1
|
Constantinides M, Robert N, Multrier C, Coënon L, Campos-Mora M, Jacquard C, Gao F, Zemiti S, Presumey J, Cartron G, Moreaux J, Villalba M. FCGR3A F158V alleles frequency differs in multiple myeloma patients from healthy population. Oncoimmunology 2024; 13:2388306. [PMID: 39175948 PMCID: PMC11340758 DOI: 10.1080/2162402x.2024.2388306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
FCGR3A presents a single nucleotide polymorphism at location 158 (V/F), which affects its binding to the fragment crystallizable (Fc) of antibodies (Abs). FcγRIIIa-158 V allotype has the highest affinity and is associated with a better clinical response to IgG1 monoclonal Abs (mAb) treatment. We compared the allele frequency of FCGR3A-F158V polymorphism in cohorts of patients with B-cell lymphoproliferative disorders, including multiple myeloma (MM), monoclonal gammopathy of undetermined significance (MGUS), non-Hodgkin lymphoma (NHL), and B-cell chronic leukemia (B-CLL). FCGR3A-158F homozygous were enriched and tended to be in MM and MGUS patients, respectively; but neither in B-CLL nor in NHL patients. We identified a significantly lower concentration of CD8 T-cells and resting memory CD4 T-cells in MM patients bone marrow with the F/F genotype, associated with an increase in the macrophage percentage. In contrast, natural killer cells increased in V/V homozygous patients. This suggests a deregulation of the immune microenvironment in FCGR3A-F/F homozygous patients. However, we did not observe difference in response following treatment combining chemotherapy associated or not with daratumumab, an IgG1 mAb direct against CD38. Our findings suggest that FCGR3A F158V polymorphism can regulate the immune environment and affect the development of tumor plasma cells.
Collapse
Affiliation(s)
- Michaël Constantinides
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Caroline Multrier
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Loïs Coënon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | - Carine Jacquard
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Fei Gao
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Sara Zemiti
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Jessy Presumey
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Jérome Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- IRMB, Univ Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Ferretti E, Carlomagno S, Pesce S, Muccio L, Obino V, Greppi M, Solari A, Setti C, Marcenaro E, Della Chiesa M, Sivori S. Role of the Main Non HLA-Specific Activating NK Receptors in Pancreatic, Colorectal and Gastric Tumors Surveillance. Cancers (Basel) 2020; 12:E3705. [PMID: 33321719 PMCID: PMC7763095 DOI: 10.3390/cancers12123705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Human NK cells can control tumor growth and metastatic spread thanks to their powerful cytolytic activity which relies on the expression of an array of activating receptors. Natural cytotoxicity receptors (NCRs) NKG2D and DNAM-1 are those non-HLA-specific activating NK receptors that are mainly involved in sensing tumor transformation by the recognition of different ligands, often stress-induced molecules, on the surface of cancer cells. Tumors display several mechanisms aimed at dampening/evading NK-mediated responses, a relevant fraction of which is based on the downregulation of the expression of activating receptors and/or their ligands. In this review, we summarize the role of the main non-HLA-specific activating NK receptors, NCRs, NKG2D and DNAM-1, in controlling tumor growth and metastatic spread in solid malignancies affecting the gastrointestinal tract with high incidence in the world population, i.e., pancreatic ductal adenocarcinoma (PDAC), colorectal cancer (CRC), and gastric cancer (GC), also describing the phenotypic and functional alterations induced on NK cells by their tumor microenvironment.
Collapse
Affiliation(s)
- Elisa Ferretti
- Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Simona Carlomagno
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Silvia Pesce
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Letizia Muccio
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Valentina Obino
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Marco Greppi
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Agnese Solari
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Chiara Setti
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
3
|
Ellwanger K, Reusch U, Fucek I, Wingert S, Ross T, Müller T, Schniegler-Mattox U, Haneke T, Rajkovic E, Koch J, Treder M, Tesar M. Redirected optimized cell killing (ROCK®): A highly versatile multispecific fit-for-purpose antibody platform for engaging innate immunity. MAbs 2019; 11:899-918. [PMID: 31172847 PMCID: PMC6601565 DOI: 10.1080/19420862.2019.1616506] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Redirection of immune cells to efficiently eliminate tumor cells holds great promise. Natural killer cells (NK), macrophages, or T cells are specifically engaged with target cells expressing markers after infection or neoplastic transformation, resulting in their activation and subsequent killing of those targets. Multiple strategies to redirect immunity have been developed in the past two decades, but they have technical hurdles or cause undesirable side-effects, as exemplified by the T cell-based chimeric antigen receptor approaches (CAR-T therapies) or bispecific T cell engager platforms. Our first-in-class bispecific antibody redirecting innate immune cells to tumors (AFM13, a CD30/CD16A-specific innate immune cell engager) has shown signs of clinical efficacy in CD30-positive lymphomas and the potential to be safely administered, indicating a wider therapeutic window compared to T cell engaging therapies. AFM13 is the most advanced candidate from our fit-for-purpose redirected optimized cell killing (ROCK®) antibody platform, which comprises a plethora of CD16A-binding innate immune cell engagers with unique properties. Here, we discuss aspects of this modular platform, including the advantages of innate immune cell engagement over classical monoclonal antibodies and other engager concepts. We also present details on its potential to engineer a fit-for-purpose innate immune cell engager format that can be equipped with unique CD16A domains, modules that influence pharmacokinetic properties and molecular architectures that influence the activation of immune effectors, as well as tumor targeting. The ROCK® platform is aimed at the activation of innate immunity for the effective lysis of tumor cells and holds the promise of overcoming limitations of other approaches that redirect immune cells by widening the therapeutic window.
Collapse
Affiliation(s)
| | - Uwe Reusch
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Ivica Fucek
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | | | - Thorsten Ross
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Thomas Müller
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | | | - Torsten Haneke
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Erich Rajkovic
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Joachim Koch
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Martin Treder
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Michael Tesar
- a Affimed GmbH, Research Department , Heidelberg , Germany
| |
Collapse
|
4
|
The FCGR3A polymorphism predicts the response to rituximab-based therapy in patients with non-Hodgkin lymphoma: a meta-analysis. Ann Hematol 2016; 95:1483-90. [PMID: 27431582 DOI: 10.1007/s00277-016-2723-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/03/2016] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have assessed the association between Fc gamma receptor IIIA (FCGR3A) 158 V/F and the response to rituximab-based therapy in patients with non-Hodgkin lymphoma (NHL), but the findings have been inconsistent. We performed this meta-analysis to obtain a better assessment of this relationship. Electronic database searches were conducted for relevant studies. A pooled odds ratio (OR) with a 95 % confidence interval (95 % CI) was used to assess the strength of the association. Analyses of the subgroup and publication bias were conducted. A total of 10 studies involving 1050 patients were analyzed. In all the genetic models, no clear relationship was found between the FCGR3A 158 V/F polymorphism and the response to rituximab-based therapy in NHL patients. When categorized by ethnicity, Asian individuals with the FCGR3A 158 V/V allele (OR = 4.37; 95 % CI = 1.07-17.73; P = 0.039) or the non-F/(FV + VV) (OR = 2.50; 95 % CI = 1.04-5.98; P = 0.040) allele have a significantly higher complete response rate (CR) compared to FF individuals. No obvious heterogeneities were observed. In addition, no statistical evidence for a publication bias was found. Our study suggested that the FCGR3A 158 V/F polymorphism can predict the treatment response to rituximab-based chemotherapy in NHL patients, especially for Asian individuals.
Collapse
|
5
|
Erbe AK, Wang W, Gallenberger M, Hank JA, Sondel PM. Genotyping Single Nucleotide Polymorphisms and Copy Number Variability of the FCGRs Expressed on NK Cells. Methods Mol Biol 2016; 1441:43-56. [PMID: 27177655 DOI: 10.1007/978-1-4939-3684-7_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Natural killer (NK) cells are one of the main effector immune cells involved in antibody-dependent cell-mediated cytotoxicity (ADCC). Upon recognition of cell-bound IgG antibodies, which occurs through Fc gamma receptors (FCGRs) expressed on the cell surface of NK cells, NK cells become activated and lyse target tumor or infected cells. The FCGRs, FCGR3A and FCGR2C, expressed on the surface of NK cells have single nucleotide polymorphisms (SNPs) that result in differential activity of NK cells. In addition to SNP genetic variation within each of these genes, the FCGRs are subject to copy number variation (CNV), which leads to variable protein expression levels on the cell surface. Studies have found that FCGR genotype for FCGR3A and FCGR2C is associated with variation in the response to immunotherapy.Due to high sequence homology within FCGR3 and FCGR2 families, there are difficulties associated with genotyping these specific receptors related to cross-amplification of non-targeted FCGRs. To improve specificity for both FCGR3A and FCGR2C, Rnase-H (RH) primers were designed to amplify specifically FCGR3A (while not co-amplifying FCGR3B) and FCGR2C (while not co-amplifying FCGR2B). In addition, fluorescently labeled locked nucleic acid (LNA) probes provide additional precision for determination of the SNPs within both FCGR3A and FCGR2C. For CNV determination, separate fluorescently labeled probes for FCGR3A, and for FCGR2C, can be used with the same RH primers for each gene. These probes can be combined in the same well with control primers/probe for a known diploid gene and used to calculate the copy number of both FCGR3A and FCGR2C. Here we provide new detailed methodology that allows for the specific amplification of these FCGRs in a single PCR reaction, allowing for genotyping of both the SNPs and CNVs using real-time PCR.
Collapse
Affiliation(s)
- Amy K Erbe
- Department of Human Oncology, University of Wisconsin, 1111 Highland Avenue, 4136 WIMR Bldg., Madison, WI, 53705, USA.
| | - Wei Wang
- Department of Human Oncology, University of Wisconsin, 1111 Highland Avenue, 4136 WIMR Bldg., Madison, WI, 53705, USA
| | - Mikayla Gallenberger
- Department of Human Oncology, University of Wisconsin, 1111 Highland Avenue, 4136 WIMR Bldg., Madison, WI, 53705, USA
| | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin, 1111 Highland Avenue, 4136 WIMR Bldg., Madison, WI, 53705, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, 1111 Highland Avenue, 4136 WIMR Bldg., Madison, WI, 53705, USA
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
6
|
Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front Immunol 2015; 6:368. [PMID: 26284063 PMCID: PMC4515552 DOI: 10.3389/fimmu.2015.00368] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be "specifically activated" through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacquelyn A. Hank
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Matlawska-Wasowska K, Gale JM, Nickl CK, Khalili P, Shirley B, Wilson BS, Vasef MA, Winter SS. Pyrosequencing for classification of human FcγRIIIA allotypes: a comparison with PCR-based techniques. Mol Diagn Ther 2015; 18:665-73. [PMID: 25230857 DOI: 10.1007/s40291-014-0120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Surface-specific antigens expressed by hematopoietic cells are attractive targets for antibody-mediated immunotherapy. Monoclonal antibodies (mAbs) involve various mechanisms to eliminate target cells, including antibody-dependent cellular cytotoxicity (ADCC)- and phagocytosis (ADCP)-mediated killing through natural killer (NK) and macrophage effector cells bearing FcγRIIIA (CD16). The clinical efficacy of ADCC is particularly impacted by a single nucleotide polymorphism (SNP) found in the gene encoding FcγRIIIA (FCGR3A), which generates a variable distribution of the 158 V/V, F/V or F/F CD16 allotypes (F = phenylalanine, V = valine) in the normal human population. Currently, most patients are not screened for CD16 allotypes, creating the potential to include in their treatment a mAb-based therapy that may have limited benefit. Therefore, it is important to identify CD16 allotypes when considering mAb therapies that require ADCC/ADCP. OBJECTIVE The objective of this study was to develop a reliable PCR-based assay for classification of human FcγRIIIA allotypes. METHODS We studied 42 normal human subjects for the incidence of FcγRIIIA-158 polymorphisms using comparative molecular approaches. RESULTS The results of our study showed 100% accuracy in genotyping by pyrosequencing. In contrast, nested PCR-based allele-specific restriction assay and quantitative PCR techniques proved to be relatively less sensitive and less specific in distinguishing variant genotypes. CONCLUSION Since the efficacy of the mAb-based targeted immunotherapy may be highly dependent upon the CD16 polymorphism in a given individual, we recommend pyrosequencing for CD16 allotype testing.
Collapse
Affiliation(s)
- Ksenia Matlawska-Wasowska
- Department of Pediatrics, Division of Hematology and Oncology, MSC 10 5590, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang S, Tan IB, Sapari NS, Grabsch HI, Okines A, Smyth EC, Aoyama T, Hewitt LC, Inam I, Bottomley D, Nankivell M, Stenning SP, Cunningham D, Wotherspoon A, Tsuburaya A, Yoshikawa T, Soong R, Tan P. Technical reproducibility of single-nucleotide and size-based DNA biomarker assessment using DNA extracted from formalin-fixed, paraffin-embedded tissues. J Mol Diagn 2015; 17:242-50. [PMID: 25746798 DOI: 10.1016/j.jmoldx.2014.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023] Open
Abstract
DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissues has been used in the past to analyze genetic polymorphisms. We evaluated the technical reproducibility of different types of assays for gene polymorphisms using DNA extracted from FFPE material. By using the MassARRAY iPLEX system, we investigated polymorphisms in DPYD (rs1801159 and rs3918290), UMPS (rs1801019), ERCC1 (rs11615), ERCC1 (rs3212986), and ERCC2 (rs13181) in 56 FFPE DNA samples. By using PCR, followed by size-based gel electrophoresis, we also examined TYMS 5' untranslated region 2R/3R repeats and GSTT1 deletions in 50 FFPE DNA samples and 34 DNAs extracted from fresh-frozen tissues and cell lines. Each polymorphism was analyzed by two independent runs. We found that iPLEX biomarker assays measuring single-nucleotide polymorphisms provided consistent concordant results. However, by using FFPE DNA, size-based PCR biomarkers (GSTT1 and TYMS 5' untranslated region) were discrepant in 32.7% (16/49, with exact 95% CI, 19.9%-47.5%; exact binomial confidence limit test) and 4.2% (2/48, with exact 95% CI, 0.5%-14.3%) of cases, respectively, whereas no discrepancies were observed using intact genomic DNA. Our findings suggest that DNA from FFPE material can be used to reliably test single-nucleotide polymorphisms. However, results based on size-based PCR biomarkers, and particularly GSTT1 deletions, using FFPE DNA need to be interpreted with caution. Independent repeated assays should be performed on all cases to assess potential discrepancies.
Collapse
Affiliation(s)
- Shenli Zhang
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Iain B Tan
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Nur S Sapari
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Heike I Grabsch
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Alicia Okines
- Department of Gastrointestinal Oncology, Royal Marsden Hospital, Sutton, United Kingdom
| | - Elizabeth C Smyth
- Department of Gastrointestinal Oncology, Royal Marsden Hospital, Sutton, United Kingdom
| | - Toru Aoyama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Lindsay C Hewitt
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Imran Inam
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Dan Bottomley
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Matthew Nankivell
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Sally P Stenning
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - David Cunningham
- Department of Gastrointestinal Oncology, Royal Marsden Hospital, Sutton, United Kingdom
| | | | - Akira Tsuburaya
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Takaki Yoshikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Pathology, National University Health System, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore; Cancer Therapeutics and Stratified Oncology Group, Genome Institute of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Weis JF, McClelland RS, Jaoko W, Mandaliya KN, Overbaugh J, Graham SM. Short communication: Fc gamma receptors IIa and IIIa genetic polymorphisms do not predict HIV-1 disease progression in Kenyan women. AIDS Res Hum Retroviruses 2015; 31:288-92. [PMID: 25312792 DOI: 10.1089/aid.2014.0209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic polymorphisms of the Fc gamma receptors (FcγR) IIa and IIIa have been implicated in the rate of HIV-1 disease progression, but results are inconsistent. We aimed to determine the association between these polymorphisms and disease progression in a cohort of HIV-1 seroconverters from Mombasa, Kenya. Neither FcγRIIa nor FcγRIIIa genotypes were predictive of set point viral load, viral load increase, CD4 decline, or HIV-1 disease progression (time to CD4 count <200 cells/mm(3), death, or treatment initiation). Our results suggest that FcγR polymorphisms might not be an important indicator of viral control and disease progression in this population.
Collapse
Affiliation(s)
- Julie F. Weis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Institute for Public Health Genetics, University of Washington, Seattle, Washington
| | - R. Scott McClelland
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Walter Jaoko
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | | | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Susan M. Graham
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
10
|
Wang J, Ni Z, Duan Z, Wang G, Li F. Altered expression of hypoxia-inducible factor-1α (HIF-1α) and its regulatory genes in gastric cancer tissues. PLoS One 2014; 9:e99835. [PMID: 24927122 PMCID: PMC4057318 DOI: 10.1371/journal.pone.0099835] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022] Open
Abstract
Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α), the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED) was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3) were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.
Collapse
Affiliation(s)
- Jihan Wang
- Department of Pathogenobiology, Jilin Key Laboratory of Biomedical Materials, College of Basic Medical Science, Jilin University, Changchun, China
| | - Zhaohui Ni
- Department of Pathogenobiology, Jilin Key Laboratory of Biomedical Materials, College of Basic Medical Science, Jilin University, Changchun, China
| | - Zipeng Duan
- Department of Pathogenobiology, Jilin Key Laboratory of Biomedical Materials, College of Basic Medical Science, Jilin University, Changchun, China
| | - Guoqing Wang
- Department of Pathogenobiology, Jilin Key Laboratory of Biomedical Materials, College of Basic Medical Science, Jilin University, Changchun, China
- The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, China
- * E-mail: (GW); (FL)
| | - Fan Li
- Department of Pathogenobiology, Jilin Key Laboratory of Biomedical Materials, College of Basic Medical Science, Jilin University, Changchun, China
- The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, China
- * E-mail: (GW); (FL)
| |
Collapse
|
11
|
A novel specific pyrosequencing method for genotyping FCGR3A rs396991 without coamplification of homologous gene FCGR3B. Pharmacogenet Genomics 2013; 23:631-5. [DOI: 10.1097/fpc.0b013e328365a4f2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|