1
|
Desjardins P, Le-Bel G, Ghio SC, Germain L, Guérin SL. The WNK1 kinase regulates the stability of transcription factors during wound healing of human corneal epithelial cells. J Cell Physiol 2022; 237:2434-2450. [PMID: 35150137 DOI: 10.1002/jcp.30698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Due to its superficial anatomical localization, the cornea is continuously subjected to injuries. Damages to the corneal epithelium trigger important changes in the composition of the extracellular matrix to which the basal human corneal epithelial cells (hCECs) attach. These changes are perceived by membrane-bound integrins and ultimately lead to re-epithelialization of the injured epithelium through intracellular signalin. Among the many downstream targets of the integrin-activated signaling pathways, WNK1 is the kinase whose activity is the most strongly increased during corneal wound healing. We previously demonstrated that pharmacological inhibition of WNK1 prevents proper closure of wounded human tissue-engineered cornea in vitro. In the present study, we investigated the molecular mechanisms by which WNK1 contributes to corneal wound healing. By exploiting transcription factors microarrays, electrophoretic mobility-shift assay, and gene profiling analyses, we demonstrated that the DNA binding properties and expression of numerous transcription factors (TFs), including the well-known, ubiquitous TFs specific protein 1 (Sp1) and activator protein 1 (AP1), were reduced in hCECs upon WNK1 inhibition by WNK463. This process appears to be mediated at least in part by alteration in both the ubiquitination and glycosylation status of these TFs. These changes in TFs activity and expression impacted the transcription of several genes, including that encoding the α5 integrin subunit, a well-known target of both Sp1 and AP1. Gene profiling revealed that only a moderate number of genes in hCECs had their level of expression significantly altered in response to WNK463 exposition. Interestingly, analysis of the microarray data for these deregulated genes using the ingenuity pathway analysis software predicted that hCECs would stop migrating and proliferating but differentiate more when they are grown in the presence of the WNK1 inhibitor. These results demonstrate that WNK1 plays a critical function by orienting hCECs into the appropriate biological response during the process of corneal wound healing.
Collapse
Affiliation(s)
- Pascale Desjardins
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Gaëtan Le-Bel
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Sergio C Ghio
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Lucie Germain
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
2
|
Ma L, Ma Y, Lian A. Involvement of miR-769-5p/Retinoic Acid Receptor Responder 1 Axis in the Progression of Osteosarcoma: Characterization of Potential Therapeutic Targets. Pharmacology 2022; 107:179-187. [DOI: 10.1159/000520803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 10/20/2021] [Indexed: 11/19/2022]
Abstract
<b><i>Introduction:</i></b> This study aimed to detect the function of retinoic acid receptor responder 1 (RARRES1) and its regulator miR-769-5p in the growth and mobility of osteosarcoma cells. <b><i>Methods:</i></b> The Gene Expression Omnibus database was applied to analyze RARRES1 and miR-769-5p expression, and the survival rate of osteosarcoma patients. The target association between miR-769-5p and RARRES1 was speculated by miRWalk, TargetScan, and miRanda Web sites, as well as affirmed by dual luciferase assay. RARRES1 expression was tested by quantitative real-time polymerase chain reaction and Western blot. The malignant properties of MG-63 and U2OS cells were assessed by a series of biological experiments. <b><i>Results:</i></b> RARRES1 was lowly expressed in osteosarcoma patients, which resulted in unfavorable survival. Depletion of RARRES1 promoted the viability and mobility of osteosarcoma cells. Moreover, miR-769-5p was affirmed as an upstream regulator of RARRES1 and negatively regulated RARRES1 expression. miR-769-5p upregulation accelerated the viability and mobility of osteosarcoma cells, which can be blocked by RARRES1 overexpression. miR-769-5p inhibitor suppressed the effect of malignant viability and mobility of osteosarcoma cells, while this suppressive effect was abolished by depleting RARRES1. <b><i>Discussion/Conclusion:</i></b> miR-769-5p promoted cell viability, invasion, and migration by reducing RARRES1 expression in osteosarcoma cells, which might provide novel targets for the treatment of osteosarcoma.
Collapse
|
3
|
Wang CH, Lu TJ, Wang LK, Wu CC, Chen ML, Kuo CY, Shyu RY, Tsai FM. Tazarotene-induced gene 1 interacts with Polo-like kinase 2 and inhibits cell proliferation in HCT116 colorectal cancer cells. Cell Biol Int 2021; 45:2347-2356. [PMID: 34314079 DOI: 10.1002/cbin.11681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023]
Abstract
Tazarotene-induced gene 1 (TIG1) is considered to be a tumor suppressor gene that is highly expressed in normal or well-differentiated colon tissues, while downregulation of TIG1 expression occurs in poorly differentiated colorectal cancer (CRC) tissues. However, it is still unclear how TIG1 regulates the tumorigenesis of CRC. Polo-like kinases (Plks) are believed to play an important role in regulating the cell cycle. The performance of PLK2 in CRC is negatively correlated with the differentiation status of CRC tissues. Here, we found that PLK2 can induce the growth of CRC cells and that TIG1 can prevent PLK2 from promoting the proliferation of CRC cells. We also found that the expression of PLK2 in CRC cells was associated with low levels of Fbxw7 protein and increased expression of cyclin E1. When TIG1 was coexpressed with PLK2, the changes in Fbxw7/cyclin E1 levels induced by PLK2 were reversed. In contrast, silencing TIG1 promoted the proliferation of CRC, and when PLK2 was also silenced, the proliferation of CRC cells induced by TIG1 silencing was significantly inhibited. The above research results suggest that TIG1 can regulate the tumorigenesis of CRC by regulating the activity of PLK2.
Collapse
Affiliation(s)
- Chun-Hua Wang
- Department of Dermatology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tzung-Ju Lu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chang-Chieh Wu
- Department of Surgery, Tri-Service General Hospital Keelung Branch, National Defense Medical Center, Keelung, Taiwan
| | - Mao-Liang Chen
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Rong-Yaun Shyu
- Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| |
Collapse
|
4
|
Wang CH, Wang LK, Wu CC, Chen ML, Kuo CY, Shyu RY, Tsai FM. Cathepsin V Mediates the Tazarotene-induced Gene 1-induced Reduction in Invasion in Colorectal Cancer Cells. Cell Biochem Biophys 2020; 78:483-494. [PMID: 32918681 DOI: 10.1007/s12013-020-00940-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
Tazarotene-induced gene 1 (TIG1) is a retinoid acid receptor-responsive gene involved in cell differentiation and tumorigenesis. Aberrant methylation of CpG islands in the TIG1 promoter is found in multiple cancers. Currently, the exact mechanism underlying the anticancer effect of TIG1 is unknown. Here, we show that TIG1 interacts with cathepsin V (CTSV), which reduces CTSV stability and subsequently affects the production of activated urokinase-type plasminogen activator (uPA), an epithelial-mesenchymal transition-associated protein. Ectopic expression of CTSV increased the expression of activated uPA and the number of migrated and invaded cells, whereas ectopic TIG1 expression reversed the effects of CTSV on the uPA signaling pathway. Similar patterns in the production of activated uPA and number of migrated and invaded cells were also observed in TIG1-expressing and CTSV-knockdown cells. The results suggest that CTSV may participate in TIG1-regulated uPA activity and the associated downstream signaling pathway.
Collapse
Affiliation(s)
- Chun-Hua Wang
- Department of Dermatology, Taipei Tzuchi Hospital, Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan
- School of Medicine, Tzu Chi University, Hualien, 970, Taiwan
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan
| | - Chang-Chieh Wu
- Department of Surgery, Tri-Service General Hospital Keelung Branch, National Defense Medical Center, Keelung, 202, Taiwan
| | - Mao-Liang Chen
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan
| | - Rong-Yaun Shyu
- Department of Internal Medicine, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan.
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan.
| |
Collapse
|
5
|
Expression of RARRES1 and AGBL2 and progression of conventional renal cell carcinoma. Br J Cancer 2020; 122:1818-1824. [PMID: 32307444 PMCID: PMC7283229 DOI: 10.1038/s41416-020-0798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Approximately 15% of clinically localised conventional renal cell carcinoma (RCC) will develop metastasis within 5 years of follow-up. The aim of this study was to identify biomarkers predicting the postoperative tumour relapse. METHODS Tissue microarrays of conventional RCC from a cohort of 691 patients without metastasis at the time of operation were analysed by immunohistochemistry for the expression of carboxypeptase inhibitor RARRES1 and its substrate carboxypeptidase AGBL2. Univariate and multivariate Cox regression models were addressed to postoperative tumour relapse and the metastasis-free survival time was estimated by Kaplan-Meier analysis. RESULTS In multivariate analysis, the lack of staining or cytoplasmic staining of RARRES1 was a significant risk factor indicating five times higher risk of cancer relapse. Combining its co-expression with AGBL2, we found that RARRES1 cytoplasmic/negative and AGBL2-positive/negative staining is a significant risk factor for tumour progression indicating 11-15 times higher risk of cancer relapse, whereas the membranous RARRES1 expression, especially its co-expression with AGBL2, associated with excellent disease outcome. CONCLUSIONS RARRES1 and AGBL2 expression defines groups of patients at low and high risk of tumour progression and may direct an active surveillance to detect metastasis as early as possible and to apply adjuvant therapy.
Collapse
|
6
|
Tazarotene-Induced Gene 1 (TIG1) Interacts with Serine Protease Inhibitor Kazal-Type 2 (SPINK2) to Inhibit Cellular Invasion of Testicular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6171065. [PMID: 31886233 PMCID: PMC6899300 DOI: 10.1155/2019/6171065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
Tazarotene-induced gene 1 (TIG1) encodes a protein that is a retinoid-regulated tumor suppressor. TIG1 is expressed in most normal tissues, and downregulation of TIG1 expression in multiple cancers is caused by promoter hypermethylation. Kazal-type serine protease inhibitor-2 (SPINK2) is a serine protease inhibitor, and the SPINK protein family has been shown to inhibit the expression of urokinase-type plasminogen activator (uPA). In addition, increased levels of uPA and the uPA receptor were observed in testicular cancer tissues. This study demonstrated that TIG1 interacts with SPINK2 in NT2/D1 testicular carcinoma cells. TIG1 and SPINK2 were highly expressed in normal testis tissues, while low expression levels of TIG1 and SPINK2 were found in testicular cancer tissues. TIG1 inhibited cell invasion, migration, and epithelial-mesenchymal transition (EMT) of NT2/D1 cells. SPINK2 enhanced TIG1-regulated uPA activity and EMT suppression, while silencing SPINK2 alleviated TIG1-mediated EMT regulation, cell migration, and invasion. Therefore, the results suggest that the interaction between TIG1 and SPINK2 plays an important role in the inhibition of testicular cancer cell EMT, and suppression is mediated through downregulation of the uPA/uPAR signaling pathway.
Collapse
|
7
|
Wang CH, Shyu RY, Wu CC, Chen ML, Lee MC, Lin YY, Wang LK, Jiang SY, Tsai FM. Tazarotene-Induced Gene 1 Interacts with DNAJC8 and Regulates Glycolysis in Cervical Cancer Cells. Mol Cells 2018; 41:562-574. [PMID: 29902837 PMCID: PMC6030241 DOI: 10.14348/molcells.2018.2347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/20/2018] [Accepted: 03/20/2018] [Indexed: 11/27/2022] Open
Abstract
The tazarotene-induced gene 1 (TIG1) protein is a retinoid-inducible growth regulator and is considered a tumor suppressor. Here, we show that DnaJ heat shock protein family member C8 (DNAJC8) is a TIG1 target that regulates glycolysis. Ectopic DNAJC8 expression induced the translocation of pyruvate kinase M2 (PKM2) into the nucleus, subsequently inducing glucose transporter 1 (GLUT1) expression to promote glucose uptake. Silencing either DNAJC8 or PKM2 alleviated the upregulation of GLUT1 expression and glucose uptake induced by ectopic DNAJC8 expression. TIG1 interacted with DNAJC8 in the cytosol, and this interaction completely blocked DNAJC8-mediated PKM2 translocation and inhibited glucose uptake. Furthermore, increased glycose uptake was observed in cells in which TIG1 was silenced. In conclusion, TIG1 acts as a pivotal repressor of DNAJC8 to enhance glucose uptake by partially regulating PKM2 translocation.
Collapse
Affiliation(s)
- Chun-Hua Wang
- Department of Dermatology, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
- School of Medicine, Tzu Chi University, Hualien 970,
Taiwan
| | - Rong-Yaun Shyu
- Department of Internal Medicine, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Chang-Chieh Wu
- Department of Surgery, Tri-Service General Hospital Keelung Branch, National Defense Medical Center, Keelung 202,
Taiwan
| | - Mao-Liang Chen
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Yi-Yin Lin
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan 333,
Taiwan
| | - Shun-Yuan Jiang
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| |
Collapse
|
8
|
Huebner H, Strick R, Wachter DL, Kehl S, Strissel PL, Schneider-Stock R, Hartner A, Rascher W, Horn LC, Beckmann MW, Ruebner M, Fahlbusch FB. Hypermethylation and loss of retinoic acid receptor responder 1 expression in human choriocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:165. [PMID: 29169400 PMCID: PMC5701501 DOI: 10.1186/s13046-017-0634-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/13/2017] [Indexed: 01/06/2023]
Abstract
Background Human placental development resembles tumorigenesis, due to the invasive and fusogenic potential of trophoblasts. However, these features are tightly controlled in trophoblasts. Disturbance of this spatial and temporal regulation is thought to contribute to the rare formation of choriocarcinomas. Promoter hypermethylation and loss of the tumor suppressor Retinoic acid receptor responder 1 (RARRES1) were shown to contribute to cancer progression. Our study investigated the epigenetic and transcriptional regulation of RARRES1 in healthy human placenta in comparison to choriocarcinoma cell lines and cases. Methods Three choriocarcinoma cell lines (Jeg-3, JAR and BeWo) were treated with three different retinoic acid derivates (Am580, Tazarotene and all-trans retinoic acid) and 5-aza-2′-deoxycytidine. We analyzed RARRES1 promoter methylation by pyrosequencing and performed realtime-PCR quantification to determine RARRES1 expression in placental tissue and trophoblastic cell lines. Additionally, RARRES1 was stained in healthy placentas and in biopsies of choriocarcinoma cases (n = 10) as well as the first trimester trophoblast cell line Swan71 by immunofluorescence and immunohistochemistry. Results In the choriocarcinoma cell lines, RARRES1 expression could not be induced by sole retinoic acid treatment. Stimulation with 5-aza-2′-deoxycytidine significantly induced RARRES1 expression, which then could be further increased with Am580, Tazarotene and all-trans retinoic acid. In comparison to healthy placenta, choriocarcinoma cell lines showed a hypermethylation of the RARRES1 promoter, which correlated with a reduced RARRES1 expression. In concordance, RARRES1 protein expression was lost in choriocarcinoma tissue. Additionally, in the trophoblastic cell line Swan71, we found a significant induction of RARRES1 expression with increased cell density, during mitosis and in syncytial knots. Conclusions Our findings showed that RARRES1 expression is absent in choriocarcinoma due to promoter methylation. Based on our analysis, we hypothesize that RARRES1 might exert tumor suppressive functions in multiple cellular processes (e.g. cell cycle regulation, adhesion, invasion and apoptosis). Electronic supplementary material The online version of this article (10.1186/s13046-017-0634-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Huebner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - R Strick
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - D L Wachter
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - S Kehl
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - P L Strissel
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - R Schneider-Stock
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - A Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany
| | - W Rascher
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany
| | - L C Horn
- Division Molecular Pathology, Institute of Pathology, University of Leipzig, Leipzig, Germany
| | - M W Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - M Ruebner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - F B Fahlbusch
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany.
| |
Collapse
|
9
|
Shyu RY, Wang CH, Wu CC, Chen ML, Lee MC, Wang LK, Jiang SY, Tsai FM. Tazarotene-Induced Gene 1 Enhanced Cervical Cell Autophagy through Transmembrane Protein 192. Mol Cells 2016; 39:877-887. [PMID: 27989102 PMCID: PMC5223105 DOI: 10.14348/molcells.2016.0161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/18/2023] Open
Abstract
Tazarotene-induced gene 1 (TIG1) is a retinoic acid-inducible protein that is considered a putative tumor suppressor. The expression of TIG1 is decreased in malignant prostate carcinoma or poorly differentiated colorectal adenocarcinoma, but TIG1 is present in benign or well-differentiated tumors. Ectopic TIG1 expression led to suppression of growth in cancer cells. However, the function of TIG1 in cell differentiation is still unknown. Using a yeast two-hybrid system, we found that transmembrane protein 192 (TMEM192) interacted with TIG1. We also found that both TIG1A and TIG1B isoforms interacted and co-localized with TMEM192 in HtTA cervical cancer cells. The expression of TIG1 induced the expression of autophagy-related proteins, including Beclin-1 and LC-3B. The silencing of TMEM192 reduced the TIG1-mediated upregulation of autophagic activity. Furthermore, silencing of either TIG1 or TMEM192 led to alleviation of the upregulation of autophagy induced by all-trans retinoic acid. Our results demonstrate that the expression of TIG1 leads to cell autophagy through TMEM192. Our study also suggests that TIG1 and TMEM192 play an important role in the all-trans retinoic acid-mediated upregulation of autophagic activity.
Collapse
Affiliation(s)
- Rong-Yaun Shyu
- Department of Internal Medicine, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Chun-Hua Wang
- Department of Dermatology, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Chang-Chieh Wu
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114,
Taiwan
| | - Mao-Liang Chen
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan 333,
Taiwan
| | - Shun-Yuan Jiang
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| |
Collapse
|
10
|
Nawaz I, Hu LF, Du ZM, Moumad K, Ignatyev I, Pavlova TV, Kashuba V, Almgren M, Zabarovsky ER, Ernberg I. Integrin α9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma. Oncotarget 2015; 6:31493-507. [PMID: 26372814 PMCID: PMC4741620 DOI: 10.18632/oncotarget.5154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) by promoter methylation can be an early event in the multi-step process of carcinogenesis. Human chromosome 3 contains clusters of TSGs involved in many cancer types including nasopharyngeal carcinoma (NPC), the most common cancer in Southern China. Among ten candidate TSGs identified in chromosome 3 using NotI microarray, ITGA9 and WNT7A could be validated. 5'-aza-2' deoxycytidine treatment restored the expression of ITGA9 and WNT7A in two NPC cell lines. Immunostaining showed strong expression of these genes in the membrane and cytoplasm of adjacent control nasopharyngeal epithelium cells, while they were weakly expressed in NPC tumor cells. The ITGA9 promoter showed marked differentially methylation between tumor and control tissue, whereas no differentially methylation could be detected for the WNT7A promoter. The expression level of ITGA9 in NPC tumors was downregulated 4.9-fold, compared to the expression in control. ITGA9 methylation was detected by methylation specific PCR (MSP) in 56% of EBV positive NPC-cases with 100% specificity. Taken together, this suggests that ITGA9 might be a TSG in NPC that is involved in tumor cell biology. The possibility of using ITGA9 methylation as a marker for early detection of NPC should further be explored.
Collapse
Affiliation(s)
- Imran Nawaz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
| | - Li-Fu Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zi-Ming Du
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Oncology in South China, and Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Khalid Moumad
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Oncovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ilya Ignatyev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana V. Pavlova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Almgren
- Department Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Stockholm, Sweden
| | - Eugene R. Zabarovsky
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical & Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Nawaz I, Moumad K, Martorelli D, Ennaji MM, Zhou X, Zhang Z, Dolcetti R, Khyatti M, Ernberg I, Hu LF. Detection of nasopharyngeal carcinoma in Morocco (North Africa) using a multiplex methylation-specific PCR biomarker assay. Clin Epigenetics 2015; 7:89. [PMID: 26300994 PMCID: PMC4546349 DOI: 10.1186/s13148-015-0119-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022] Open
Abstract
Background Silencing of tumor suppressor genes (TSGs) or activation of oncogenes by, e.g., aberrant promoter methylation, may be early events during carcinogenesis. The methylation status of such genes can be used for early detection of cancer. We are pursuing this approach in our efforts to develop markers for early detection and follow-up of nasopharyngeal carcinoma (NPC). We set out to develop this approach to allow identification of NPC from Morocco and then also compared with NPC samples from different geographical locations and different ethnicity with different NPC incidences, Epstein-Barr virus (EBV) prevalence, and environments. Results By multiplex methylation-specific PCR (MMSP), multiple relevant genes can be detected simultaneously, to achieve high sensitivity and specificity. The strong association of EBV with NPC is also very useful in such an approach. We have initially screened for 12 potential marker genes including EBV genes coding for EBV nuclear antigen 1 (EBNA1) and latent membrane protein-1 (LMP1) and ten potential TSGs obtained from previously published data. The resulting assay included EBNA1, LMP1, and three cellular TSGs: ITGA9, RASSF1A, and P16. We evaluated this assay on 64 NPC patient biopsies from Morocco, Italy, and China compared to deoxyribonucleic acid (DNA) from 20 nasopharyngeal control tissues. In the Moroccan NPC cohort (n = 44), prevalence of the EBNA1 gene showed the highest sensitivity (36/44; 82 %) with 94 % specificity. Out of eight (18 %) EBNA1 negative Moroccan samples, only three were positive for at least one methylated cellular gene. By detection of cellular marker genes, the sensitivity increased from 82 to 89 % (39/44). In the whole material of 64 biopsies from three geographical locations, at least any one marker (viral or cellular) could be detected in 91 % of biopsies with 90 % specificity. In a pilot evaluating assay performance on serum DNA from NPC and controls including samples from Italy (n = 11) and China (n = 5), at least any one marker from the MMSP assay could be detected in 88 %, but the specificity was only 50 %. Conclusions An MMSP assay has the potential for detection of NPC by screening in high-risk populations. Serum-derived DNA seems not as good as earlier published NPC swab DNA for screening purpose.
Collapse
Affiliation(s)
- Imran Nawaz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden.,Department of Microbiology, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
| | - Khalid Moumad
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Oncovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Debora Martorelli
- Cancer Bio-Immunotherapy Unit Centro di Riferimento Oncologico IRCCS - National Cancer Institute, Via Franco Gallini, 233081 Aviano, PN Italy
| | - Moulay Mustapha Ennaji
- University Hassan II, Faculty of Sciences and Techniques, Mohammedia - Casablanca, Laboratory of Virology, Microbiology and Quality/ETB, Mohammedia, , BP 146, 20650 Morocco
| | - Xiaoying Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden.,Department of Orolaryngology - Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Zhe Zhang
- Department of Orolaryngology - Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit Centro di Riferimento Oncologico IRCCS - National Cancer Institute, Via Franco Gallini, 233081 Aviano, PN Italy
| | - Meriem Khyatti
- Oncovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden
| | - Li-Fu Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Stockholm, SE-17177 Sweden
| |
Collapse
|
12
|
Anayannis NVJ, Schlecht NF, Belbin TJ. Epigenetic Mechanisms of Human Papillomavirus-Associated Head and Neck Cancer. Arch Pathol Lab Med 2015; 139:1373-8. [PMID: 25978766 DOI: 10.5858/arpa.2014-0554-ra] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Growing evidence suggests that as many as half of all oropharyngeal squamous cell carcinomas (OPSCCs) harbor human papillomavirus (HPV) infections. Despite being more advanced at diagnosis, HPV-positive OPSCCs are associated with a better response to therapy and longer patient survival than HPV-negative OPSCCs. Human papillomavirus-positive OPSCC has also been shown to have distinct host gene expression profiles compared with HPV-negative OPSCC. Recently, this distinction has been shown to include the epigenome. It is well supported that cancers are epigenetically deregulated. This review highlights epigenetic differences between HPV-positive and HPV-negative OPSCCs. The epigenetic mechanisms highlighted include methylation changes to host and viral DNA, and host chromatin modification. We also review the current evidence regarding host DNA methylation changes associated with smoking, and deregulation of microRNA expression in HPV-positive OPSCC. OBJECTIVE To provide an overview of epigenetic mechanisms reported in HPV-positive OPSCC, with analogies to cervical cancer, and discussion of the challenges involved in studying epigenetic changes in HPV-associated OPSCC in combination with changes associated with smoking. DATA SOURCES Sources were a literature review of peer-reviewed articles in PubMed on HPV and either OPSCC or head and neck squamous cell carcinoma, and related epigenetic mechanisms. CONCLUSIONS Epigenetic changes are reported to be a contributing factor to maintaining a malignant phenotype in HPV-positive OPSCC. The epigenetic mechanisms highlighted in this review can be studied for potential as biomarkers or as drug targets. Furthermore, continued research on the deregulation of epigenetic mechanisms in HPV-positive OPSCC (compared with HPV-negative OPSCC) may contribute to our understanding of the clinical and biologic differences between HPV-positive and HPV-negative OPSCC.
Collapse
Affiliation(s)
| | | | - Thomas J Belbin
- From the Departments of Pathology (Ms Anayannis and Dr Belbin), Epidemiology & Population Health (Dr Schlecht), and Medicine (Oncology) (Dr Schlecht), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
13
|
Genome-wide DNA methylation as an epigenetic consequence of Epstein-Barr virus infection of immortalized keratinocytes. J Virol 2014; 88:11442-58. [PMID: 25056883 DOI: 10.1128/jvi.00972-14] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The oral cavity is a persistent reservoir for Epstein-Barr virus (EBV) with lifelong infection of resident epithelial and B cells. Infection of these cell types results in distinct EBV gene expression patterns regulated by epigenetic modifications involving DNA methylation and chromatin structure. Regulation of EBV gene expression relies on viral manipulation of the host epigenetic machinery that may result in long-lasting host epigenetic reprogramming. To identify epigenetic events following EBV infection, a transient infection model was established to map epigenetic changes in telomerase-immortalized oral keratinocytes. EBV-infected oral keratinocytes exhibited a predominantly latent viral gene expression program with some lytic or abortive replication. Calcium and methylcellulose-induced differentiation was delayed in EBV-positive clones and in clones that lost EBV compared to uninfected controls, indicating a functional consequence of EBV epigenetic modifications. Analysis of global cellular DNA methylation identified over 13,000 differentially methylated CpG residues in cells exposed to EBV compared to uninfected controls, with CpG island hypermethylation observed at several cellular genes. Although the vast majority of the DNA methylation changes were silent, 65 cellular genes that acquired CpG methylation showed altered transcript levels. Genes with increased transcript levels frequently acquired DNA methylation within the gene body while those with decreased transcript levels acquired DNA methylation near the transcription start site. Treatment with the DNA methyltransferase inhibitor, decitabine, restored expression of some hypermethylated genes in EBV-infected and EBV-negative transiently infected clones. Overall, these observations suggested that EBV infection of keratinocytes leaves a lasting epigenetic imprint that can enhance the tumorigenic phenotype of infected cells. IMPORTANCE Here, we show that EBV infection of oral keratinocytes led to CpG island hypermethylation as an epigenetic scar of prior EBV infection that was retained after loss of the virus. Such EBV-induced epigenetic modification recapitulated the hypermethylated CpG island methylator phenotype (CIMP) observed in EBV-associated carcinomas. These epigenetic alterations not only impacted gene expression but also resulted in delayed calcium and methylcellulose-induced keratinocyte differentiation. Importantly, these epigenetic changes occurred in cells that were not as genetically unstable as carcinoma cells, indicating that EBV infection induced an epigenetic mutator phenotype. The impact of this work is that we have provided a mechanistic framework for how a tumor virus using the epigenetic machinery can act in a "hit-and-run" fashion, with retention of epigenetic alterations after loss of the virus. Unlike genetic alterations, these virally induced epigenetic changes can be reversed pharmacologically, providing therapeutic interventions to EBV-associated malignancies.
Collapse
|
14
|
Rong G, Kang H, Wang Y, Hai T, Sun H. Candidate markers that associate with chemotherapy resistance in breast cancer through the study on Taxotere-induced damage to tumor microenvironment and gene expression profiling of carcinoma-associated fibroblasts (CAFs). PLoS One 2013; 8:e70960. [PMID: 23951052 PMCID: PMC3738633 DOI: 10.1371/journal.pone.0070960] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Recently, emerging evidence has suggested that carcinoma-associated fibroblasts (CAFs) could contribute to chemotherapy resistances in breast cancer treatment. The aim of this study is to compare the gene expression profiling of CAFs before and after chemotherapy and pick up candidate genes that might associate with chemotherapy resistance and could be used as predictors of treatment response. CAFs were cultured from surgically resected primary breast cancers and identified with immunohistochemistry (IHC) and Flow cytometry (FCM). MDA-MB-231 cells were cultured as the breast cancer cell line. Cell adhesion assay, invasion assay, and proliferation assay (MTT) were performed to compare the function of MDA-MB-231 cells co-cultured with CAFs and MDA-MB-231 cells without co-culture, after chemotherapy. Totally 6 pairs of CAFs were prepared for microarray analysis. Each pair of CAFs were obtained from the same patient and classified into two groups. One group was treated with Taxotere (regarded as after chemotherapy) while the other group was not processed with Taxotere (regarded as before chemotherapy). According to our study, the primary-cultured CAFs exhibited characteristic phenotype. After chemotherapy, MDA-MB-231 cells co-cultured with CAFs displayed increasing adhesion, invasiveness and proliferation abilities, compared with MDA-MB-231 cells without CAFs. Moreover, 35 differentially expressed genes (absolute fold change >2) were identified between CAFs after chemotherapy and before chemotherapy, including 17 up-regulated genes and 18 down-regulated genes. CXCL2, MMP1, IL8, RARRES1, FGF1, and CXCR7 were picked up as the candidate markers, of which the differential expression in CAFs before and after chemotherapy was confirmed. The results indicate the changes of gene expression in CAFs induced by Taxotere treatment and propose the candidate markers that possibly associate with chemotherapy resistance in breast cancer.
Collapse
Affiliation(s)
- Guohua Rong
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P. R. China
| | - Hua Kang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P. R. China
- * E-mail:
| | - Yajun Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P. R. China
| | - Tao Hai
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P. R. China
| | - Haichen Sun
- Surgery Lab, Xuanwu Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
15
|
Ullah M, Stich S, Häupl T, Eucker J, Sittinger M, Ringe J. Reverse differentiation as a gene filtering tool in genome expression profiling of adipogenesis for fat marker gene selection and their analysis. PLoS One 2013; 8:e69754. [PMID: 23922792 PMCID: PMC3724870 DOI: 10.1371/journal.pone.0069754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/11/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND During mesenchymal stem cell (MSC) conversion into adipocytes, the adipogenic cocktail consisting of insulin, dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine not only induces adipogenic-specific but also genes for non-adipogenic processes. Therefore, not all significantly expressed genes represent adipogenic-specific marker genes. So, our aim was to filter only adipogenic-specific out of all expressed genes. We hypothesize that exclusively adipogenic-specific genes change their expression during adipogenesis, and reverse during dedifferentiation. Thus, MSC were adipogenic differentiated and dedifferentiated. RESULTS Adipogenesis and reverse adipogenesis was verified by Oil Red O staining and expression of PPARG and FABP4. Based on GeneChips, 991 genes were differentially expressed during adipogenesis and grouped in 4 clusters. According to bioinformatic analysis the relevance of genes with adipogenic-linked biological annotations, expression sites, molecular functions, signaling pathways and transcription factor binding sites was high in cluster 1, including all prominent adipogenic genes like ADIPOQ, C/EBPA, LPL, PPARG and FABP4, moderate in clusters 2-3, and negligible in cluster 4. During reversed adipogenesis, only 782 expressed genes (clusters 1-3) were reverted, including 597 genes not reported for adipogenesis before. We identified APCDD1, CHI3L1, RARRES1 and SEMA3G as potential adipogenic-specific genes. CONCLUSION The model system of adipogenesis linked to reverse adipogenesis allowed the filtration of 782 adipogenic-specific genes out of total 991 significantly expressed genes. Database analysis of adipogenic-specific biological annotations, transcription factors and signaling pathways further validated and valued our concept, because most of the filtered 782 genes showed affiliation to adipogenesis. Based on this approach, the selected and filtered genes would be potentially important for characterization of adipogenesis and monitoring of clinical translation for soft-tissue regeneration. Moreover, we report 4 new marker genes.
Collapse
Affiliation(s)
- Mujib Ullah
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| | - Stefan Stich
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| | - Thomas Häupl
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| | - Jan Eucker
- Department of Hematology and Oncology, Charité-University Medicine Berlin, Berlin, Germany
| | - Michael Sittinger
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| | - Jochen Ringe
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
16
|
Oldridge EE, Walker HF, Stower MJ, Simms MS, Mann VM, Collins AT, Pellacani D, Maitland NJ. Retinoic acid represses invasion and stem cell phenotype by induction of the metastasis suppressors RARRES1 and LXN. Oncogenesis 2013; 2:e45. [PMID: 23588494 PMCID: PMC3641360 DOI: 10.1038/oncsis.2013.6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mouse haematopoietic stem cell (SC) regulator Latexin (LXN) is the only known homologue of the retinoic acid receptor responder 1 (RARRES1) gene. Both genes lie adjacent on chromosome 3 and differ mostly by the presence of a transmembrane domain in RARRES1. Despite their homology, it is not known whether they possess similar regulatory mechanisms, cellular localization and function. Here, we identified RARRES1 and LXN as highly significantly downregulated genes in human prostate SCs, whose expression was induced by the pro-differentiation agent all-trans retinoic acid (atRA). AtRA induced expression in the most differentiated cells compared with the SC fraction, suggesting that this subpopulation was less responsive to atRA. Small interfering RNA suppression of RARRES1 and LXN enhanced the SC properties of primary prostate cultures, as shown by a significant increase in their colony-forming ability. Expression of both RARRES1 and LXN was co-ordinately repressed by DNA methylation in prostate cancer cell lines and inhibition of RARRES1 and LXN increased the invasive capacity of primary prostate cultures, which also fully rescued an inhibitory effect induced by atRA. Moreover, we showed that RARRES1 and LXN reside within different sub-cellular compartments, providing evidence that RARRES1 is not a plasma membrane protein as previously supposed but is located primarily in the endoplasmic reticulum; whereas LXN was detected in the nucleus of prostate epithelial cells. Thus, LXN and RARRES1 are potential tumour suppressor genes, which are co-ordinately regulated, SC-silenced genes functioning to suppress invasion and colony-forming ability of prostate cancer cells; yet the proteins reside within different sub-cellular compartments.
Collapse
Affiliation(s)
- E E Oldridge
- YCR Cancer Research Unit, Department of Biology, University of York, York, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen HL, Seol H, Brown KJ, Gordish-Dressman H, Hill A, Gallo V, Packer R, Hathout Y. Secretome survey of human plexiform neurofibroma derived Schwann Cells reveals a secreted form of the RARRES1 protein. Int J Mol Sci 2012; 13:9380-9399. [PMID: 22942771 PMCID: PMC3430302 DOI: 10.3390/ijms13079380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 01/28/2023] Open
Abstract
To bring insights into neurofibroma biochemistry, a comprehensive secretome analysis was performed on cultured human primary Schwann cells isolated from surgically resected plexiform neurofibroma and from normal nerve tissue. Using a combination of SDS-PAGE and high precision LC-MS/MS, 907 proteins were confidently identified in the conditioned media of Schwann cell cultures combined. Label free proteome profiling revealed consistent release of high levels of 22 proteins by the four biological replicates of NF1 Schwann cell cultures relative to the two normal Schwann cell cultures. Inversely, 9 proteins displayed decreased levels in the conditioned media of NF1 relative to normal Schwann cells. The proteins with increased levels included proteins involved in cell growth, angiogenesis and complement pathway while proteins with decreased levels included those involved in cell adhesion, plasminogen pathway and extracellular matrix remodeling. Retinoic acid receptor responder protein-1 (RARRES1), previously described as an integral membrane tumor suppressor, was found exclusively secreted by NF1 Schwann cells but not by normal Schwann cells. All-trans retinoic acid modulated secretion of RARRES1 in a dose dependent manner. This study shows altered secretion of key proteins in NF1 derived Schwann cells. The potential implication of these proteins in neurofibroma biology is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yetrib Hathout
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-202-476-3136; Fax: +1-202-476-6014
| |
Collapse
|
18
|
Peng Z, Shen R, Li YW, Teng KY, Shapiro CL, Lin HJL. Epigenetic repression of RARRES1 is mediated by methylation of a proximal promoter and a loss of CTCF binding. PLoS One 2012; 7:e36891. [PMID: 22615834 PMCID: PMC3355180 DOI: 10.1371/journal.pone.0036891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/14/2012] [Indexed: 12/12/2022] Open
Abstract
Background The cis-acting promoter element responsible for epigenetic silencing of retinoic acid receptor responder 1 (RARRES1) by methylation is unclear. Likewise, how aberrant methylation interplays effectors and thus affects breast neoplastic features remains largely unknown. Methodology/Principal Findings We first compared methylation occurring at the sequences (−664∼+420) flanking the RARRES1 promoter in primary breast carcinomas to that in adjacent benign tissues. Surprisingly, tumor cores displayed significantly elevated methylation occurring solely at the upstream region (−664∼−86), while the downstream element (−85∼+420) proximal to the transcriptional start site (+1) remained largely unchanged. Yet, hypermethylation at the former did not result in appreciable silencing effect. In contrast, the proximal sequence displayed full promoter activity and methylation of which remarkably silenced RARRES1 transcription. This phenomenon was recapitulated in breast cancer cell lines, in which methylation at the proximal region strikingly coincided with downregulation. We also discovered that CTCF occupancy was enriched at the unmethylayed promoter bound with transcription-active histone markings. Furthermore, knocking-down CTCF expression hampered RARRES1 expression, suggesting CTCF positively regulated RARRES1 transcription presumably by binding to unmethylated promoter poised at transcription-ready state. Moreover, RARRES1 restoration not only impeded cell invasion but also promoted death induced by chemotherapeutic agents, denoting its tumor suppressive effect. Its role of attenuating invasion agreed with data generated from clinical specimens revealing that RARRES1 was generally downregulated in metastatic lymph nodes compared to the tumor cores. Conclusion/Significance This report delineated silencing of RARRES1 by hypermethylation is occurring at a proximal promoter element and is associated with a loss of binding to CTCF, an activator for RARRES1 expression. We also revealed the tumor suppressive roles exerted by RARRES1 in part by promoting breast epithelial cell death and by impeding cell invasion that is an important property for metastatic spread.
Collapse
Affiliation(s)
- Zhengang Peng
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University Medical Center, Columbus, Ohio, United States of America
- Molecular Biology and Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Rulong Shen
- Department of Pathology, the Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Ying-Wei Li
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University Medical Center, Columbus, Ohio, United States of America
- Molecular Biology and Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Kun-Yu Teng
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University Medical Center, Columbus, Ohio, United States of America
- Molecular Biology and Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Charles L. Shapiro
- Department of Medical Oncology, the Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Huey-Jen L. Lin
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University Medical Center, Columbus, Ohio, United States of America
- Molecular Biology and Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Medical Technology, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
19
|
Tsai FM, Wu CC, Shyu RY, Wang CH, Jiang SY. Tazarotene-induced gene 1 inhibits prostaglandin E2-stimulated HCT116 colon cancer cell growth. J Biomed Sci 2011; 18:88. [PMID: 22126303 PMCID: PMC3247857 DOI: 10.1186/1423-0127-18-88] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/30/2011] [Indexed: 01/21/2023] Open
Abstract
Background The tazarotene-induced gene 1 (TIG1) is a putative tumor suppressor gene. We have recently demonstrated both TIG1A and TIG1B isoforms inhibited cell growth and induced the expression of G protein-coupled receptor kinase 5 (GRK5) in colon cancer cells. Because elevated prostaglandin E2 (PGE2) signaling plays a significant role in colorectal carcinogenesis, the objective of this study was to explore the effect of TIG1 on PGE2-induced cellular proliferation and signaling in colon cancer cells. Methods HCT116 cells as well as TIG1A and TIG1B stable cells established from HCT116 colon cancer cells using the GeneSwitch system were used. TIG1 isoform expression was induced by mifepristone treatment in stable cells. Cell growth was determined using the WST-1 cell proliferation assay. Activation of β-catenin/TCF and cyclic adenosine monophosphate (cAMP)/CREB signaling pathways were determined using luciferase reporter assays. Expression and subcellular distribution of β-catenin were analyzed using Western blot and confocal microscope. Levels of cAMP were measured using an enzyme immunoassay. RNA interference was used to examine the effects of TIG1- and GRK5-mediated changes. Results PGE2-stimulated cell growth was reduced in inducible TIG1A- and TIG1B-stable HCT116 cells. GRK5 expression was upregulated by both TIG1A and TIG1B isoforms, and its expression suppressed PGE2-stimulated HCT116 cell growth. GRK5, TIG1A, and TIG1B expression significantly inhibited PGE2-stimulated β-catenin/TCF and cAMP signaling pathway reporters and cAMP. Also, PGE2-stimulated nuclear localization of β-catenin was inhibited by expression of TIG1A and TIG1B, which was ameliorated by both TIG1 and GRK5 siRNAs. Conclusions TIG1 suppressed PGE2-stimulated Wnt and cAMP signaling pathways in colon cancer cells through GRK5.
Collapse
Affiliation(s)
- Fu-Ming Tsai
- Department of Research, Buddhist Tzu Chi General Hospital Taipei Branch, 289 Jianguo Rd, Sindian District, New Taipei City, 231 Taiwan
| | | | | | | | | |
Collapse
|
20
|
Hau PM, Tsang CM, Yip YL, Huen MSY, Tsao SW. Id1 interacts and stabilizes the Epstein-Barr virus latent membrane protein 1 (LMP1) in nasopharyngeal epithelial cells. PLoS One 2011; 6:e21176. [PMID: 21701587 PMCID: PMC3118807 DOI: 10.1371/journal.pone.0021176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/22/2011] [Indexed: 12/15/2022] Open
Abstract
The EBV-encoded latent membrane protein 1 (LMP1) functions as a constitutive active form of tumor necrosis factor receptor (TNFR) and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC) cell line (C666-1) and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong Special Administrative Region
| | | | | | | | | |
Collapse
|
21
|
G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells. BMC Cancer 2011; 11:175. [PMID: 21575264 PMCID: PMC3112162 DOI: 10.1186/1471-2407-11-175] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/17/2011] [Indexed: 01/08/2023] Open
Abstract
Background Tazarotene-induced gene 1 (TIG1) is a retinoid-inducible type II tumour suppressor gene. The B isoform of TIG1 (TIG1B) inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform are yet to be reported. Therefore, this study investigated the effects of the TIG1A and TIG1B isoforms on cell growth and gene expression profiles using colon cancer cells. Methods TIG1A and TIG1B stable clones derived from HCT116 and SW620 colon cancer cells were established using the GeneSwitch system; TIG1 isoform expression was induced by mifepristone treatment. Cell growth was assessed using the WST-1 cell proliferation and colony formation assays. RNA interference was used to examine the TIG1 mediating changes in cell growth. Gene expression profiles were determined using microarray and validated using real-time polymerase chain reaction, and Western blot analyses. Results Both TIG1 isoforms were expressed at high levels in normal prostate and colon tissues and were downregulated in colon cancer cell lines. Both TIG1 isoforms significantly inhibited the growth of transiently transfected HCT116 cells and stably expressing TIG1A and TIG1B HCT116 and SW620 cells. Expression of 129 and 55 genes was altered upon induction of TIG1A and TIG1B expression, respectively, in stably expressing HCT116 cells. Of the genes analysed, 23 and 6 genes were upregulated and downregulated, respectively, in both TIG1A and TIG1B expressing cells. Upregulation of the G-protein-coupled receptor kinase 5 (GRK5) was confirmed using real-time polymerase chain reaction and Western blot analyses in both TIG1 stable cell lines. Silencing of TIG1A or GRK5 expression significantly decreased TIG1A-mediated cell growth suppression. Conclusions Expression of both TIG1 isoforms was observed in normal prostate and colon tissues and was downregulated in colon cancer cell lines. Both TIG1 isoforms suppressed cell growth and stimulated GRK5 expression in HCT116 and SW620 cells. Knockdown of GRK5 expression alleviated TIG1A-induced growth suppression of HCT116 cells, suggesting that GRK5 mediates cell growth suppression by TIG1A. Thus, TIG1 may participate in the downregulation of G-protein coupled signaling by upregulating GRK5 expression.
Collapse
|
22
|
Sahab ZJ, Hall MD, Me Sung Y, Dakshanamurthy S, Ji Y, Kumar D, Byers SW. Tumor suppressor RARRES1 interacts with cytoplasmic carboxypeptidase AGBL2 to regulate the α-tubulin tyrosination cycle. Cancer Res 2011; 71:1219-28. [PMID: 21303978 DOI: 10.1158/0008-5472.can-10-2294] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even though it is among the most commonly methylated loci in multiple cancers, the retinoic acid-induced tumor suppressor retinoic acid receptor responder 1 (RARRES1) has no known function. We now show that RARRES1 is lost in many cancer cells, particularly those with a mesenchymal phenotype, and is a transmembrane carboxypeptidase inhibitor that interacts with ATP/GTP binding protein-like 2 (AGBL2), a cytoplasmic carboxypeptidase. Knockdown of AGBL2 results in a failure of the cell to detyrosinate the C-terminal EEY region of α-tubulin and indicates that it is a candidate for the long sought-after tubulin tyrosine carboxypeptidase important in the regulation of microtubule dynamics. In contrast, knockdown of RARRES1 increases the level of detyrosinated α-tubulin consistent with a role as the cognate inhibitor of AGBL2. We conclude that RARRES1, its interacting partners AGBL2, Eg5/KIF11, another EEY-bearing protein (EB1), and the microtubule tyrosination cycle are important in tumorigenesis and identify a novel area for therapeutic intervention.
Collapse
Affiliation(s)
- Ziad J Sahab
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|