1
|
Soleimani Y, Daraei M, Sadeghi P, Khazali A, Rostami H, Mahmoudi S, Jarrahi AM, Taherian MR, Jorjani G, Bahari N. Wood dust and risk of leukemia: Systematic review and meta-analysis. PLoS One 2024; 19:e0307444. [PMID: 39190678 PMCID: PMC11349095 DOI: 10.1371/journal.pone.0307444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVES This study aimed to perform a systematic review and meta-analysis to investigate the relationship between wood dust exposure and leukemia. The objectives included synthesizing available evidence, assessing its quality, identifying potential sources of heterogeneity, and drawing conclusions regarding the association between wood dust and leukemia. METHODS A systematic literature search was conducted to identify studies meeting that report on the association between wood dust and leukemia. The Joanna Briggs Institute Critical Appraisal tools were employed to ensure robust quality assessment. Meta-analysis, using random-effects models, synthesized evidence from studies with low risk of bias. Overall odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Subgroup analyses explored potential sources of heterogeneity. RESULTS The meta-analysis included a comprehensive review of various study types, encompassing 7 studies that examined the association between wood dust exposure and leukemia risk. The analysis revealed a statistically significant positive association, with an overall odds ratio (OR) of 1.56 (95% CI: 1.15-2.12). This indicates that individuals exposed to wood dust are 1.56 times more likely to develop leukemia compared to those not exposed, with the 95% confidence interval ranging from 1.15 to 2.12, highlighting a substantial risk elevation across different study designs. Quality assessment using The Joanna Briggs Institute Critical Appraisal tools demonstrated a low risk of bias across all included studies, enhancing the credibility of the observed association. Subgroup analyses were conducted to explore potential sources of heterogeneity within the studies. Notably, subgroup analysis based on the year of the study revealed significant differences, as indicated by an I^2 value of 87%. The robustness of these results underscores the importance of addressing wood dust exposure as an occupational hazard, particularly in industries related to woodworking and forestry. CONCLUSION This meta-analysis provides robust evidence supporting an increased risk of leukemia associated with wood dust exposure implying proactive measures in people exposed to dust.
Collapse
Affiliation(s)
- Yaser Soleimani
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Daraei
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parniyan Sadeghi
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Khazali
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Rostami
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheyda Mahmoudi
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Taherian
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Goljamal Jorjani
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Bahari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Onyije FM, Dolatkhah R, Olsson A, Bouaoun L, Deltour I, Erdmann F, Bonaventure A, Scheurer ME, Clavel J, Schüz J. Risk factors for childhood brain tumours: A systematic review and meta-analysis of observational studies from 1976 to 2022. Cancer Epidemiol 2024; 88:102510. [PMID: 38056243 PMCID: PMC10835339 DOI: 10.1016/j.canep.2023.102510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Childhood brain tumours (CBTs) are the leading cause of cancer death in children under the age of 20 years globally. Though the aetiology of CBT remains poorly understood, it is thought to be multifactorial. We aimed to synthesize potential risk factors for CBT to inform primary prevention. METHODS We conducted a systematic review and meta-analysis of epidemiological studies indexed in the PubMed, Web of Science, and Embase databases from the start of those resources through 27 July 2023. We included data from case-control or cohort studies that reported effect estimates for each risk factor around the time of conception, during pregnancy and/or during post-natal period. Random effects meta-analysis was used to estimate summary effect sizes (ES) and 95% confidence intervals (CIs). We also quantified heterogeneity (I2) across studies. FINDINGS A total of 4040 studies were identified, of which 181 studies (85 case-control and 96 cohort studies) met our criteria for inclusion. Of all eligible studies, 50% (n = 91) were conducted in Europe, 32% (n = 57) in North America, 9% (n = 16) in Australia, 8% (n = 15) in Asia, 1% (n = 2) in South America, and none in Africa. We found associations for some modifiable risk factors including childhood domestic exposures to insecticides (ES 1.44, 95% CI 1.20-1.73) and herbicides (ES 2.38, 95% CI 1.31-4.33). Maternal domestic exposure to insecticides (ES 1.45, 95% CI 1.09-1.94), maternal consumption of cured meat (ES 1.51, 95% CI 1.05-2.17) and coffee ≥ 2 cups/day (ES 1.45, 95% 95% CI 1.07-1.95) during pregnancy, and maternal exposure to benzene (ES 2.22; 95% CI 1.01-4.88) before conception were associated with CBTs in case-control studies. Also, paternal occupational exposure to pesticides (ES 1.48, 95% CI 1.23-1.77) and benzene (ES 1.74, 95% CI 1.10-2.76) before conception and during pregnancy were associated in case-control studies and in combined analysis. On the other hand, assisted reproductive technology (ART) (ES 1.32, 95% CI 1.05-1.67), caesarean section (CS) (ES 1.12, 95% CI 1.01-1.25), paternal occupational exposure to paint before conception (ES 1.56, 95% CI 1.02-2.40) and maternal smoking > 10 cigarettes per day during pregnancy (ES 1.18, 95% CI 1.00-1.40) were associated with CBT in cohort studies. Maternal intake of vitamins and folic acid during pregnancy was inversely associated in cohort studies. Hormonal/infertility treatment, breastfeeding, child day-care attendance, maternal exposure to electric heated waterbed, tea and alcohol consumption during pregnancy were among those not associated with CBT in both case-control and cohort studies. CONCLUSION Our results should be interpreted with caution, especially as most associations between risk factors and CBT were discordant between cohort and case-control studies. At present, it is premature for any CBT to define specific primary prevention guidelines.
Collapse
Affiliation(s)
- Felix M Onyije
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France.
| | - Roya Dolatkhah
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France
| | - Ann Olsson
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France
| | - Liacine Bouaoun
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France
| | - Isabelle Deltour
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France
| | - Friederike Erdmann
- Research Group Aetiology and Inequalities in Childhood Cancer, Division of Childhood Cancer Epidemiology Institute of Medical Biostatistics, Epidemiology, and Informatics (IMBEI), University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Audrey Bonaventure
- Epidemiology of Childhood and Adolescent Cancers Team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Villejuif, France
| | - Michael E Scheurer
- Department of Pediatrics, Hematology-Oncology, Baylor College of Medicine and Texas Children's Hospital Cancer Center, Houston, TX, United States
| | - Jacqueline Clavel
- Epidemiology of Childhood and Adolescent Cancers Team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Villejuif, France; National Registry of Childhood Cancers, Hôpital Paul Brousse, Groupe Hospitalier Universitaire Paris-Sud, Assistance Publique Hôpitaux de Paris (AP-HP), Villejuif, France; Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, France
| |
Collapse
|
3
|
Yamamoto S, Sanefuji M, Suzuki M, Sonoda Y, Hamada N, Kato W, Ono H, Oba U, Nakashima K, Ochiai M, Kusuhara K, Koga Y, Ohga S. Pediatric leukemia and maternal occupational exposure to anticancer drugs: the Japan Environment and Children's Study. Blood 2024; 143:311-319. [PMID: 37788408 DOI: 10.1182/blood.2023021008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
ABSTRACT Occupational exposure to medical agents and ionizing radiation has been suggested as a possible risk factor for childhood cancer. However, the relationship between such exposure and pediatric malignant neoplasms has not yet been comprehensively studied. This cohort study aimed to investigate the association between parental occupational exposure to hazardous medical agents or ionizing radiation and the risk of childhood cancer in offspring. Data from a large birth cohort in Japan, which included 104 062 fetuses, were analyzed. The primary outcome was the development of leukemia or brain tumors diagnosed by community physicians during the first 3 years after birth. Exposure factors were medical agents, including anticancer agents, ionizing radiation, and anesthetics, handled by mothers during pregnancy or by fathers for 3 months before conception. The incidence of leukemia, but not of brain tumors, was higher in mothers exposed to anticancer drugs. Multivariable regression analysis showed that maternal exposure to anticancer drugs was associated with an increased risk of leukemia in offspring older than 1 year (adjusted relative risk, 7.99 [95% confidence interval, 1.98-32.3]). Detailed information obtained from medical certificates of patients with identified leukemia revealed no infant leukemia but acute lymphoblastic leukemias in the exposed group. Our findings suggest that maternal occupational exposure to anticancer drugs may be a potential risk factor for acute lymphoblastic leukemia in offspring older than 1 year. Effective prevention methods may be necessary to prevent maternal exposure to anticancer drugs and to reduce the risk of childhood malignant neoplasms.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Maya Suzuki
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Hamada
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Wakako Kato
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Utako Oba
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Nakashima
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masayuki Ochiai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu, Japan
- Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Perinatal and Pediatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Huang X, Hansen J, Lee PC, Wu CK, Federman N, Arah OA, Li CY, Olsen J, Ritz B, Heck JE. Maternal diabetes and childhood cancer risks in offspring: two population-based studies. Br J Cancer 2022; 127:1837-1842. [PMID: 36088507 PMCID: PMC9643384 DOI: 10.1038/s41416-022-01961-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The effect of maternal diabetes on childhood cancer has not been widely studied. METHODS We examined this in two population-based studies in Denmark (N = 6420 cancer cases, 160,484 controls) and Taiwan (N = 2160 cancer cases, 2,076,877 non-cases) using logistic regression and Cox proportional hazard regression adjusted for birth year, child's sex, maternal age and birth order. RESULTS Gestational diabetes in Denmark [odds ratio (OR) = 0.98, 95% confidence interval (CI): 0.71-1.35] or type II and gestational diabetes in Taiwan (type II: hazard ratio (HR) = 0.81, 95% CI: 0.63-1.05; gestational diabetes: HR = 1.06, 95% CI: 0.92-1.22) were not associated with cancer (all types combined). In Denmark, maternal type I diabetes was associated with the risk of glioma (OR = 2.33, 95% CI: 1.04-5.22), while in Taiwan, the risks of glioma (HR = 1.59, 95% CI: 1.01-2.50) were elevated among children whose mothers had gestational diabetes. There was a twofold increased risk for hepatoblastoma with maternal type II diabetes (HR = 2.02, 95% CI: 1.02-4.00). CONCLUSIONS Our results suggest that maternal diabetes is an important risk factor for certain types of childhood cancers, emphasising the need for effective interventions targeting maternal diabetes to prevent serious health effects in offspring.
Collapse
Affiliation(s)
- Xiwen Huang
- Department of Epidemiology, Fielding School of Public Health, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-1772, USA
| | - Johnni Hansen
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Pei-Chen Lee
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, 89 Nei-Chiang St, Wan-Hua Dist, Taipei, 10845, Taiwan.
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm U1018, Team "Exposome, heredity, cancer and health", CESP, 94807, Villejuif, France.
- Department of Public Health, National Cheng Kung University, #1, University Road, Tainan, 70101, Taiwan.
| | - Chia-Kai Wu
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm U1018, Team "Exposome, heredity, cancer and health", CESP, 94807, Villejuif, France
| | - Noah Federman
- Department of Pediatrics, Geffen School of Medicine, UCLA, Los Angeles, CA, 90095-1752, USA
| | - Onyebuchi A Arah
- Department of Epidemiology, Fielding School of Public Health, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-1772, USA
- Department of Statistics, UCLA College of Letters and Science, Los Angeles, CA, USA
- Section for Epidemiology, Department of Public Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Chung-Yi Li
- Department of Public Health, National Cheng Kung University, #1, University Road, Tainan, 70101, Taiwan
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Jorn Olsen
- Department of Clinical Epidemiology, Aarhus University, Olof Palmes Allé 43-45 8200 Aarhus N, Aarhus, Denmark
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-1772, USA
| | - Julia E Heck
- Department of Epidemiology, Fielding School of Public Health, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-1772, USA.
- College of Health and Public Service, University of North Texas, 1155 Union Circle #305250, Denton, TX, 76203-5017, USA.
| |
Collapse
|
5
|
Rossides M, Kampitsi C, Talbäck M, Wiebert P, Feychting M, Tettamanti G. Childhood cancer risk in offspring of parents occupationally exposed to dusts: A register-based nested case-control study from Sweden of 5 decades. Cancer 2022; 128:1637-1648. [PMID: 35103985 PMCID: PMC9305514 DOI: 10.1002/cncr.34116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Some largely inconsistent associations between parental occupational dust exposure and childhood cancer have been reported, with maternal exposures inadequately studied. The authors examined whether maternal or paternal occupational exposure to animal, wood, textile, or paper dust around a child's birth was associated with an increased risk of childhood cancer, both overall and by type (leukemias, lymphomas, central nervous system tumors, and other cancers). METHODS In this nationwide, register-based, case-control study, children who were diagnosed with cancer from 1960 to 2015 were compared with up to 25 matched controls regarding maternal and paternal occupational dust exposure (9653 cases in maternal analyses and 12,521 cases in paternal analyses). Exposures were assessed using a job-exposure matrix and occupational information from census and register data. By using conditional logistic regression models, adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated. RESULTS Neither maternal nor paternal occupational exposure to animal, wood, textile, or paper dust was associated with childhood cancer overall, leukemias, or central nervous system tumors. Maternal, but not paternal, wood dust exposure was associated with an increased risk of lymphoma (OR, 1.42; 95% CI, 1.10-1.84), particularly non-Hodgkin lymphoma (OR, 2.03; 95% CI, 1.21-3.40). CONCLUSIONS The current study did not confirm the associations reported previously but is the first to suggest a link between maternal occupational exposure to wood dust around pregnancy and lymphoma in the offspring.
Collapse
Affiliation(s)
- Marios Rossides
- Unit of EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | | | - Mats Talbäck
- Unit of EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Pernilla Wiebert
- Unit of Occupational MedicineInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Center for Occupational and Environmental MedicineRegion StockholmStockholmSweden
| | - Maria Feychting
- Unit of EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Giorgio Tettamanti
- Unit of EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Shakeel O, Lupo PJ, Strong S, Arora M, Scheurer ME. A brief review of the current knowledge on environmental toxicants and risk of pediatric cancers. Pediatr Hematol Oncol 2022; 39:193-202. [PMID: 34665984 DOI: 10.1080/08880018.2021.1979147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The incidence of pediatric cancers has steadily increased since 1975, which could suggest that other exogenous factors are accounting for an increasing proportion of cases. There has been growing concern over environmental exposures (i.e., toxicants) the on development of pediatric cancers. However, identifying environmental exposures on childhood cancer risk has been challenging because these outcomes are infrequent compared to cancer in adults, and it is difficult to estimate exposure during specific critical periods of development (e.g., pre-conception, in utero, early childhood) that are likely more important for childhood cancer development. Here, we summarize the International Agency for Research on Cancer (IARC) Group 1 agents (toxicants known to be carcinogenic to humans), their routes of exposure, current methods for risk mitigation, and what is known of their associations with pediatric cancer risk. Our review suggests that environmental toxicants are important and potentially modifiable risk factors that need to be more fully explored in children and adolescents.
Collapse
Affiliation(s)
- Omar Shakeel
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael E Scheurer
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Chen H, Guan Q, Guo H, Miao L, Zhuo Z. The Genetic Changes of Hepatoblastoma. Front Oncol 2021; 11:690641. [PMID: 34367972 PMCID: PMC8335155 DOI: 10.3389/fonc.2021.690641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma is the most common malignant liver cancer in childhood. The etiology of hepatoblastoma remains obscure. Hepatoblastoma is closely related to genetic syndromes, hinting that hepatoblastoma is a genetic predisposition disease. However, no precise exposures or genetic events are reported to hepatoblastoma occurrence. During the past decade, significant advances have been made in the understanding of etiology leading to hepatoblastoma, and several important genetic events that appear to be important for the development and progression of this tumor have been identified. Advances in our understanding of the genetic changes that underlie hepatoblastoma may translate into better patient outcomes. Single nucleotide polymorphisms (SNPs) have been generally applied in the research of etiology's exploration, disease treatment, and prognosis assessment. Here, we reviewed and discussed the molecular epidemiology, especially SNPs progresses in hepatoblastoma, to provide references for future studies and promote the study of hepatoblastoma's etiology.
Collapse
Affiliation(s)
- Huitong Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Byrjalsen A, Hansen TVO, Stoltze UK, Mehrjouy MM, Barnkob NM, Hjalgrim LL, Mathiasen R, Lautrup CK, Gregersen PA, Hasle H, Wehner PS, Tuckuviene R, Sackett PW, Laspiur AO, Rossing M, Marvig RL, Tommerup N, Olsen TE, Scheie D, Gupta R, Gerdes A, Schmiegelow K, Wadt K. Nationwide germline whole genome sequencing of 198 consecutive pediatric cancer patients reveals a high incidence of cancer prone syndromes. PLoS Genet 2020; 16:e1009231. [PMID: 33332384 PMCID: PMC7787686 DOI: 10.1371/journal.pgen.1009231] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/06/2021] [Accepted: 10/28/2020] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Historically, cancer predisposition syndromes (CPSs) were rarely established for children with cancer. This nationwide, population-based study investigated how frequently children with cancer had or were likely to have a CPS. METHODS Children (0-17 years) in Denmark with newly diagnosed cancer were invited to participate in whole-genome sequencing of germline DNA. Suspicion of CPS was assessed according to Jongmans'/McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) criteria and familial cancer diagnoses were verified using population-based registries. RESULTS 198 of 235 (84.3%) eligible patients participated, of whom 94/198 (47.5%) carried pathogenic variants (PVs) in a CPS gene or had clinical features indicating CPS. Twenty-nine of 198 (14.6%) patients harbored a CPS, of whom 21/198 (10.6%) harbored a childhood-onset and 9/198 (4.5%) an adult-onset CPS. In addition, 23/198 (11.6%) patients carried a PV associated with biallelic CPS. Seven of the 54 (12.9%) patients carried two or more variants in different CPS genes. Seventy of 198 (35.4%) patients fulfilled the Jongmans' and/or MIPOGG criteria indicating an underlying CPS, including two of the 9 (22.2%) patients with an adult-onset CPS versus 18 of the 21 (85.7%) patients with a childhood-onset CPS (p = 0.0022), eight of the additional 23 (34.8%) patients with a heterozygous PV associated with biallelic CPS, and 42 patients without PVs. Children with a central nervous system (CNS) tumor had family members with CNS tumors more frequently than patients with other cancers (11/44, p = 0.04), but 42 of 44 (95.5%) cases did not have a PV in a CPS gene. CONCLUSION These results demonstrate the value of systematically screening pediatric cancer patients for CPSs and indicate that a higher proportion of childhood cancers may be linked to predisposing germline variants than previously supposed.
Collapse
Affiliation(s)
- Anna Byrjalsen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Thomas V. O. Hansen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ulrik K. Stoltze
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mana M. Mehrjouy
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nanna Moeller Barnkob
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Lisa L. Hjalgrim
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - René Mathiasen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peder S. Wehner
- Department of Paediatric Hematology and Oncology, H. C. Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Ruta Tuckuviene
- Department of Paediatrics and Adolescent Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Peter Wad Sackett
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Adrian O. Laspiur
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tina Elisabeth Olsen
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - David Scheie
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ramneek Gupta
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Anne–Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|