sensitivity is inconsistent. Understanding the influence of meteorological factors on SARS-CoV-2 transmission and COVID-19 epidemiology can help to improve pandemic preparedness. Objectives This review aimed to examine the recent evidence about the relation between meteorological factors and SARS-CoV-2/COVID-19. Methods We conducted a global scoping review of peer-reviewed studies published from January 2020 up to January 2023 about the associations between temperature, solar radiation, precipitation, humidity, wind speed, and atmospheric pressure and SARS-CoV-2/COVID-19. Results From 9,156 initial records, we included 474 relevant studies. Experimental studies on SARS-CoV-2 provided consistent evidence that higher temperatures and solar radiation negatively affect virus viability. Studies on COVID-19 (epidemiology) were mostly observational and provided less consistent evidence. Several studies considered interactions between meteorological factors or other variables such as demographics or air pollution. None of the publications included all determinants holistically. Discussion The association between short-term meteorological factors and SARS-CoV-2/COVID-19 dynamics is complex. Interactions between environmental and social components need further consideration. A more integrated research approach can provide valuable insights to predict the dynamics of respiratory viruses with pandemic potential.
Collapse
Affiliation(s)
- Jesse Limaheluw
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sophia Dollmann
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sofia Folpmers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Lola Beltrán Beut
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Afroditi Lazarakou
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lucie C. Vermeulen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Rasheed A, Parmar K, Jain S, Chakravortty D, Basu S. Weather-related changes in the dehydration of respiratory droplets on surfaces bolster bacterial endurance. J Colloid Interface Sci 2024; 674:653-662. [PMID: 38950464 DOI: 10.1016/j.jcis.2024.06.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
HYPOTHESIS The study shows for the first time a fivefold difference in the survivability of the bacterium Pseudomonas Aeruginosa (PA) in a realistic respiratory fluid droplet on fomites undergoing drying at different environmental conditions. For instance, in 2023, the annual average outdoor relative humidity (RH) and temperature in London (UK) is 71 % and 11 °C, whereas in New Delhi (India), it is 45 % and 26 °C, showing that disease spread from fomites could have a demographic dependence. Respiratory fluid droplet ejections containing pathogens on inanimate surfaces are crucial in disease spread, especially in nosocomial settings. However, the interplay between evaporation dynamics, internal fluid flow and precipitation and their collective influence on the distribution and survivability of pathogens at different environmental conditions are less known. EXPERIMENTS Shadowgraphy imaging is employed to study evaporation, and optical microscopy imaging is used for precipitation dynamics. Micro-particle image velocimetry (MicroPIV) measurements reveal the internal flow dynamics. Confocal imaging of fluorescently labelled PA elucidates the bacterial distribution within the deposits. FINDINGS The study finds that the evaporation rate is drastically impeded during drying at elevated solutal concentrations, particularly at high RH and low temperature conditions. MicroPIV shows reduced internal flow under high RH and low temperature (low evaporation rate) conditions. Evaporation rate influences crystal growth, with delayed efflorescence and extending crystallization times. PA forms denser peripheral arrangements under high evaporation rates and shows a fivefold increase in survivability under low evaporation rates. These findings highlight the critical impact of environmental conditions on pathogen persistence and disease spread from inanimate surfaces.
Collapse
Affiliation(s)
- Abdur Rasheed
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore India
| | - Kirti Parmar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore India
| | - Siddhant Jain
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore India; School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551 India.
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore India.
| |
Collapse
|
4
|
Aganovic A, Kurnitski J, Wargocki P. A quanta-independent approach for the assessment of strategies to reduce the risk of airborne infection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172278. [PMID: 38583631 DOI: 10.1016/j.scitotenv.2024.172278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The Wells-Riley model is extensively used for retrospective and prospective modelling of the risk of airborne transmission of infection in indoor spaces. It is also used when examining the efficacy of various removal and deactivation methods for airborne infectious aerosols in the indoor environment, which is crucial when selecting the most effective infection control technologies. The problem is that the large variation in viral load between individuals makes the Wells-Riley model output very sensitive to the input parameters and may yield a flawed prediction of risk. The absolute infection risk estimated with this model can range from nearly 0 % to 100 % depending on the viral load, even when all other factors, such as removal mechanisms and room geometry, remain unchanged. We therefore propose a novel method that removes this sensitivity to viral load. We define a quanta-independent maximum absolute before-after difference in infection risk that is independent of quanta factors like viral load, physical activity, or the dose-response relationships. The input data needed for a non-steady-state calculation are just the removal rates, room volume, and occupancy duration. Under steady-state conditions the approach provides an elegant solution that is only dependent on removal mechanisms before and after applying infection control measures. We applied this method to compare the impact of relative humidity, ventilation rate and its effectiveness, filtering efficiency, and the use of ultraviolet germicidal irradiation on the infection risk. The results demonstrate that the method provides a comprehensive understanding of the impact of infection control strategies on the risk of airborne infection, enabling rational decisions to be made regarding the most effective strategies in a specific context. The proposed method thus provides a practical tool for mitigation of airborne infection risk.
Collapse
Affiliation(s)
- Amar Aganovic
- Department of Automation and Process Engineering, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Jarek Kurnitski
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Tallinn, Estonia; Department of Civil Engineering, Aalto university, Espoo, Finland
| | - Pawel Wargocki
- Department of Environmental and Resource Engineering, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
5
|
Huang J, Fu X. Asymptotic analysis on a new stochastic epidemic model involving isolation mechanism. CHAOS (WOODBURY, N.Y.) 2024; 34:063125. [PMID: 38856734 DOI: 10.1063/5.0151930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
In this paper, a new stochastic epidemic model is established and the dynamical behavior of its solutions is studied for this model. A deterministic epidemic model (ordinary differential equation) is first proposed by considering the isolation mechanism, and the transmission probability function is determined by a Wells-Riley model method to analyze the transmission in the quarantine. For this deterministic model, the basic reproduction number R0 is computed and it is used to determine the existence of disease-free and positive equilibria. The linearized stability of the equilibria is also discussed by analyzing the distribution of eigenvalues of the linear system. Following that, a corresponding stochastic epidemic model is further established by introducing stochastic disturbance. Then, the extinction result of the model is derived also with the help of the basic reproduction number R0s. Furthermore, by applying the theory of Markov semigroups, it is proved that the densities of the distributions of the solutions can converge to an invariant density or sweeping under certain conditions. At last, some numerical simulations are provided and discussed to illustrate the practicability of the model and the obtained theoretical results.
Collapse
Affiliation(s)
- Jialiang Huang
- School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education) & Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, People's Republic of China
| | - Xianlong Fu
- School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education) & Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
6
|
Aganovic A, Kadric E. Does the exponential Wells-Riley model provide a good fit for human coronavirus and rhinovirus? A comparison of four dose-response models based on human challenge data. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:631-640. [PMID: 37317640 DOI: 10.1111/risa.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
The risk assessments during the COVID-19 pandemic were primarily based on dose-response models derived from the pooled datasets for infection of animals susceptible to SARS-CoV. Despite similarities, differences in susceptibility between animals and humans exist for respiratory viruses. The two most commonly used dose-response models for calculating the infection risk of respiratory viruses are the exponential and the Stirling approximated β-Poisson (BP) models. The modified version of the one-parameter exponential model or the Wells-Riley model was almost solely used for infection risk assessments during the pandemic. Still, the two-parameter (α and β) Stirling approximated BP model is often recommended compared to the exponential dose-response model due to its flexibility. However, the Stirling approximation restricts this model to the general rules of β ≫ 1 and α ≪ β, and these conditions are very often violated. To refrain from these requirements, we tested a novel BP model by using the Laplace approximation of the Kummer hypergeometric function instead of the conservative Stirling approximation. The datasets of human respiratory airborne viruses available in the literature for human coronavirus (HCoV-229E) and human rhinovirus (HRV-16 and HRV-39) are used to compare the four dose-response models. Based on goodness-of-fit criteria, the exponential model was the best fitting model for the HCoV-229E (k = 0.054) and for HRV-39 datasets (k = 1.0), whereas the Laplace approximated BP model followed by the exact and Stirling approximated BP models are preferred for both the HRV-16 (α = 0.152 and β = 0.021 for Laplace BP) and the HRV-16 and HRV-39 pooled datasets (α = 0.2247 and β = 0.0215 for Laplace BP).
Collapse
Affiliation(s)
- Amar Aganovic
- Faculty of Engineering Science and Technology, The Arctic University of Tromsø, Tromso, Norway
| | - Edin Kadric
- Faculty of Mechanical Engineering, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
7
|
Wolkoff P. Indoor air humidity revisited: Impact on acute symptoms, work productivity, and risk of influenza and COVID-19 infection. Int J Hyg Environ Health 2024; 256:114313. [PMID: 38154254 DOI: 10.1016/j.ijheh.2023.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Recent epidemiological and experimental findings reconfirm that low indoor air humidity (dry air) increases the prevalence of acute eye and airway symptoms in offices, result in lower mucociliary clearance in the airways, less efficient immune defense, and deteriorate the work productivity. New epidemiological and experimental research also support that the environmental conditions for the risk of infection of influenza and COVID-19 virus is lowest in the Goldilocks zone of 40-60% relative humidity (RH) by decrease of the airways' susceptibility, which can be elevated by particle exposure. Furthermore, low RH increases the generation of infectious virus laden aerosols exhaled from infected people. In general, elevation of the indoor air humidity from dry air increases the health of the airways concomitantly with lower viability of infectious virus. Thus, the negative effects of ventilation with dry outdoor air (low absolute air humidity) should be assessed according to 1) weakened health and functionality of the airways, 2) increased viability and possible increased transmissibility of infectious virus, and 3) evaporation of virus containing droplets to dry out to droplet nuclei (also possible at high room temperature), which increases their floating time in the indoor air. The removal of acid-containing ambient aerosols from the indoor air by filtration increases pH, viability of infectious viruses, and the risk of infection, which synergistically may further increase by particle exposure. Thus, the dilution of indoor air pollutants and virus aerosols by dry outdoor air ventilation should be assessed and compared with the beneficial health effects by control of the center zone of 40-60% RH, an essential factor for optimal functionality of the airways, and with the additional positive impact on acute symptoms, work productivity, and reduced risk of infection.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Denmark.
| |
Collapse
|
8
|
Zhang Y, Shankar SN, Vass WB, Lednicky JA, Fan ZH, Agdas D, Makuch R, Wu CY. Air Change Rate and SARS-CoV-2 Exposure in Hospitals and Residences: A Meta-Analysis. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2024; 58:217-243. [PMID: 38764553 PMCID: PMC11101186 DOI: 10.1080/02786826.2024.2312178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/16/2024] [Indexed: 05/21/2024]
Abstract
As SARS-CoV-2 swept across the globe, increased ventilation and implementation of air cleaning were emphasized by the US CDC and WHO as important strategies to reduce the risk of inhalation exposure to the virus. To assess whether higher ventilation and air cleaning rates lead to lower exposure risk to SARS-CoV-2, 1274 manuscripts published between April 2020 and September 2022 were screened using key words "airborne SARS-CoV-2 or "SARS-CoV-2 aerosol". Ninety-three studies involved air sampling at locations with known sources (hospitals and residences) were selected and associated data were compiled. Two metrics were used to assess exposure risk: SARS-CoV-2 concentration and SARS-CoV-2 detection rate in air samples. Locations were categorized by type (hospital or residence) and proximity to the sampling location housing the isolated/quarantined patient (primary or secondary). The results showed that hospital wards had lower airborne virus concentrations than residential isolation rooms. A negative correlation was found between airborne virus concentrations in primary-occupancy areas and air changes per hour (ACH). In hospital settings, sample positivity rates were significantly reduced in secondary-occupancy areas compared to primary-occupancy areas, but they were similar across sampling locations in residential settings. ACH and sample positivity rates were negatively correlated, though the effect was diminished when ACH values exceeded 8. While limitations associated with diverse sampling protocols exist, data considered by this meta-analysis support the notion that higher ACH may reduce exposure risks to the virus in ambient air.
Collapse
Affiliation(s)
- Yuetong Zhang
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columnia, Canada
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Environmental & Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Z. Hugh Fan
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Duzgun Agdas
- Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, Florida, USA
| | - Robert Makuch
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
9
|
Qiu G, Zhang X, deMello AJ, Yao M, Cao J, Wang J. On-site airborne pathogen detection for infection risk mitigation. Chem Soc Rev 2023; 52:8531-8579. [PMID: 37882143 PMCID: PMC10712221 DOI: 10.1039/d3cs00417a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 10/27/2023]
Abstract
Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated. From a bioanalytical chemistry perspective, on-site airborne pathogen detection can be an effective non-pharmaceutic intervention (NPI) strategy, with on-site airborne pathogen detection and early-stage infection risk evaluation reducing the spread of disease and enabling life-saving decisions to be made. In light of this, we summarize the recent advances in highly efficient pathogen-laden aerosol sampling approaches, bioanalytical sensing technologies, and the prospects for airborne pathogen exposure measurement and evidence-based transmission interventions. We also discuss open challenges facing general bioaerosols detection, such as handling complex aerosol samples, improving sensitivity for airborne pathogen quantification, and establishing a risk assessment system with high spatiotemporal resolution for mitigating airborne transmission risks. This review provides a multidisciplinary outlook for future opportunities to improve the on-site airborne pathogen detection techniques, thereby enhancing the preparedness for more on-site bioaerosols measurement scenarios, such as monitoring high-risk pathogens on airplanes, weaponized pathogen aerosols, influenza variants at the workplace, and pollutant correlated with sick building syndromes.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, Zürich, Switzerland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Science, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
10
|
Horne J, Dunne N, Singh N, Safiuddin M, Esmaeili N, Erenler M, Ho I, Luk E. Building parameters linked with indoor transmission of SARS-CoV-2. ENVIRONMENTAL RESEARCH 2023; 238:117156. [PMID: 37717799 DOI: 10.1016/j.envres.2023.117156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/27/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The rapid spread of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emphasized the importance of understanding and adapting to the indoor remediation of transmissible diseases to decrease the risk for future pandemic threats. While there were many precautions in place to hinder the spread of COVID-19, there has also been a substantial increase of new research on SARS-CoV-2 that can be utilized to further mitigate the transmission risk of this novel virus. This review paper aims to identify the building parameters of indoor spaces that could have considerable influence on the transmission of SARS-CoV-2. The following building parameters have been identified and analyzed, emphasizing their link with the indoor transmission of SARS-CoV-2: temperature and relative humidity, temperature differences between rooms, ventilation rate and access to natural ventilation, occupant density, surface type and finish, airflow direction and speed, air stability, indoor air pollution, central air conditioning systems, capacity of air handling system and HVAC filter efficiency, edge sealing of air filters, room layout and interior design, and compartmentalization of interior space. This paper also explains the interactions of SARS-CoV-2 with indoor environments and its persistence. Furthermore, the modifications of the key building parameters have been discussed for controlling the transmission of SARS-CoV-2 in indoor spaces. Understanding the information provided in this paper is crucial to develop effective health and safety measures that will aid in infection prevention.
Collapse
Affiliation(s)
- Jacqueline Horne
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Nicholas Dunne
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Nirmala Singh
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Md Safiuddin
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada.
| | - Navid Esmaeili
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Merve Erenler
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Ian Ho
- Sysconverge Inc., 7030 Woodbine Avenue, Suite 500, Markham, ON L3R 6G2, Canada
| | - Edwin Luk
- Sysconverge Inc., 7030 Woodbine Avenue, Suite 500, Markham, ON L3R 6G2, Canada
| |
Collapse
|
11
|
Chair SY, Ng ST, Chao CYH, Xu JF. Heating, ventilation, and air-conditioning systems in healthcare: a scoping review. J Hosp Infect 2023; 141:33-40. [PMID: 37640266 DOI: 10.1016/j.jhin.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Guidelines for heating, ventilation, and air-conditioning systems have been developed for different settings. However, there is a lack of up-to-date evidence providing concrete recommendations for the heating, ventilation, and air-conditioning systems of an isolation room, which is essential to appropriately guide infection control policies. To highlight the guidelines for heating, ventilation, and air-conditioning systems in isolation rooms to inform relevant stakeholders and policymakers. A systematic search was performed based on Joanna Briggs Methodology using five databases (CINAHL, Embase, Joanna Briggs Institute, Medline, and Web of Science) and websites. Eight articles published by government departments were included in this review. Most studies recommended controlled airflow without recirculation, 12 air changes per hour, high-efficiency particulate air filtrate to exhaust contaminated air from the airborne isolation room, humidity ≤60%, and temperature in the range of 18-30 °C. This review provides further evidence that there is a need for interdisciplinary collaborative research to quantify the optimum range for heating, ventilation, and air conditioning system parameters, considering door types, anterooms, and bed management, to effectively reduce the transmission of infection in isolation rooms.
Collapse
Affiliation(s)
- S Y Chair
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - S T Ng
- Department of Architecture & Civil Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - C Y H Chao
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - J F Xu
- Department of Architecture & Civil Engineering, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Hanna F, Alameddine I, Zaraket H, Alkalamouni H, El-Fadel M. Airborne influenza virus shedding by patients in health care units: Removal mechanisms affecting virus transmission. PLoS One 2023; 18:e0290124. [PMID: 37878553 PMCID: PMC10599543 DOI: 10.1371/journal.pone.0290124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 10/27/2023] Open
Abstract
In this study, we characterize the distribution of airborne viruses (influenza A/B) in hospital rooms of patients with confirmed infections. Concurrently, we monitored fine particulate matter (PM2.5 & PM10) and several physical parameters including the room air exchange rate, temperature, and relative humidity to identify corresponding correlations with virus transport and removal determinants. The results continue to raise concerns about indoor air quality (IAQ) in healthcare facilities and the potential exposure of patients, staff and visitors to aerosolized viruses as well as elevated indoor PM levels caused by outdoor sources and/or re-suspension of settled particles by indoor activities. The influenza A virus was detected in 42% of 33 monitored rooms, with viruses detectible up to 1.5 m away from the infected patient. Active coughing was a statistically significant variable that contributed to a higher positive rate of virus detection in the collected air samples. Viral load across patient rooms ranged between 222 and 5,760 copies/m3, with a mean of 820 copies/m3. Measured PM2.5 and PM10 levels exceeded IAQ daily exposure guidelines in most monitored rooms. Statistical and numerical analyses showed that dispersion was the dominant viral removal pathway followed by settling. Changes in the relative humidity and the room's temperature were had a significant impact on the viral load removal. In closure, we highlight the need for an integrated approach to control determinants of IAQ in patients' rooms.
Collapse
Affiliation(s)
- Francis Hanna
- Department of Civil Infrastructure & Environmental Engineering, College of Engineering, Khalifa University, United Arab Emirates
- Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Lebanon
| | - Ibrahim Alameddine
- Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Habib Alkalamouni
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mutasem El-Fadel
- Department of Civil Infrastructure & Environmental Engineering, College of Engineering, Khalifa University, United Arab Emirates
- Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Lebanon
| |
Collapse
|
13
|
Tang K, Chen B. Resilient Hospital Design: From Crimean War to COVID-19. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2023; 16:36-55. [PMID: 37162134 PMCID: PMC10621026 DOI: 10.1177/19375867231174238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
OBJECTIVES Serious COVID-19 nosocomial infection has demonstrated a need to design our health services in a different manner. Triggered by the current crisis and the interest in rapid deployable hospital, this article discusses how hospital building layouts can be improved to streamline the patient pathways and thus to reduce the risk of hospital-related infections. Another objective of this work is to explore the possibility to develop flexible and scalable hospital building layouts through modular construction. This enables hospitals to better cope with different future demands and thereby enhance the resilience of the healthcare facilities. BACKGROUND During the first wave of COVID-19, approximate one-seventh to one-fifth COVID-19 patients and majority of infected healthcare workers acquired the disease in NHS hospitals. Similar issues emerged during the Crimean War (1853-1856) when more soldiers died from infectious diseases rather than of battlefield casualties in Scutari Hospital. This led to an important collaborative work between Florence Nightingale, who looked into this problem statistically, and Isambard Kingdom Brunel, who designed the rapid deployment Renkioi Hospital which yielded a death rate 90% lower than that in Scutari Hospital. While contemporary medical research and practice have moved beyond Nightingale's concept of contagion, challenges of optimizing hospital building layouts to support healing and effectively combat nosocomial infections still pose elusive problems that require further investigation. METHODS Through case study investigations, this article evaluates the risk of nosocomial infections of airborne transmissions under different building layouts, and this provides essential data for infection control in the new-build or refurbished healthcare projects. RESULTS Improved hospital layout can be achieved through reconfiguration of rooms and concourse. Design interventions through evidence-based infection risk analysis can reduce congestion and provide extra separation and compartmentalization which will contribute the reduced nosocomial infection rate. CONCLUSIONS A resilient hospital shall be able to cope with unexpected circumstances and be flexible to change when new challenges arise, without compromising the safety and well-being of frontline medical staff and other patients. Such an organizational resilience depends on not only flexible clinical protocols but also flexible hospital building layouts. The latter allows hospitals to get better prepared for rapidly changing patient expectations, medical advances, and extreme weather events. The reconfigurability of an existing healthcare facility can be further enhanced through modular construction, standardization of building components, and additional space considered.
Collapse
Affiliation(s)
- Kangkang Tang
- Department of Civil and Environmental Engineering, Brunel University London, United Kingdom
| | - Bing Chen
- Department of Urban Planning and Design, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou, Jiangsu, China
| |
Collapse
|
14
|
An overview of SARS-CoV-2 transmission and engineering strategies to mitigate risk. JOURNAL OF BUILDING ENGINEERING 2023; 73:106737. [PMCID: PMC10165872 DOI: 10.1016/j.jobe.2023.106737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 10/31/2024]
Abstract
The spread of the COVID-19 pandemic has profoundly affected every aspect of our lives. To date, experts have acknowledged that airborne transmission is a key piece of the SARS-CoV-2 puzzle. Nevertheless, the exact mechanism of airborne transmission of SARS-CoV-2 remains unclear. Recent works have shown the spreading of SARS-CoV-2 through numerical modeling and experimental works, but the successful applications of engineering approaches in reducing the spread of SARS-CoV-2 are lacking. In this review, the environmental factors that influence the transmission risk of SARS-CoV-2, such as ventilation flow rates, humidity, and temperature, are discussed. Besides, additional macro and micro weather factors, regional and global transmission, and the variants of the spread of SARS-CoV-2 are also reviewed. Engineering approaches that practically reduce the risks of SARS-CoV-2 transmissions are reported. Given the complex human behavior, environmental properties, and dynamic nature of the SARS-CoV-2 virus, it is reasonable to summarize that SARS-CoV-2 may not be eradicated even with the timely implementation of interventions. Therefore, more research exploring the potential cost-effective ways to control the transmission rate of SARS-CoV-2 may be a worthwhile pursuit to moderate the current crisis.
Collapse
|
15
|
Clements N, Arvelo I, Arnold P, Heredia NJ, Hodges UW, Deresinski S, Cook PW, Hamilton KA. Informing Building Strategies to Reduce Infectious Aerosol Transmission Risk by Integrating DNA Aerosol Tracers with Quantitative Microbial Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5771-5781. [PMID: 37000413 DOI: 10.1021/acs.est.2c08131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Using aerosol-based tracers to estimate risk of infectious aerosol transmission aids in the design of buildings with adequate protection against aerosol transmissible pathogens, such as SARS-CoV-2 and influenza. We propose a method for scaling a SARS-CoV-2 bulk aerosol quantitative microbial risk assessment (QMRA) model for impulse emissions, coughing or sneezing, with aerosolized synthetic DNA tracer concentration measurements. With point-of-emission ratios describing relationships between tracer and respiratory aerosol emission characteristics (i.e., volume and RNA or DNA concentrations) and accounting for aerosolized pathogen loss of infectivity over time, we scale the inhaled pathogen dose and risk of infection with time-integrated tracer concentrations measured with a filter sampler. This tracer-scaled QMRA model is evaluated through scenario testing, comparing the impact of ventilation, occupancy, masking, and layering interventions on infection risk. We apply the tracer-scaled QMRA model to measurement data from an ambulatory care room to estimate the risk reduction resulting from HEPA air cleaner operation. Using DNA tracer measurements to scale a bulk aerosol QMRA model is a relatively simple method of estimating risk in buildings and can be applied to understand the impact of risk mitigation efforts.
Collapse
Affiliation(s)
- Nicholas Clements
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Ilan Arvelo
- SafeTraces, Inc., Pleasanton, California 94588, United States
| | - Phil Arnold
- SafeTraces, Inc., Pleasanton, California 94588, United States
| | | | - Ulrike W Hodges
- SafeTraces, Inc., Pleasanton, California 94588, United States
| | - Stan Deresinski
- Stanford University School of Medicine, Stanford, California 94305, United States
| | - Peter W Cook
- Independent researcher, Atlanta, Georgia 30333, United States
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
16
|
A review on indoor airborne transmission of COVID-19– modelling and mitigation approaches. JOURNAL OF BUILDING ENGINEERING 2023; 64:105599. [PMCID: PMC9699823 DOI: 10.1016/j.jobe.2022.105599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/09/2023]
Abstract
In the past few years, significant efforts have been made to investigate the transmission of COVID-19. This paper provides a review of the COVID-19 airborne transmission modeling and mitigation strategies. The simulation models here are classified into airborne transmission infectious risk models and numerical approaches for spatiotemporal airborne transmissions. Mathematical descriptions and assumptions on which these models have been based are discussed. Input data used in previous simulation studies to assess the dispersion of COVID-19 are extracted and reported. Moreover, measurements performed to study the COVID-19 airborne transmission within indoor environments are introduced to support validations for anticipated future modeling studies. Transmission mitigation strategies recommended in recent studies have been classified to include modifying occupancy and ventilation operations, using filters and air purifiers, installing ultraviolet (UV) air disinfection systems, and personal protection compliance, such as wearing masks and social distancing. The application of mitigation strategies to various building types, such as educational, office, public, residential, and hospital, is reviewed. Recommendations for future works are also discussed based on the current apparent knowledge gaps covering both modeling and mitigation approaches. Our findings show that different transmission mitigation measures were recommended for various indoor environments; however, there is no conclusive work reporting their combined effects on the level of mitigation that may be achieved. Moreover, further studies should be conducted to understand better the balance between approaches to mitigating the viral transmissions in buildings and building energy consumption.
Collapse
|
17
|
UVC-Based Air Disinfection Systems for Rapid Inactivation of SARS-CoV-2 Present in the Air. Pathogens 2023; 12:pathogens12030419. [PMID: 36986341 PMCID: PMC10053150 DOI: 10.3390/pathogens12030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 03/09/2023] Open
Abstract
The World Health Organization (WHO) declared in May 2021 that SARS-CoV-2 is transmitted not only by close contact with infectious respiratory fluids from infected people or contaminated materials but also indirectly through air. Airborne transmission has serious implications for the control measures we can deploy, given the emergence of more transmissible variants. This emphasizes the need to deploy a mechanism to reduce the viral load in the air, especially in closed and crowded places such as hospitals, public transport buses, etc. In this study, we explored ultraviolet C (UVC) radiation for its ability to inactivate the SARS-CoV-2 particles present in aerosols and designed an air disinfection system to eliminate infectious viruses. We studied the virus inactivation kinetics to identify the UVC dosage required to achieve maximum virus inactivation. Based on the experimental data, UVC-based devices were designed for the sanitization of air through HVAC systems in closed spaces. Further, a risk assessment model to estimate the risk reduction was applied which showed that the use of UVC radiation could result in the reduction of the risk of infection in occupied spaces by up to 90%.
Collapse
|
18
|
de Crane D’Heysselaer S, Parisi G, Lisson M, Bruyère O, Donneau AF, Fontaine S, Gillet L, Bureau F, Darcis G, Thiry E, Ducatez M, Snoeck CJ, Zientara S, Haddad N, Humblet MF, Ludwig-Begall LF, Daube G, Thiry D, Misset B, Lambermont B, Tandjaoui-Lambiotte Y, Zahar JR, Sartor K, Noël C, Saegerman C, Haubruge E. Systematic Review of the Key Factors Influencing the Indoor Airborne Spread of SARS-CoV-2. Pathogens 2023; 12:382. [PMID: 36986304 PMCID: PMC10053454 DOI: 10.3390/pathogens12030382] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been plaguing the world since late 2019/early 2020 and has changed the way we function as a society, halting both economic and social activities worldwide. Classrooms, offices, restaurants, public transport, and other enclosed spaces that typically gather large groups of people indoors, and are considered focal points for the spread of the virus. For society to be able to go "back to normal", it is crucial to keep these places open and functioning. An understanding of the transmission modes occurring in these contexts is essential to set up effective infection control strategies. This understanding was made using a systematic review, according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement (PRISMA) 2020 guidelines. We analyze the different parameters influencing airborne transmission indoors, the mathematical models proposed to understand it, and discuss how we can act on these parameters. Methods to judge infection risks through the analysis of the indoor air quality are described. Various mitigation measures are listed, and their efficiency, feasibility, and acceptability are ranked by a panel of experts in the field. Thus, effective ventilation procedures controlled by CO2-monitoring, continued mask wearing, and a strategic control of room occupancy, among other measures, are put forth to enable a safe return to these essential places.
Collapse
Affiliation(s)
| | - Gianni Parisi
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), FARAH Research Centre, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Maxime Lisson
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Olivier Bruyère
- Division of Public Health, Epidemiology and Health Economics, Faculty of Medicine, University of Liège, 4000 Liège, Belgium
| | | | - Sebastien Fontaine
- Institute for Research in Social Sciences (IRSS), Faculty of Social Sciences, University of Liege, 4000 Liège, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, University of Liege, 4000 Liège, Belgium
| | - Gilles Darcis
- Infectious Diseases Department, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, FARAH Research Centre, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Mariette Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 31000 Toulouse, France
| | - Chantal J. Snoeck
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Stéphan Zientara
- UMR1161 Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, Anses, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Nadia Haddad
- UMR BIPAR 956, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Marie-France Humblet
- Department of Occupational Safety and Health, University of Liege, 4000 Liege, Belgium
| | - Louisa F. Ludwig-Begall
- Veterinary Virology and Animal Viral Diseases, FARAH Research Centre, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Georges Daube
- Laboratoire de Microbiologie des Denrées Alimentaires, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Damien Thiry
- Bacteriology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| | - Benoît Misset
- Service des Soins Intensifs, CHU Sart Tilman, Department des Sciences Cliniques, University of Liège, 4000 Liege, Belgium
| | - Bernard Lambermont
- Service des Soins Intensifs, CHU Sart Tilman, Department des Sciences Cliniques, University of Liège, 4000 Liege, Belgium
| | - Yacine Tandjaoui-Lambiotte
- Laboratoire Hypoxie and Poumon INSERM U1272, Service de Réanimation Médico-Chirurgicale, CHU Avicenne, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
| | | | - Kevin Sartor
- Planification: Energie—Environnement, Département d’Aérospatiale et Mécanique, Systèmes Énergétiques, University of Liège, 4000 Liège, Belgium
| | - Catherine Noël
- Department of Occupational Safety and Health, University of Liege, 4000 Liege, Belgium
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), FARAH Research Centre, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Eric Haubruge
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
19
|
Aganovic A, Cao G, Kurnitski J, Wargocki P. New dose-response model and SARS-CoV-2 quanta emission rates for calculating the long-range airborne infection risk. BUILDING AND ENVIRONMENT 2023; 228:109924. [PMID: 36531865 PMCID: PMC9747236 DOI: 10.1016/j.buildenv.2022.109924] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Predictive models for airborne infection risk have been extensively used during the pandemic, but there is yet still no consensus on a common approach, which may create misinterpretation of results among public health experts and engineers designing building ventilation. In this study we applied the latest data on viral load, aerosol droplet sizes and removal mechanisms to improve the Wells Riley model by introducing the following novelties i) a new model to calculate the total volume of respiratory fluid exhaled per unit time ii) developing a novel viral dose-based generation rate model for dehydrated droplets after expiration iii) deriving a novel quanta-RNA relationship for various strains of SARS-CoV-2 iv) proposing a method to account for the incomplete mixing conditions. These new approaches considerably changed previous estimates and allowed to determine more accurate average quanta emission rates including omicron variant. These quanta values for the original strain of 0.13 and 3.8 quanta/h for breathing and speaking and the virus variant multipliers may be used for simple hand calculations of probability of infection or with developed model operating with six size ranges of aerosol droplets to calculate the effect of ventilation and other removal mechanisms. The model developed is made available as an open-source tool.
Collapse
Affiliation(s)
- Amar Aganovic
- Department of Automation and Process Engineering, UiT The Arctic University of Norway, Tromsø, Norway
| | - Guangyu Cao
- Department of Energy and Process Engineering, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Jarek Kurnitski
- REHVA Technology and Research Committee, Tallinn University of Technology, Tallinn, Estonia
| | - Pawel Wargocki
- Department of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
20
|
Aganovic A, Cao G, Kurnitski J, Melikov A, Wargocki P. Zonal modeling of air distribution impact on the long-range airborne transmission risk of SARS-CoV-2. APPLIED MATHEMATICAL MODELLING 2022; 112:800-821. [PMID: 36060304 PMCID: PMC9420246 DOI: 10.1016/j.apm.2022.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
A widely used analytical model to quantitatively assess airborne infection risk is the Wells-Riley model which is limited to complete air mixing in a single zone. However, this assumption tends not to be feasible (or reality) for many situations. This study aimed to extend the Wells-Riley model so that the infection risk can be calculated in spaces where complete mixing is not present. Some more advanced ventilation concepts create either two horizontally divided air zones in spaces as displacement ventilation or the space may be divided into two vertical zones by downward plane jet as in protective-zone ventilation systems. This is done by evaluating the time-dependent distribution of infectious quanta in each zone and by solving the coupled system of differential equations based on the zonal quanta concentrations. This model introduces a novel approach by estimating the interzonal mixing factor based on previous experimental data for three types of ventilation systems: incomplete mixing ventilation, displacement ventilation, and protective zone ventilation. The modeling approach is applied to a room with one infected and one susceptible person present. The results show that using the Wells-Riley model based on the assumption of completely air mixing may considerably overestimate or underestimate the long-range airborne infection risk in rooms where air distribution is different than complete mixing, such as displacement ventilation, protected zone ventilation, warm air supplied from the ceiling, etc. Therefore, in spaces with non-uniform air distribution, a zonal modeling approach should be preferred in analytical models compared to the conventional single-zone Wells-Riley models when assessing long-range airborne transmission risk of infectious respiratory diseases.
Collapse
Affiliation(s)
- Amar Aganovic
- Department of Automation and Process Engineering, UiT The Arctic University of Norway, Postboks 6050 Langnes, Tromsø 9037, Norway
| | - Guangyu Cao
- Department of Energy and Process Engineering, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Jarek Kurnitski
- REHVA Technology and Research Committee, Tallinn University of Technology, Tallinn, Estonia
| | - Arsen Melikov
- Department of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
| | - Pawel Wargocki
- Department of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
21
|
Zahedi A, Seif F, Golshan M, Khammar A, Rezaei Kahkha MR. Air Surveillance for Viral Contamination with SARS-CoV-2 RNA at a Healthcare Facility. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:374-383. [PMID: 35610444 PMCID: PMC9129059 DOI: 10.1007/s12560-022-09524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/10/2022] [Indexed: 05/13/2023]
Abstract
The transmission pathway of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 also called COVID-19 disease) in indoor environments are the main area of contention between health systems and scientists. In this context, little has been investigated about the collection of airborne viral shedding. Here, we collected air samples from 24 locations inside the sole COVID-19 patient care center in Zabol, Iran, for screening SARS-CoV-2 RNA from March to May 2021. Locations included the ICU, COVID-19 wards (CWs) rooms, corridors, nearby nurses' stations, and toilets. We identified the SARS-CoV-2 RNA in breathing zone of CW, in room air, with the positivity rate of 2.5% at a concentration of 17 × 103 virus genome copies/m3 air. It also investigates the relationship between local climate conditions [i.e., temperature and relative humidity] and COVID-19 transmission with the evolution of daily official data on the number of new cases, hospitalizations, and deaths. Current data explained that the difference of temperature and humidity may affect the behavior of virus along with other factors, i.e., population density, individual viral shedding, and infectious dose of SARS-CoV-2 (both indoor and outdoor). Our data support the potential SARS-CoV-2 airborne transmission indoors suggesting the specific safety assessment of building to improve ventilation solutions besides proper using face masks and extensive public health interventions.
Collapse
Affiliation(s)
- Amir Zahedi
- Department of Environmental Health Engineering, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Masoumeh Golshan
- Department of Environmental Health Engineering, Faculty of Health, Zabol University of Medical Sciences, Zabol, Iran.
| | - Alireza Khammar
- Department of Occupational Health, Faculty of Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Reza Rezaei Kahkha
- Department of Environmental Health Engineering, Faculty of Health, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
22
|
Rodríguez D, Urbieta IR, Velasco Á, Campano-Laborda MÁ, Jiménez E. Assessment of indoor air quality and risk of COVID-19 infection in Spanish secondary school and university classrooms. BUILDING AND ENVIRONMENT 2022; 226:109717. [PMID: 36313012 PMCID: PMC9595429 DOI: 10.1016/j.buildenv.2022.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Despite the risk of transmission of SARS-CoV-2, Spanish educational centers were reopened after six months of lockdown. Ventilation was mostly adopted as a preventive measure to reduce the transmission risk of the virus. However, it could also affect indoor air quality (IAQ). Therefore, here we evaluate the ventilation conditions, COVID-19 risk, and IAQ in secondary school and university classrooms in Toledo (central Spain) from November 2020 to June 2021. Ventilation was examined by monitoring outdoor and indoor CO2 levels. CO2, occupancy and hygrothermal parameters, allowed estimating the relative transmission risk of SARS-CoV-2 (Alpha and Omicron BA.1), H r, under different scenarios, using the web app COVID Risk airborne . Additionally, the effect of ventilation on IAQ was evaluated by measuring indoor/outdoor (I/O) concentration ratios of O3, NO2, and suspended particulate matter (PM). University classrooms, particularly the mechanically ventilated one, presented better ventilation conditions than the secondary school classrooms, as well as better thermal comfort conditions. The estimated H r for COVID-19 ranged from intermediate (with surgical masks) to high (no masks, teacher infected). IAQ was generally good in all classrooms, particularly at the university ones, with I/O below unity, implying an outdoor origin of gaseous pollutants, while the source of PM was heterogeneous. Consequently, controlled mechanical ventilation systems are essential in educational spaces, as well as wearing well-fitting FFP2-N95 masks indoors is also highly recommended to minimize the transmission risk of COVID-19 and other airborne infectious diseases.
Collapse
Affiliation(s)
- Diana Rodríguez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha (UCLM), Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Itziar R Urbieta
- Departamento de Ciencias Ambientales, Facultad de Ciencias Ambientales y Bioquímica, UCLM, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Ángel Velasco
- Departamento de Ciencias Ambientales, Facultad de Ciencias Ambientales y Bioquímica, UCLM, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Miguel Ángel Campano-Laborda
- Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, UCLM, Avda. Camilo José Cela 1B, 13071, Ciudad Real, Spain
| |
Collapse
|
23
|
Vass WB, Lednicky JA, Shankar SN, Fan ZH, Eiguren-Fernandez A, Wu CY. Viable SARS-CoV-2 Delta variant detected in aerosols in a residential setting with a self-isolating college student with COVID-19. JOURNAL OF AEROSOL SCIENCE 2022; 165:106038. [PMID: 35774447 PMCID: PMC9217630 DOI: 10.1016/j.jaerosci.2022.106038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 05/08/2023]
Abstract
The B.1.617.2 (Delta) variant of SARS-CoV-2 emerged in India in October of 2020 and spread widely to over 145 countries, comprising over 99% of genome sequence-confirmed virus in COVID-19 cases of the United States (US) by September 2021. The rise in COVID-19 cases due to the Delta variant coincided with a return to in-person school attendance, straining COVID-19 mitigation plans implemented by educational institutions. Some plans required sick students to self-isolate off-campus, resulting in an unintended consequence: exposure of co-inhabitants of dwellings used by the sick person during isolation. We assessed air and surface samples collected from the bedroom of a self-isolating university student with mild COVID-19 for the presence of SARS-CoV-2. That virus' RNA was detected by real-time reverse-transcription quantitative polymerase chain reaction (rRT-qPCR) in air samples from both an isolation bedroom and a distal, non-isolation room of the same dwelling. SARS-CoV-2 was detected and viable virus was isolated in cell cultures from aerosol samples as well as from the surface of a mobile phone. Genomic sequencing revealed that the virus was a Delta variant SARS-CoV-2 strain. Taken together, the results of this work confirm the presence of viable SARS-CoV-2 within a residential living space of a person with COVID-19 and show potential for transportation of virus-laden aerosols beyond a designated isolation suite to other areas of a single-family home.
Collapse
Affiliation(s)
- William B Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Z Hugh Fan
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
- Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | | | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Sha HH, Zhang X, Qi DH. Impact of mechanical ventilation control strategies based on non-steady-state and steady-state Wells-Riley models on airborne transmission and building energy consumption. JOURNAL OF CENTRAL SOUTH UNIVERSITY 2022; 29:2415-2430. [PMID: 36034192 PMCID: PMC9399565 DOI: 10.1007/s11771-022-5072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 06/15/2023]
Abstract
Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission. Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive ventilation rate, which may lead to high energy consumption. The Wells-Riley (WR) model is widely used to predict infection risk and control the ventilation rate. However, few studies compared the non-steady-state (NSS) and steady-state (SS) WR models that are used for ventilation control. To fill in this research gap, this study investigates the effects of the mechanical ventilation control strategies based on NSS/SS WR models on the required ventilation rates to prevent airborne transmission and related energy consumption. The modified NSS/SS WR models were proposed by considering many parameters that were ignored before, such as the initial quantum concentration. Based on the NSS/SS WR models, two new ventilation control strategies were proposed. A real building in Canada is used as the case study. The results indicate that under a high initial quantum concentration (e.g., 0.3 q/m3) and no protective measures, SS WR control underestimates the required ventilation rate. The ventilation energy consumption of NSS control is up to 2.5 times as high as that of the SS control.
Collapse
Affiliation(s)
- Hao-han Sha
- Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, J1K 2R1 Canada
| | - Xin Zhang
- Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, J1K 2R1 Canada
| | - Da-hai Qi
- Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, J1K 2R1 Canada
| |
Collapse
|
25
|
Zhang S, Niu D, Lu Y, Lin Z. Contaminant removal and contaminant dispersion of air distribution for overall and local airborne infection risk controls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155173. [PMID: 35421454 PMCID: PMC8996441 DOI: 10.1016/j.scitotenv.2022.155173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 05/07/2023]
Abstract
Proper air distribution is crucial for airborne infection risk control of infectious respiratory diseases like COVID-19. Existing studies evaluate and compare the performances of different air distributions for airborne infection risk control, but the mechanisms of air distribution for airborne infection risk control remain unclear. This study investigates the mechanisms of air distribution for both overall and local airborne infection risk controls. The experimentally validated CFD models simulate the contaminant concentration fields in a hospital ward based on which the airborne infection risks of COVID-19 are evaluated with the dilution-based expansion of the Wells-Riley model. Different air distributions, i.e., stratum ventilation, displacement ventilation, and mixing ventilation, with various supply airflow rates are tested. The results show that the variations of the overall and local airborne infection risks under different air distributions and different supply airflow rates are complicated and non-linear. The contaminant removal and the contaminant dispersion are proposed as the mechanisms for the overall and local airborne infection risk controls, respectively, regardless of airflow distributions and supply airflow rates. A large contaminant removal ability benefits the overall airborne infection risk control, with the coefficient of determination of 0.96 between the contaminant removal index and the reciprocal of the overall airborne infection risk. A large contaminant dispersion ability benefits the local airborne infection risk control, with the coefficient of determination of 0.99 between the contaminant dispersion index and the local airborne infection risk.
Collapse
Affiliation(s)
- Sheng Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi 710049, PR China
| | - Dun Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi 710049, PR China
| | - Yalin Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China.
| | - Zhang Lin
- Division of Building Science and Technology, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China
| |
Collapse
|
26
|
Laguardia GCDA, Püschel VADA, Oliveira PPD, Faria LRD, Cavalcante RB, Coelho ADCO, Santos KBD, Carbogim FDC. Control of airborne particles in surgical procedures during the Covid-19 pandemic: scoping review. Rev Esc Enferm USP 2022; 56:e20210579. [PMID: 35899926 PMCID: PMC10111397 DOI: 10.1590/1980-220x-reeusp-2021-0579en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To map the technical and managerial strategies for the management and reduction of airborne particles production in surgical procedures settings during the Covid-19 pandemic. METHOD Scoping review, according to the Joana Briggs Institute methodology, based on documents indexed in MEDLINE, VHL, CINAHL Cochrane, Embase, Scopus, Web of Science, and gray literature, published in Portuguese, English, or Spanish. All studies from indexed scientific journals and recommendations published by international agencies or academic associations from 2019 to January 2022 were considered. Findings were summarized and analyzed using descriptive statistics and narrative synthesis. RESULTS Twenty-two studies were selected, 19 of which were published in English, two in Spanish, one in Portuguese, with a predominance of literature reviews. Findings were categorized into recommendations for the environment, the team, and the surgical technique. CONCLUSION The review mapped the technical and managerial strategies for the management and reduction of the airborne particles production in surgical procedures settings. They involve from the use of personal protective equipment, training, anesthetic modality, airway manipulation, to the execution of the surgical technique.
Collapse
Affiliation(s)
| | - Vilanice Alves de Araújo Püschel
- Universidade de São Paulo, Escola de Enfermagem, Departamento de Enfermagem Médico-Cirúrgica, São Paulo, SP, Brazil.,Centro Brasileiro para o Cuidado à Saúde Baseado em Evidências: Centro de Excelência do JBI (JBI Brasil), São Paulo, SP, Brazil
| | | | | | | | | | - Kelli Borges Dos Santos
- Universidade Federal de Juiz de Fora, Faculdade de Enfermagem, Juiz de Fora, MG, Brazil.,Centro Brasileiro para o Cuidado à Saúde Baseado em Evidências: Centro de Excelência do JBI (JBI Brasil), São Paulo, SP, Brazil
| | - Fábio da Costa Carbogim
- Universidade Federal de Juiz de Fora, Faculdade de Enfermagem, Juiz de Fora, MG, Brazil.,Centro Brasileiro para o Cuidado à Saúde Baseado em Evidências: Centro de Excelência do JBI (JBI Brasil), São Paulo, SP, Brazil
| |
Collapse
|
27
|
Aganovic A, Bi Y, Cao G, Kurnitski J, Wargocki P. Modeling the impact of indoor relative humidity on the infection risk of five respiratory airborne viruses. Sci Rep 2022; 12:11481. [PMID: 35798789 PMCID: PMC9261129 DOI: 10.1038/s41598-022-15703-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
With a modified version of the Wells-Riley model, we simulated the size distribution and dynamics of five airborne viruses (measles, influenza, SARS-CoV-2, human rhinovirus, and adenovirus) emitted from a speaking person in a typical residential setting over a relative humidity (RH) range of 20-80% and air temperature of 20-25 °C. Besides the size transformation of virus-containing droplets due to evaporation, respiratory absorption, and then removal by gravitational settling, the modified model also considered the removal mechanism by ventilation. The trend and magnitude of RH impact depended on the respiratory virus. For rhinovirus and adenovirus humidifying the indoor air from 20/30 to 50% will be increasing the relative infection risk, however, this relative infection risk increase will be negligible for rhinovirus and weak for adenovirus. Humidification will have a potential benefit in decreasing the infection risk only for influenza when there is a large infection risk decrease for humidifying from 20 to 50%. Regardless of the dry solution composition, humidification will overall increase the infection risk via long-range airborne transmission of SARS-CoV-2. Compared to humidification at a constant ventilation rate, increasing the ventilation rate to moderate levels 0.5 → 2.0 h-1 will have a more beneficial infection risk decrease for all viruses except for influenza. Increasing the ventilation rate from low values of 0.5 h-1 to higher levels of 6 h-1 will have a dominating effect on reducing the infection risk regardless of virus type.
Collapse
Affiliation(s)
- Amar Aganovic
- Department of Automation and Process Engineering, The Arctic University of Norway-UiT, 9019, Tromsø, Norway.
| | - Yang Bi
- Department of Energy and Process Engineering, Norwegian University of Science and Technology-NTNU, 7491, Trondheim, Norway
| | - Guangyu Cao
- Department of Energy and Process Engineering, Norwegian University of Science and Technology-NTNU, 7491, Trondheim, Norway
| | - Jarek Kurnitski
- REHVA Technology and Research Committee, Tallinn University of Technology, 19086, Tallinn, Estonia
| | - Pawel Wargocki
- Department of Civil Engineering, Technical University of Denmark, 2800, Copenhagen, Kgs, Denmark
| |
Collapse
|
28
|
Izadyar N, Miller W. Ventilation strategies and design impacts on indoor airborne transmission: A review. BUILDING AND ENVIRONMENT 2022; 218:109158. [PMID: 35573806 PMCID: PMC9075988 DOI: 10.1016/j.buildenv.2022.109158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 outbreak has brought the indoor airborne transmission issue to the forefront. Although ventilation systems provide clean air and dilute indoor contaminated air, there is strong evidence that airborne transmission is the main route for contamination spread. This review paper aims to critically investigate ventilation impacts on particle spread and identify efficient ventilation strategies in controlling aerosol distribution in clinical and non-clinical environments. This article also examines influential ventilation design features (i.e., exhaust location) affecting ventilation performance in preventing aerosols spread. This paper shortlisted published documents for a review based on identification (keywords), pre-processing, screening, and eligibility of these articles. The literature review emphasizes the importance of ventilation systems' design and demonstrates all strategies (i.e., mechanical ventilation) could efficiently remove particles if appropriately designed. The study highlights the need for occupant-based ventilation systems, such as personalized ventilation instead of central systems, to reduce cross-infections. The literature underlines critical impacts of design features like ventilation rates and the number and location of exhausts and suggests designing systems considering airborne transmission. This review underpins that a higher ventilation rate should not be regarded as a sole indicator for designing ventilation systems because it cannot guarantee reducing risks. Using filtration and decontamination devices based on building functionalities and particle sizes can also increase ventilation performance. This paper suggests future research on optimizing ventilation systems, particularly in high infection risk spaces such as multi-storey hotel quarantine facilities. This review contributes to adjusting ventilation facilities to control indoor aerosol transmission.
Collapse
Affiliation(s)
- Nima Izadyar
- School of Built Environment, College of Engineering and Science, Victoria University, Melbourne, VIC, Australia
| | - Wendy Miller
- School of Architecture & Built Environment, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| |
Collapse
|
29
|
Cheng P, Luo K, Xiao S, Yang H, Hang J, Ou C, Cowling BJ, Yen HL, Hui DS, Hu S, Li Y. Predominant airborne transmission and insignificant fomite transmission of SARS-CoV-2 in a two-bus COVID-19 outbreak originating from the same pre-symptomatic index case. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128051. [PMID: 34910996 PMCID: PMC8656245 DOI: 10.1016/j.jhazmat.2021.128051] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 05/22/2023]
Abstract
The number of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to increase worldwide, but despite extensive research, there remains significant uncertainty about the predominant routes of SARS-CoV-2 transmission. We conducted a mechanistic modeling and calculated the exposure dose and infection risk of each passenger in a two-bus COVID-19 outbreak in Hunan province, China. This outbreak originated from a single pre-symptomatic index case. Some human behavioral data related to exposure including boarding and alighting time of some passengers and seating position and mask wearing of all passengers were obtained from the available closed-circuit television images/clips and/or questionnaire survey. Least-squares fitting was performed to explore the effect of effective viral load on transmission risk, and the most likely quanta generation rate was also estimated. This study reveals the leading role of airborne SARS-CoV-2 transmission and negligible role of fomite transmission in a poorly ventilated indoor environment, highlighting the need for more targeted interventions in such environments. The quanta generation rate of the index case differed by a factor of 1.8 on the two buses and transmission occurred in the afternoon of the same day, indicating a time-varying effective viral load within a short period of five hours.
Collapse
Affiliation(s)
- Pan Cheng
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Kaiwei Luo
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Shenglan Xiao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Yang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Cuiyun Ou
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | | | - Hui-Ling Yen
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - David Sc Hui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; School of Public Health, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Laguardia GCDA, Püschel VADA, Oliveira PPD, Faria LRD, Cavalcante RB, Coelho ADCO, Santos KBD, Carbogim FDC. Controle de partículas aéreas nos procedimentos cirúrgicos durante a pandemia da Covid-19: revisão de escopo. Rev Esc Enferm USP 2022. [DOI: 10.1590/1980-220x-reeusp-2021-0579pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Objetivo: Mapear as estratégias técnicas e gerenciais para o manejo e a redução da produção de partículas aéreas em ambientes de procedimentos cirúrgicos durante a pandemia da Covid-19. Método: Revisão de escopo, de acordo com metodologia do Joana Briggs Institute, a partir de documentos indexados nas bases MEDLINE, BVS, CINAHL Cochrane, Embase, Scopus, Web of Science e literatura cinza, publicados em português, inglês ou espanhol. Foram considerados todos os estudos provenientes de periódicos científicos indexados e recomendações publicadas por órgãos internacionais ou associações acadêmicas, de 2019 a janeiro de 2022. Os achados foram sumarizados e analisados por estatística descritiva e síntese narrativa. Resultados: Foram selecionados 22 estudos, sendo 19 publicados em inglês, dois em espanhol, um em português, com predominância de revisões da literatura. Os achados foram categorizados em recomendações para o ambiente, a equipe e a técnica cirúrgica. Conclusão: a revisão mapeou as estratégias técnicas e gerenciais para o manejo e a redução da produção de partículas aéreas nos ambientes de procedimentos cirúrgicos. Envolvem desde o uso de equipamentos de proteção individual, treinamentos, modalidade anestésica, manipulação de vias aéreas, até a execução da técnica cirúrgica.
Collapse
Affiliation(s)
| | - Vilanice Alves de Araújo Püschel
- Universidade de São Paulo, Brazil; Centro Brasileiro para o Cuidado à Saúde Baseado em Evidências: Centro de Excelência do JBI (JBI Brasil), Brazil
| | | | | | | | | | - Kelli Borges dos Santos
- Universidade Federal de Juiz de Fora, Brazil; Centro Brasileiro para o Cuidado à Saúde Baseado em Evidências: Centro de Excelência do JBI (JBI Brasil), Brazil
| | - Fábio da Costa Carbogim
- Universidade Federal de Juiz de Fora, Brazil; Centro Brasileiro para o Cuidado à Saúde Baseado em Evidências: Centro de Excelência do JBI (JBI Brasil), Brazil
| |
Collapse
|
31
|
Kurnitski J, Kiil M, Wargocki P, Boerstra A, Seppänen O, Olesen B, Morawska L. Respiratory infection risk-based ventilation design method. BUILDING AND ENVIRONMENT 2021; 206:108387. [PMID: 34602721 PMCID: PMC8462055 DOI: 10.1016/j.buildenv.2021.108387] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 05/24/2023]
Abstract
A new design method is proposed to calculate outdoor air ventilation rates to control respiratory infection risk in indoor spaces. We propose to use this method in future ventilation standards to complement existing ventilation criteria based on the perceived air quality and pollutant removal. The proposed method makes it possible to calculate the required ventilation rate at a given probability of infection and quanta emission rate. Present work used quanta emission rates for SARS-CoV-2 and consequently the method can be applied for other respiratory viruses with available quanta data. The method was applied to case studies representing typical rooms in public buildings. To reduce the probability of infection, the total airflow rate per infectious person revealed to be the most important parameter to reduce the infection risk. Category I ventilation rate prescribed in the EN 16798-1 standard satisfied many but not all type of spaces examined. The required ventilation rates started from about 80 L/s per room. Large variations between the results for the selected case studies made it impossible to provide a simple rule for estimating the required ventilation rates. Consequently, we conclude that to design rooms with a low infection risk the newly developed ventilation design method must be used.
Collapse
Affiliation(s)
- Jarek Kurnitski
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Tallinn, Estonia
- Department of Civil Engineering, Aalto University, Espoo, Finland
| | - Martin Kiil
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Tallinn, Estonia
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Denmark
| | - Atze Boerstra
- BBA Binnenmilieu, the Netherlands
- Faculty of Architecture and the Built Environment, Delft University of Technology, the Netherlands
| | - Olli Seppänen
- Nordic Ventilation Group, SCANVAC, Scandinavian Federation of Heating, Ventilation and Sanitary Engineering Associations in Denmark, Finland, Iceland, Norway and, Sweden
| | - Bjarne Olesen
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Denmark
| | - Lidia Morawska
- International Laboratory for Air Quality and Heath, Queensland University of Technology, Brisbane, Australia
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
32
|
Birmili W, Selinka HC, Moriske HJ, Daniels A, Straff W. [Ventilation concepts in schools for the prevention of transmission of highly infectious viruses (SARS-CoV-2) by aerosols in indoor air]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 64:1570-1580. [PMID: 34739549 PMCID: PMC8569287 DOI: 10.1007/s00103-021-03452-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023]
Abstract
Exhaled aerosol particles play an important role in the transmission of SARS-CoV‑2, particularly when many people gather indoors. This article summarises the knowledge on virus transmission in schools and practical measures to reduce aerosol-driven infections. A central preventive measure is to enhance room and building ventilation, i.e. the exchange of possibly contaminated indoor air with ambient air. Besides the concentrations of possibly infectious particles, ventilation reduces carbon dioxide concentrations, humidity and other chemical substances in indoor air as well. Irrespective of ventilation, face masks (surgical or FFP2) represent a vital part of hygiene measures. Fixed or mobile air purifiers can support these measures particularly when rooms providing only poor ventilation must be utilized. The article reflects the state of knowledge in October 2021 of the various techniques that have been shown as useful for the prevention of indirect infections. New variants of SARS-CoV‑2, the progress of the vaccination campaign in children and adolescents, and the increase in general immunity might require a re-evaluation of the prevention strategies described. The COVID-19 pandemic has revealed common deficits in room and building ventilation, not least in schools. Apart from short-term measures for the prevention of airborne infectious diseases, a long-term strategy seems advisable to alleviate the deficits encountered in schools with respect to room and building ventilation. In view of a permanent improvement of indoor air and prevention against airborne infections the fitting of schools with fixed ventilation systems - preferably including heat and moisture recovery - appears to be a sustainable social investment.
Collapse
Affiliation(s)
- Wolfram Birmili
- Umweltbundesamt, Abteilung II 1 "Umwelthygiene", Corrensplatz 1, 14195, Berlin, Deutschland.
| | - Hans-Christoph Selinka
- Umweltbundesamt, Abteilung II 1 "Umwelthygiene", Corrensplatz 1, 14195, Berlin, Deutschland
| | - Heinz-Jörn Moriske
- Umweltbundesamt, Beratungsstelle Umwelthygiene II BU, Wörlitzer Platz 1, 06844, Dessau, Deutschland
| | - Anja Daniels
- Umweltbundesamt, Abteilung II 1 "Umwelthygiene", Corrensplatz 1, 14195, Berlin, Deutschland
| | - Wolfgang Straff
- Umweltbundesamt, Abteilung II 1 "Umwelthygiene", Corrensplatz 1, 14195, Berlin, Deutschland
| |
Collapse
|