1
|
Third-Generation Cytogenetic Analysis: Diagnostic Application of Long-Read Sequencing. J Mol Diagn 2022; 24:711-718. [PMID: 35526834 DOI: 10.1016/j.jmoldx.2022.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Copy number variants (CNVs) play important roles in the pathogenesis of several genetic syndromes. Traditional and molecular karyotyping are considered the first-tier diagnostic tests to detect macroscopic and cryptic deletions/duplications. However, their time-consuming and laborious experimental protocols protract diagnostic times from 3 to 15 days. Nanopore sequencing has the ability to reduce time to results for the detection of CNVs with the same resolution of current state-of-the-art diagnostic tests. Nanopore sequencing was compared to molecular karyotyping for the detection of pathogenic CNVs of seven patients with previously diagnosed causative CNVs of different sizes and cellular fractions. Larger chromosomal anomalies included trisomy 21 and mosaic tetrasomy 12p. Among smaller CNVs, two genomic imbalances of 1.3 Mb, a small deletion of 170 kb, and two mosaic deletions (1.2 Mb and 408 kb) were tested. DNA was sequenced and data generated during runs were analyzed in online mode. All pathogenic CNVs were identified with detection time inversely proportional to size and cellular fraction. Aneuploidies were called after only 30 minutes of sequencing, whereas 30 hours were needed to call small CNVs. These results demonstrate the clinical utility of our approach that allows the molecular diagnosis of genomic disorders within a 30-minute to 30-hour time frame and its easy implementation as a routinary diagnostic tool.
Collapse
|
2
|
Khan AW, Kennedy A, Furutani E, Myers K, Frattini A, Acquati F, Roccia P, Micheloni G, Minelli A, Porta G, Cipolli M, Cesaro S, Danesino C, Pasquali F, Shimamura A, Valli R. The frequent and clinically benign anomalies of chromosomes 7 and 20 in Shwachman-diamond syndrome may be subject to further clonal variations. Mol Cytogenet 2021; 14:54. [PMID: 34819134 PMCID: PMC8611838 DOI: 10.1186/s13039-021-00575-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 11/12/2022] Open
Abstract
Background An isochromosome of the long arm of chromosome 7, i(7)(q10), and an interstitial deletion of the long arm of chromosome 20, del(20)(q), are the most frequent anomalies in the bone marrow of patients with Shwachman-Diamond syndrome, which is caused in most cases by mutations of the SBDS gene. These clonal changes imply milder haematological symptoms and lower risk of myelodysplastic syndromes and acute myeloid leukaemia, thanks to already postulated rescue mechanisms. Results Bone marrow from fourteen patients exhibiting either the i(7)(q10) or the del(20)(q) and coming from two large cohorts of patients, were subjected to chromosome analyses, Fluorescent In Situ Hybridization with informative probes and array-Comparative Genomic Hybridization. One patient with the i(7)(q10) showed a subsequent clonal rearrangement of the normal chromosome 7 across years. Four patients carrying the del(20)(q) evolved further different del(20)(q) independent clones, within a single bone marrow sample, or across sequential samples. One patient with the del(20)(q), developed a parallel different clone with a duplication of chromosome 3 long arm. Eight patients bore the del(20)(q) as the sole chromosomal abnormality. An overall overview of patients with the del(20)(q), also including cases already reported, confirmed that all the deletions were interstitial. The loss of material varied from 1.7 to 26.9 Mb and resulted in the loss of the EIF6 gene in all patients. Conclusions Although the i(7)(q) and the del(20)(q) clones are frequent and clinically benign in Shwachman Diamond-syndrome, in the present work we show that they may rearrange, may be lost and then reconstructed de novo, or may evolve with independent clones across years. These findings unravel a striking selective pressure exerted by SBDS deficiency driving to karyotype instability and to specific clonal abnormalities. Supplementary Information The online version contains supplementary material available at 10.1186/s13039-021-00575-w.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università Dell'Insubria, Via J. H. Dunant, 5, 21100, Varese, Italy
| | - Alyssa Kennedy
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Kasiani Myers
- Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Annalisa Frattini
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università Dell'Insubria, Via J. H. Dunant, 5, 21100, Varese, Italy.,Istituto di Ricerca Genetica e Biomedica, CNR, Milano, Italy
| | - Francesco Acquati
- Dipartimento di Biotecnologie e Scienze della Vita, Università Dell'Insubria, Varese, Italy.,Centro di Medicina Genomica-Università dell'Insubria, Varese, Italy
| | - Pamela Roccia
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università Dell'Insubria, Via J. H. Dunant, 5, 21100, Varese, Italy
| | - Giovanni Micheloni
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università Dell'Insubria, Via J. H. Dunant, 5, 21100, Varese, Italy
| | - Antonella Minelli
- Genetica Medica, Fondazione IRCCS Policlinico S. Matteo and Università di Pavia, Pavia, Italy
| | - Giovanni Porta
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università Dell'Insubria, Via J. H. Dunant, 5, 21100, Varese, Italy.,Centro di Medicina Genomica-Università dell'Insubria, Varese, Italy
| | - Marco Cipolli
- Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Simone Cesaro
- Oncoematologia Pediatrica, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Cesare Danesino
- Genetica Medica, Fondazione IRCCS Policlinico S. Matteo and Università di Pavia, Pavia, Italy
| | - Francesco Pasquali
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università Dell'Insubria, Via J. H. Dunant, 5, 21100, Varese, Italy
| | - Akiko Shimamura
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Roberto Valli
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università Dell'Insubria, Via J. H. Dunant, 5, 21100, Varese, Italy. .,Centro di Medicina Genomica-Università dell'Insubria, Varese, Italy.
| |
Collapse
|
3
|
Chromosomal microarray analysis, including constitutional and neoplastic disease applications, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1818-1829. [PMID: 34131312 DOI: 10.1038/s41436-021-01214-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/08/2022] Open
Abstract
Chromosomal microarray technologies, including array comparative genomic hybridization and single-nucleotide polymorphism array, are widely applied in the diagnostic evaluation for both constitutional and neoplastic disorders. In a constitutional setting, this technology is accepted as the first-tier test for the evaluation of chromosomal imbalances associated with intellectual disability, autism, and/or multiple congenital anomalies. Furthermore, chromosomal microarray analysis is recommended for patients undergoing invasive prenatal diagnosis with one or more major fetal structural abnormalities identified by ultrasonographic examination, and in the evaluation of intrauterine fetal demise or stillbirth when further cytogenetic analysis is desired. This technology also provides important genomic data in the diagnosis, prognosis, and therapy of neoplastic disorders, including both hematologic malignancies and solid tumors. To assist clinical laboratories in the validation of chromosomal microarray methodologies for constitutional and neoplastic applications, the American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee has developed these updated technical laboratory standards, which replace the ACMG technical standards and guidelines for microarray analysis in constitutional and neoplastic disorders previously published in 2013.
Collapse
|
4
|
Couto Oliveira A, Ribeiro IP, Pires LM, Gonçalves AC, Paiva A, Geraldes C, Roque A, Sarmento-Ribeiro AB, Barbosa de Melo J, Carreira IM. Genomic characterisation of multiple myeloma: study of a Portuguese cohort. J Clin Pathol 2021; 75:422-425. [PMID: 33653728 DOI: 10.1136/jclinpath-2020-207204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 02/18/2021] [Indexed: 11/04/2022]
Abstract
Multiple myeloma (MM) genomic complexity reflects in the variable patients' clinical presentation. Genome-wide studies seem to be a reasonable alternative to identify critical genomic lesions. In the current study, we have performed the genomic characterisation of a Portuguese cohort of patients with MM by array comparative genomic hybridisation. Overall, the most frequently detected alterations were 13q deletions, gains of 1q, 19p, 15q, 5p and 7p and trisomy 9. Even though some identified genomic alterations were previously associated with a prognostic value, other abnormalities remain with unknown, but putative significance for patients' clinical practice. These genomic alterations should be further assessed as possible biomarkers.
Collapse
Affiliation(s)
- Alexandra Couto Oliveira
- University of Coimbra, Cytogenetics and Genomics Laboratory, Faculty of Medicine, Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- University of Coimbra, Cytogenetics and Genomics Laboratory, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Luís Miguel Pires
- University of Coimbra, Cytogenetics and Genomics Laboratory, Faculty of Medicine, Coimbra, Portugal
| | - Ana Cristina Gonçalves
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University of Coimbra, Laboratory of Oncobiology and Haematology and University Clinic of Haematology, Faculty of Medicine, Coimbra, Portugal
| | - Artur Paiva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Cytometry Operational Management Unit, Clinical Pathology Service, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
| | - Catarina Geraldes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University of Coimbra, Laboratory of Oncobiology and Haematology and University Clinic of Haematology, Faculty of Medicine, Coimbra, Portugal.,Clinical Haematology Department, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
| | - Adriana Roque
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Clinical Haematology Department, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University of Coimbra, Laboratory of Oncobiology and Haematology and University Clinic of Haematology, Faculty of Medicine, Coimbra, Portugal.,Clinical Haematology Department, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
| | - Joana Barbosa de Melo
- University of Coimbra, Cytogenetics and Genomics Laboratory, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Isabel Marques Carreira
- University of Coimbra, Cytogenetics and Genomics Laboratory, Faculty of Medicine, Coimbra, Portugal .,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
5
|
Innella G, Greco D, Carli D, Magini P, Giorgio E, Galesi O, Ferrero GB, Romano C, Brusco A, Graziano C. Clinical spectrum and follow-up in six individuals with Lamb-Shaffer syndrome (SOX5). Am J Med Genet A 2020; 185:608-613. [PMID: 33296143 DOI: 10.1002/ajmg.a.62001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 11/14/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Giovanni Innella
- Medical Genetics Unit, Policlinico di S. Orsola, University of Bologna, Bologna, Italy
| | | | - Diana Carli
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Pamela Magini
- Medical Genetics Unit, Policlinico di S. Orsola, University of Bologna, Bologna, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | | | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy.,Unit of Medical Genetics, "Città della Salute e della Scienza" University Hospital, Turin, Italy
| | - Claudio Graziano
- Medical Genetics Unit, Policlinico di S. Orsola, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Functional in vivo and in vitro effects of 20q11.21 genetic aberrations on hPSC differentiation. Sci Rep 2020; 10:18582. [PMID: 33122739 PMCID: PMC7596514 DOI: 10.1038/s41598-020-75657-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 10/15/2020] [Indexed: 01/01/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have promising therapeutic applications due to their infinite capacity for self-renewal and pluripotency. Genomic stability is imperative for the clinical use of hPSCs; however, copy number variation (CNV), especially recurrent CNV at 20q11.21, may contribute genomic instability of hPSCs. Furthermore, the effects of CNVs in hPSCs at the whole-transcriptome scale are poorly understood. This study aimed to examine the functional in vivo and in vitro effects of frequently detected CNVs at 20q11.21 during early-stage differentiation of hPSCs. Comprehensive transcriptome profiling of abnormal hPSCs revealed that the differential gene expression patterns had a negative effect on differentiation potential. Transcriptional heterogeneity identified by single-cell RNA sequencing (scRNA-seq) of embryoid bodies from two different isogenic lines of hPSCs revealed alterations in differentiated cell distributions compared with that of normal cells. RNA-seq analysis of 22 teratomas identified several differentially expressed lineage-specific markers in hPSCs with CNVs, consistent with the histological results of the altered ecto/meso/endodermal ratio due to CNVs. Our results suggest that CNV amplification contributes to cell proliferation, apoptosis, and cell fate specification. This work shows the functional consequences of recurrent genetic abnormalities and thereby provides evidence to support the development of cell-based applications.
Collapse
|
7
|
Chromosome Missegregation in Single Human Oocytes Is Related to the Age and Gene Expression Profile. Int J Mol Sci 2020; 21:ijms21061934. [PMID: 32178390 PMCID: PMC7139522 DOI: 10.3390/ijms21061934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
The growing trend for women to postpone childbearing has resulted in a dramatic increase in the incidence of aneuploid pregnancies. Despite the importance to human reproductive health, the events precipitating female age-related meiotic errors are poorly understood. To gain new insight into the molecular basis of age-related chromosome missegregation in human oocytes, we combined the transcriptome profiles of twenty single oocytes (derived from females divided into two groups according to age <35 and ≥35 years) with their chromosome status obtained by array comparative genomic hybridization (aCGH). Furthermore, we compared the transcription profile of the single oocyte with the surrounding cumulus cells (CCs). RNA-seq data showed differences in gene expression between young and old oocytes. Dysregulated genes play a role in important biological processes such as gene transcription regulation, cytoskeleton organization, pathways related to RNA maturation and translation. The comparison of the transcription profile of the oocyte and the corresponding CCs highlighted the differential expression of genes belonging to the G protein-coupled receptor superfamily. Finally, we detected the loss of a X chromosome in two oocytes derived from women belonging to the ≥35 years age group. These aneuploidies may be caused by the detriment of REEP4, an endoplasmic reticulum protein, in women aged ≥35 years. Here we gained new insight into the complex regulatory circuit between the oocyte and the surrounding CCs and uncovered a new putative molecular basis of age-related chromosome missegregation in human oocytes.
Collapse
|
8
|
Microarray expression studies on bone marrow of patients with Shwachman-Diamond syndrome in relation to deletion of the long arm of chromosome 20, other chromosome anomalies or normal karyotype. Mol Cytogenet 2020; 13:1. [PMID: 31908654 PMCID: PMC6941278 DOI: 10.1186/s13039-019-0466-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/13/2019] [Indexed: 12/04/2022] Open
Abstract
Background Clonal chromosome changes are often found in the bone marrow (BM) of patients with Shwachman-Diamond syndrome (SDS). The most frequent ones include an isochromosome of the long arm of chromosome 7, i (7)(q10), and an interstitial deletion of the long arm of chromosome 20, del (20)(q). These two imbalances are mechanisms of somatic genetic rescue. The literature offers few expression studies on SDS. Results We report the expression analysis of bone marrow (BM) cells of patients with SDS in relation to normal karyotype or to the presence of clonal chromosome anomalies: del (20)(q) (five cases), i (7)(q10) (one case), and other anomalies (two cases). The study was performed using the microarray technique considering the whole transcriptome (WT) and three gene subsets selected as relevant in BM functions. The expression patterns of nine healthy controls and SDS patients with or without chromosome anomalies in the bone marrow showed clear differences. Conclusions There is a significant difference between gene expression in the BM of SDS patients and healthy subjects, both at the WT level and in the selected gene sets. The deletion del (20)(q), with the EIF6 gene consistently lost, even in patients with the smallest losses of material, changes the transcription pattern: a low proportion of abnormal cells led to a pattern similar to SDS patients without acquired anomalies, whereas a high proportion yields a pattern similar to healthy subjects. Hence, the benign prognostic value of del (20)(q). The case of i (7)(q10) showed a transcription pattern similar to healthy subjects, paralleling the positive prognostic role of this anomaly as well.
Collapse
|
9
|
Gatinois V, Bigi N, Mousty E, Chiesa J, Musizzano Y, Schneider A, Lefort G, Pinson L, Gaillard JB, Ragon C, Perez MJ, Tournaire M, Blanchet P, Corsini C, Haquet E, Callier P, Geneviève D, Pellestor F, Puechberty J. Mosaic complete tetrasomy 21 in a fetus with complete atrioventricular septal defect and minor morphological variations. Mol Genet Genomic Med 2019; 7:e00895. [PMID: 31493343 PMCID: PMC6825868 DOI: 10.1002/mgg3.895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 11/22/2022] Open
Abstract
Background Tetrasomy 21 is a very rare aneuploidy which could clinically resemble a Down syndrome. It was most often described in its partial form than complete. We report the prenatal, pathological and genetic characteristics of a fetus with mosaic complete tetrasomy 21. This is the second well‐documented description of a complete tetrasomy 21 in the literature. Methods Prenatal and fetal pathological examinations, cytogenetic and molecular analyses were performed to characterize fetal features with tetrasomy 21. Results Prenatal ultrasound examination revealed an isolated complete atrioventricular septal defect with normal karyotype on amniotic fluid. After termination of pregnancy, clinical examination of the fetus evoked trisomy 21 or Down syndrome. Chromosomal microarray analysis and FISH on lung tissue showed a mosaicism with four copies of chromosome 21 (tetrasomy 21). Conclusion Our observation and the review of the literature reported the possibility of very weak mosaicism and disease‐causing confined tissue‐specific mosaicism in fetus or alive patients with chromosome 21 aneuploidy, mainly Down syndrome. In case of clinical diagnosis suggestive of Down syndrome, attention must be paid to the risk of false‐negative test due to chromosomal mosaicism (very weak percentage, different tissue distribution). To overcome this risk, it is necessary to privilege the diagnostic techniques without culture step and to increase the number of cells and tissues analyzed, if possible. This study highlights the limits of microarray as the unique diagnostic approach in case of weak mosaic and French cytogenetics guidelines recommend to check anomalies seen in microarray by another technique on the same tissue.
Collapse
Affiliation(s)
- Vincent Gatinois
- Laboratoire de Génétique Chromosomique, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Nicole Bigi
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Eve Mousty
- Département de Gynécologie-Obstétrique, Hôpital Carémeau, CHU de Nîmes, Nîmes, France
| | - Jean Chiesa
- Laboratoire de Cytologie Clinique et Cytogénétique, Hôpital Carémeau, CHU de Nîmes, Nîmes, France
| | - Yuri Musizzano
- Laboratoire d'Anatomie et Cytologie Pathologique, Hôpital Gui-de-Chauliac, CHU de Montpellier, Montpellier, France
| | - Anouck Schneider
- Laboratoire de Génétique Chromosomique, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Geneviève Lefort
- Laboratoire de Génétique Chromosomique, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Lucile Pinson
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Jean-Baptiste Gaillard
- Laboratoire de Génétique Chromosomique, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France.,Laboratoire de Cytologie Clinique et Cytogénétique, Hôpital Carémeau, CHU de Nîmes, Nîmes, France
| | - Clémence Ragon
- Laboratoire de Génétique Moléculaire et Cytogénétique, Hôpital du Bocage, CHU de Dijon, Dijon, France
| | - Marie-Josée Perez
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Magali Tournaire
- Laboratoire de Génétique Chromosomique, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Patricia Blanchet
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Carole Corsini
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Emmanuelle Haquet
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Patrick Callier
- Laboratoire de Génétique Moléculaire et Cytogénétique, Hôpital du Bocage, CHU de Dijon, Dijon, France
| | - David Geneviève
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Franck Pellestor
- Laboratoire de Génétique Chromosomique, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Jacques Puechberty
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| |
Collapse
|
10
|
Valli R, Minelli A, Galbiati M, D'Amico G, Frattini A, Montalbano G, Khan AW, Porta G, Millefanti G, Olivieri C, Cipolli M, Cesaro S, Pasquali F, Danesino C, Cazzaniga G, Maserati E. Shwachman-Diamond syndrome with clonal interstitial deletion of the long arm of chromosome 20 in bone marrow: haematological features, prognosis and genomic instability. Br J Haematol 2018; 184:974-981. [PMID: 30585299 DOI: 10.1111/bjh.15729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
In Shwachman-Diamond syndrome (SDS), deletion of the long arm of chromosome 20, del(20)(q), often acquired in bone marrow (BM), may imply a lower risk of developing myelodysplastic syndrome/acute myeloid leukaemia (MDS/AML), due to the loss of the EIF6 gene. The genes L3MBTL1 and SGK2, also on chromosome 20, are in a cluster of imprinted genes, and their loss implies dysregulation of BM function. We report here the results of array comparative genomic hybridization (a-CGH) performed on BM DNA of six patients which confirmed the consistent loss of EIF6 gene. Interestingly, array single nucleotide polymorphisms (SNPs) showed copy neutral loss of heterozygosity for EIF6 region in cases without del(20)(q). No preferential parental origin of the deleted chromosome 20 was detected by microsatellite analysis in six SDS patients. Our patients showed a very mild haematological condition, and none evolved into BM aplasia or MDS/AML. We extend the benign prognostic significance of del(20)(q) and loss of EIF6 to the haematological features of these patients, consistently characterized by mild hypoplastic BM, no or mild neutropenia, anaemia and thrombocytopenia. Some odd results obtained in microsatellite and SNP-array analysis demonstrate a peculiar genomic instability, in an attempt to improve BM function through the acquisition of the del(20)(q).
Collapse
Affiliation(s)
- Roberto Valli
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| | - Antonella Minelli
- Genetica Medica, Fondazione IRCCS Policlinico S. Matteo and Università di Pavia, Pavia, Italy
| | - Marta Galbiati
- Immunology and Cell Therapy, Centro Ricerca Tettamanti, Paediatric Clinic, University of Milan Bicocca/MBBM, Monza, Italy
| | - Giovanna D'Amico
- Immunology and Cell Therapy, Centro Ricerca Tettamanti, Paediatric Clinic, University of Milan Bicocca/MBBM, Monza, Italy
| | - Annalisa Frattini
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy.,Istituto di Ricerca Genetica e Biomedica, CNR, Milano, Italy
| | - Giuseppe Montalbano
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| | - Abdul W Khan
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| | - Giovanni Porta
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| | - Giorgia Millefanti
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| | - Carla Olivieri
- Genetica Medica, Fondazione IRCCS Policlinico S. Matteo and Università di Pavia, Pavia, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, AOU Ospedali Riuniti, Ancona, Italy
| | - Simone Cesaro
- Oncoematologia Pediatrica, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Francesco Pasquali
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| | - Cesare Danesino
- Genetica Medica, Fondazione IRCCS Policlinico S. Matteo and Università di Pavia, Pavia, Italy
| | - Gianni Cazzaniga
- Immunology and Cell Therapy, Centro Ricerca Tettamanti, Paediatric Clinic, University of Milan Bicocca/MBBM, Monza, Italy
| | - Emanuela Maserati
- Genetica Umana e Medica, Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| |
Collapse
|
11
|
Tesner P, Drabova J, Stolfa M, Kudr M, Kyncl M, Moslerova V, Novotna D, Kremlikova Pourova R, Kocarek E, Rasplickova T, Sedlacek Z, Vlckova M. A boy with developmental delay and mosaic supernumerary inv dup(5)(p15.33p15.1) leading to distal 5p tetrasomy - case report and review of the literature. Mol Cytogenet 2018; 11:29. [PMID: 29760779 PMCID: PMC5941596 DOI: 10.1186/s13039-018-0377-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Background With only 11 patients reported, 5p tetrasomy belongs to rare postnatal findings. Most cases are due to small supernumerary marker chromosomes (sSMCs) or isochromosomes. The patients share common but unspecific symptoms such as developmental delay, seizures, ventriculomegaly, hypotonia, and fifth finger clinodactyly. Simple interstitial duplications leading to trisomies of parts of 5p are much more frequent and better described. Duplications encompassing 5p13.2 cause a defined syndrome with macrocephaly, distinct facial phenotype, heart defects, talipes equinovarus, feeding difficulties, respiratory distress and anomalies of the central nervous system, developmental delay and hypotonia. Case presentation We present a boy with dysmorphic features, developmental delay, intellectual disability and congenital anomalies, and a mosaic sSMC inv dup(5)(p15.33p15.1). He is the fourth and the oldest reported patient with distal 5p tetrasomy. His level of mosaicism was significantly different in lymphocytes (13.2%) and buccal cells (64.7%). The amplification in our patient is smaller than that in the three previously published patients but the only phenotype difference is the absence of seizures in our patient. Conclusions Our observations indicate that for the assessment of prognosis, especially with respect to intellectual functioning, the level of mosaicism could be more important than the extent of amplification and the number of extra copies. Evaluation of the phenotypical effect of rare chromosomal aberrations is challenging and each additional case is valuable for refinement of the genotype-phenotype correlation. Moreover, our patient demonstrates that if the phenotype is severe and if the level of sSMC mosaicism is low in lymphocytes, other tissues should be tested. Electronic supplementary material The online version of this article (10.1186/s13039-018-0377-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavel Tesner
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Jana Drabova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Miroslav Stolfa
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Martin Kudr
- 2Department of Paediatric Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Martin Kyncl
- 3Department of Radiology, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Veronika Moslerova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Drahuse Novotna
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Radka Kremlikova Pourova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Eduard Kocarek
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Tereza Rasplickova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Zdenek Sedlacek
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Marketa Vlckova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| |
Collapse
|
12
|
Valli R, De Paoli E, Nacci L, Frattini A, Pasquali F, Maserati E. Novel recurrent chromosome anomalies in Shwachman-Diamond syndrome. Pediatr Blood Cancer 2017; 64. [PMID: 28130858 DOI: 10.1002/pbc.26454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/24/2016] [Accepted: 12/19/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Two chromosome anomalies are frequent in the bone marrow (BM) of patients with Shwachman-Diamond syndrome (SDS): an isochromosome of the long arm of chromosome 7, i(7)(q10), and an interstitial deletion of the long arm of chromosome 20, del(20)(q). These anomalies are associated with a lower risk of developing myelodysplasia (MDS) and/or acute myeloid leukemia. The chromosome anomalies may be due to an SDS-specific karyotype instability, reflected also by anomalies that are not clonal, but found in single cells in the BM or in peripheral blood (PB). PROCEDURE Starting in 1999, we have monitored the cytogenetic picture of a cohort of 91 Italian patients with SDS by all suitable cytogenetic and molecular methods. RESULTS Here, we report clonal chromosome anomalies that are different from the aforementioned, as well as changes found in single cells in BM/PB of the same patients. CONCLUSIONS Some of the newly recognized clonal anomalies in BM reported here are recurrent, especially unbalanced structural anomalies of chromosome 7, a further complex rearrangement of the del(20)(q) with duplicated and deleted portions, and an unbalanced translocation t(3;6), with partial trisomy of the long arm of chromosome 3 and partial monosomy of the long arm of chromosome 6. Firm conclusions on the possible prognostic relevance of these anomalies would require further study with larger patient cohorts, but our data are sufficient to suggest that these patients necessitate more frequent cytogenetic monitoring. The results on anomalies found in single cells confirm the presence of an SDS-specific karyotype instability.
Collapse
Affiliation(s)
- Roberto Valli
- Human and Medical Genetics, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Elena De Paoli
- Human and Medical Genetics, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Lucia Nacci
- Medical Genetics, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy
| | - Annalisa Frattini
- Human and Medical Genetics, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy.,IRGB, National Council of Research, Milano, Italy
| | - Francesco Pasquali
- Human and Medical Genetics, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Emanuela Maserati
- Human and Medical Genetics, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| |
Collapse
|
13
|
Valli R, De Bernardi F, Frattini A, Volpi L, Bignami M, Facchetti F, Pasquali F, Castelnuovo P, Maserati E. Comparative genomic hybridization on microarray (a-CGH) in olfactory neuroblastoma: Analysis of ten cases and review of the literature. Genes Chromosomes Cancer 2015; 54:771-5. [PMID: 26355525 DOI: 10.1002/gcc.22288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 02/03/2023] Open
Abstract
Olfactory neuroblastoma is a rare tumor arising from the basal layer of the olfactory epithelium in the superior recesses of the nasal cavity. The rarity of this tumor, and the difficulties in culturing tumor cells has limited the generation of conventional cytogenetic data, whereas consistent results have been obtained by recent molecular methods. We report the results of an array-based comparative genomic hybridization analysis (a-CGH) obtained on 11 samples from 10 subjects: 8 primary and 3 relapsed tumors. In one patient, both the primary and relapsed tumors were available. Our results on chromosome imbalances highlight the highly heterogeneous presentation: six of eleven samples showed multiple numerical changes and very few structural ones, while four samples showed an opposite pattern; one sample out of eleven showed no imbalances. We did not reach firm evidence of any recurrent specific imbalances either at level of entire chromosomes or chromosome segments. A review of the literature indicates a number of recurrent gains, and losses, mostly not confirmed by our results. Gain of chromosome 19 was the only correspondence with literature data concerning an entire chromosome, and most segmental gains and losses found in our cohort of patients were different from those indicated in the literature: the only similarities concerned the gain of 20q13 and the loss of segments of chromosomes 15 and 22.
Collapse
Affiliation(s)
- Roberto Valli
- Dipartimento Di Medicina Clinica E Sperimentale, Università Degli Studi Dell'insubria, Varese, Italy
| | - Francesca De Bernardi
- Unit of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Annalisa Frattini
- Dipartimento Di Medicina Clinica E Sperimentale, Università Degli Studi Dell'insubria, Varese, Italy.,Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche (CNR), Milano, Italy
| | - Luca Volpi
- Unit of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Maurizio Bignami
- Unit of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Fabio Facchetti
- Department of Pathology, University of Brescia, I Servizio Di Anatomia Patologica, and Division of Hematology, Ospedali Civili Di Brescia, Brescia, Italy
| | - Francesco Pasquali
- Dipartimento Di Medicina Clinica E Sperimentale, Università Degli Studi Dell'insubria, Varese, Italy
| | - Paolo Castelnuovo
- Unit of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Emanuela Maserati
- Dipartimento Di Medicina Clinica E Sperimentale, Università Degli Studi Dell'insubria, Varese, Italy
| |
Collapse
|
14
|
Unique Genomic Profile Associated with Pediatric Uveal Melanoma. Eur J Ophthalmol 2015; 25:e31-4. [DOI: 10.5301/ejo.5000600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2015] [Indexed: 11/20/2022]
Abstract
Purpose To determine genetic features of a pediatric uveal melanoma in a 6-year-old girl by array-based comparative genomic hybridization (a-CGH) and assess prognosis, and to search for constitutional copy number variations (CNVs) encompassing oncosuppressor genes. Methods High-resolution a-CGH was performed on genomic DNA from cancer cells and from peripheral blood cells. Histopathology and clinical staging of the tumor were simultaneously assessed. Results Array-based CGH revealed no CNVs on tumor cells associated with poor prognosis; namely, no monosomy 3, losses of 1p, 6q, or 8p, and no gains of 8q. A unique genomic profile was observed, consisting mainly of partial terminal duplications affecting chromosomes 1, 4, 5, 9, 10, 11, 16, and 19, and complete trisomy of chromosomes 6, 7, and 20. The nonmetastatic tumor had predominantly epithelioid histology. No constitutional CNVs encompassing oncosuppressor genes were detected. Conclusions We report a very rare uveal melanoma characterized by low-risk genomic profile and poor prognostic histologic and clinical features. The child is relapse-free at 1-year follow-up. The unusual CNVs detected by a-CGH suggest specific pathogenic mechanisms.
Collapse
|
15
|
Hartmann L, Stephenson CF, Verkamp SR, Johnson KR, Burnworth B, Hammock K, Brodersen LE, de Baca ME, Wells DA, Loken MR, Zehentner BK. Detection of clonal evolution in hematopoietic malignancies by combining comparative genomic hybridization and single nucleotide polymorphism arrays. Clin Chem 2014; 60:1558-68. [PMID: 25320376 DOI: 10.1373/clinchem.2014.227785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. METHODS This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. RESULTS Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. CONCLUSIONS Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated.
Collapse
|
16
|
Genome-wide screening of cytogenetic abnormalities in multiple myeloma patients using array-CGH technique: a Czech multicenter experience. BIOMED RESEARCH INTERNATIONAL 2014; 2014:209670. [PMID: 24987674 PMCID: PMC4060785 DOI: 10.1155/2014/209670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/02/2014] [Indexed: 11/23/2022]
Abstract
Characteristic recurrent copy number aberrations (CNAs) play a key role in multiple myeloma (MM) pathogenesis and have important prognostic significance for MM patients. Array-based comparative genomic hybridization (aCGH) provides a powerful tool for genome-wide classification of CNAs and thus should be implemented into MM routine diagnostics. We demonstrate the possibility of effective utilization of oligonucleotide-based aCGH in 91 MM patients. Chromosomal aberrations associated with effect on the prognosis of MM were initially evaluated by I-FISH and were found in 93.4% (85/91). Incidence of hyperdiploidy was 49.5% (45/91); del(13)(q14) was detected in 57.1% (52/91); gain(1)(q21) occurred in 58.2% (53/91); del(17)(p13) was observed in 15.4% (14/91); and t(4;14)(p16;q32) was found in 18.6% (16/86). Genome-wide screening using Agilent 44K aCGH microarrays revealed copy number alterations in 100% (91/91). Most common deletions were found at 13q (58.9%), 1p (39.6%), and 8p (31.1%), whereas gain of whole 1q was the most often duplicated region (50.6%). Furthermore, frequent homozygous deletions of genes playing important role in myeloma biology such as TRAF3, BIRC1/BIRC2, RB1, or CDKN2C were observed. Taken together, we demonstrated the utilization of aCGH technique in clinical diagnostics as powerful tool for identification of unbalanced genomic abnormalities with prognostic significance for MM patients.
Collapse
|
17
|
Valli R, Pressato B, Marletta C, Mare L, Montalbano G, Curto FL, Pasquali F, Maserati E. Different loss of material in recurrent chromosome 20 interstitial deletions in Shwachman-Diamond syndrome and in myeloid neoplasms. Mol Cytogenet 2013; 6:56. [PMID: 24330778 PMCID: PMC3914702 DOI: 10.1186/1755-8166-6-56] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/04/2013] [Indexed: 12/19/2022] Open
Abstract
Background An interstitial deletion of the long arms of chromosome 20, del(20)(q), is frequent in the bone marrow (BM) of patients with myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and myeloproliferative neoplasms (MPN), and it is recurrent in the BM of patients with Shwachman-Diamond syndrome (SDS), who have a 30-40% risk of developing MDS and AML. Results We report the results obtained by microarray-based comparative genomic hybridization (a-CGH) in six patients with SDS, and we compare the loss of chromosome 20 material with one patient with MDS, and with data on 92 informative patients with MDS/AML/MPN and del(20)(q) collected from the literature. Conclusions The chromosome material lost in MDS/AML/MPN is highly variable with no identifiable common deleted regions, whereas in SDS the loss is more uniform: in 3/6 patients it was almost identical, and the breakpoints that we defined are probably common to most patients from the literature. In some SDS patients less material may be lost, due to different distal breakpoints, but the proximal breakpoint is in the same region, always leading to the loss of the EIF6 gene, an event which was related to a lower risk of MDS/AML in comparison with other patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emanuela Maserati
- Dipartimento di Medicina Clinica e Sperimentale, Università dell'Insubria, Via J, H, Dunant, 5, I 21100 Varese, Italy.
| |
Collapse
|
18
|
Mangiola A, Saulnier N, De Bonis P, Orteschi D, Sica G, Lama G, Pettorini BL, Sabatino G, Zollino M, Lauriola L, Colabianchi A, Proietti G, Kovacs G, Maira G, Anile C. Gene expression profile of glioblastoma peritumoral tissue: an ex vivo study. PLoS One 2013; 8:e57145. [PMID: 23472076 PMCID: PMC3589444 DOI: 10.1371/journal.pone.0057145] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/18/2013] [Indexed: 01/01/2023] Open
Abstract
The gene expression pattern of glioblastoma (GBM) is well documented but the expression profile of brain adjacent to tumor is not yet analysed. This may help to understand the oncogenic pathway of GBM development. We have established the genome-wide expression profiles of samples isolated from GBM tumor mass, white matter adjacent to tumor (apparently free of tumor cells), and white matter controls by using the Affymetrix HG-U133 arrays. Array-CGH (aCGH) was also performed to detect genomic alterations. Among genes dysregulated in peritumoral white matter, 15 were over-expressed, while 42 were down-regulated when compared to white matter controls. A similar expression profile was detected in GBM cells. Growth, proliferation and cell motility/adhesion-associated genes were up-regulated while genes involved in neurogenesis were down-regulated. Furthermore, several tumor suppressor genes along with the KLRC1 (a member of natural killer receptor) were also down-regulated in the peritumoral brain tissue. Several mosaic genomic lesions were detected by aCGH, mostly in tumor samples and several GBM-associated mosaic genomic lesions were also present in the peritumoral brain tissue, with a similar mosaicism pattern. Our data could be explained by a dilution of genes expressed from tumor cells infiltrating the peritumour tissue. Alternatively, these findings could be substained by a relevant amount of “apparently normal” cells presenting a gene profile compatible with a precancerous state or even “quiescent” cancer cells. Otherwise, the recurrent tumor may arise from both infiltrating tumor cells and from an interaction and recruitment of apparently normal cells in the peritumor tissue by infiltrating tumor cells.
Collapse
Affiliation(s)
- Annunziato Mangiola
- Institute of Neurosurgery, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | - Nathalie Saulnier
- Institute of Human Anatomy, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | - Pasquale De Bonis
- Institute of Neurosurgery, Faculty of Medicine, Catholic University of Rome, Rome, Italy
- * E-mail:
| | - Daniela Orteschi
- Institute of Genetics, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | - Gigliola Sica
- Institute of Histology and Embryology, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | - Gina Lama
- Institute of Histology and Embryology, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | | | - Giovanni Sabatino
- Institute of Neurosurgery, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | - Marcella Zollino
- Institute of Genetics, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | - Libero Lauriola
- Institute of Pathology, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | - Anna Colabianchi
- Institute of Histology and Embryology, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | - Gabriella Proietti
- Institute of Histology and Embryology, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | - Gyula Kovacs
- Medical Faculty, Ruprecht Karls University, Heidelberg, Germany
| | - Giulio Maira
- Institute of Neurosurgery, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| | - Carmelo Anile
- Institute of Neurosurgery, Faculty of Medicine, Catholic University of Rome, Rome, Italy
| |
Collapse
|
19
|
Rossi M, Labalme A, Cordier MP, Till M, Blanchard G, Dubois R, Guibaud L, Heissat S, Javouhey E, Lachaux A, Mure PY, Ville D, Edery P, Sanlaville D. Mosaic 18q21.2 deletions including theTCF4gene: A clinical report. Am J Med Genet A 2012; 158A:3174-81. [DOI: 10.1002/ajmg.a.35588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/26/2012] [Indexed: 11/11/2022]
|
20
|
Pangrazio A, Frattini A, Valli R, Maserati E, Susani L, Vezzoni P, Villa A, Al-Herz W, Sobacchi C. A homozygous contiguous gene deletion in chromosome 16p13.3 leads to autosomal recessive osteopetrosis in a Jordanian patient. Calcif Tissue Int 2012; 91:250-4. [PMID: 22847576 DOI: 10.1007/s00223-012-9631-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Human malignant autosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder caused by reduced bone resorption by osteoclasts. Mutations in the CLCN7 gene are responsible not only for a substantial portion of ARO patients but also for other forms of osteopetrosis characterized by different severity and inheritance. The lack of a clear genotype/phenotype correlation makes genetic counseling a tricky issue for CLCN7-dependent osteopetrosis. Here, we characterize the first homozygous interstitial deletion in 16p13.3, detected by array comparative genomic hybridization in an ARO patient of Jordanian origin. The deletion involved other genes besides CLCN7, while the proband displayed a classic ARO phenotype; however, her early death did not allow more extensive clinical investigations. The identification of this novel genomic deletion involving a large part of the CLCN7 gene is of clinical relevance, especially in prenatal diagnosis, and suggests the possibility that this kind of mutation has been underestimated so far. These data highlight the need for alternative approaches to genetic analysis also in other ARO-causative genes.
Collapse
|
21
|
Tassano E, Tavella E, Valli R, Micalizzi C, Cuoco C, Maserati E, Pasquali F, Morerio C. New recurrent chromosome change in pediatric therapy-related myelodysplastic syndrome: unbalanced translocation 1/6 with cryptic duplication of short arm of chromosome 6. Leuk Lymphoma 2012; 53:2434-8. [PMID: 22616618 DOI: 10.3109/10428194.2012.695778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The incidence of therapy-related myelodysplastic syndrome (t-MDS) in pediatric patients is increasing in parallel with the more successful management of the primary tumor, but scant information is available on clinical and cytogenetic characteristics. We report here two children affected by t-MDS after chemo/radiotherapy for a primary solid tumor, both with an unbalanced translocation 1/6 in their bone marrow. Characterization by array comparative genomic hybridization of the imbalances showed an almost identical pattern: almost complete trisomy of the long arm of chromosome 1, and a terminal deletion and interstitial duplication of the short arm of chromosome 6. The gain of chromosome 6 short arm encompasses regions already highlighted as possibly relevant for t-MDS in adults, and we suggest that the unbalanced translocation reported here be considered a new recurrent, non-random chromosomal abnormality in pediatric patients with t-MDS.
Collapse
Affiliation(s)
- Elisa Tassano
- Cancer Cytogenetic Laboratory, Giannina Gaslini Institute, Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Valli R, Marletta C, Pressato B, Montalbano G, Lo Curto F, Pasquali F, Maserati E. Comparative genomic hybridization on microarray (a-CGH) in constitutional and acquired mosaicism may detect as low as 8% abnormal cells. Mol Cytogenet 2011; 4:13. [PMID: 21554683 PMCID: PMC3101650 DOI: 10.1186/1755-8166-4-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/09/2011] [Indexed: 12/17/2022] Open
Abstract
Background The results of cytogenetic investigations on unbalanced chromosome anomalies, both constitutional and acquired, were largely improved by comparative genomic hybridization on microarray (a-CGH), but in mosaicism the ability of a-CGH to reliably detect imbalances is not yet well established. This problem of sensitivity is even more relevant in acquired mosaicism in neoplastic diseases, where cells carrying acquired imbalances coexist with normal cells, in particular when the proportion of abnormal cells may be low. We constructed a synthetic mosaicism by mixing the DNA of three patients carrying altogether seven chromosome imbalances with normal sex-matched DNA. Dilutions were prepared mimicking 5%, 6%, 7%, 8%, 10% and 15% levels of mosaicism. Oligomer-based a-CGH (244 K whole-genome system) was applied on the patients' DNA and customized slides designed around the regions of imbalance were used for the synthetic mosaics. Results and conclusions The a-CGH on the synthetic mosaics proved to be able to detect as low as 8% abnormal cells in the tissue examined. Although in our experiment some regions of imbalances escaped to be revealed at this level, and were detected only at 10-15% level, it should be remarked that these ones were the smallest analyzed, and that the imbalances recurrent as clonal anomalies in cancer and leukaemia are similar in size to those revealed at 8% level.
Collapse
Affiliation(s)
- Roberto Valli
- Biologia e Genetica, Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università dell'Insubria, Varese, Italy.
| | | | | | | | | | | | | |
Collapse
|