1
|
Belloni S, Tiberio P, De Sanctis R, Magon A, Santoro A, Zambelli A, Caruso R, Arrigoni C. Prevalence of treatment-related adverse events (TRAEs) with antibody-drug conjugates in metastatic breast cancer patients: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2024; 204:104527. [PMID: 39395623 DOI: 10.1016/j.critrevonc.2024.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are revolutionizing metastatic breast cancer treatment, resulting in a better prognosis and a higher safety profile than chemotherapy. Nevertheless, treatment-related adverse events (TRAE) have been extensively documented. We searched five databases for articles published up to December 2023 and conducted a meta-analysis on 23 clinical trials to estimate TRAE prevalence related to currently approved ADCs. The prevalence of the most common TRAEs ranged from 12 % to 33 %, depending on the ADC type and study design. Gastrointestinal disorders were highly prevalent during Trastuzumab Deruxtecan, general disorders were extremely common during Trastuzumab Emtansine, and blood system disorders and gastrointestinal disorders were the most prevalent during Sacituzumab Govitecan. This study provides an estimate of ADC-related TRAEs for each treatment based on study design. Despite each ADC having specific toxicities, gastrointestinal symptoms were highly prevalent in all treatments. This study lays the groundwork for developing personalized risk-stratified care pathways.
Collapse
Affiliation(s)
- Silvia Belloni
- Department of Public Health, Experimental and Forensic Medicine, Section of Hygiene, University of Pavia, Pavia 27100, Italy
| | - Paola Tiberio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI) 20072, Italy; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI) 20089, Italy
| | - Rita De Sanctis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI) 20072, Italy; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI) 20089, Italy.
| | - Arianna Magon
- Health Professions Research and Development Unit, IRCCS Policlinico San Donato, San Donato Milanese, (MI) 20097, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI) 20072, Italy; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI) 20089, Italy
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI) 20072, Italy; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI) 20089, Italy
| | - Rosario Caruso
- Health Professions Research and Development Unit, IRCCS Policlinico San Donato, San Donato Milanese, (MI) 20097, Italy; Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| | - Cristina Arrigoni
- Department of Public Health, Experimental and Forensic Medicine, Section of Hygiene, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
2
|
Sun H, Wienkers LC, Lee A. Beyond cytotoxic potency: disposition features required to design ADC payload. Xenobiotica 2024; 54:442-457. [PMID: 39017706 DOI: 10.1080/00498254.2024.2381139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
1. Antibody-drug conjugates (ADCs) have demonstrated impressive clinical usefulness in treating several types of cancer, with the notion of widening of the therapeutic index of the cytotoxic payload through the minimisation of the systemic toxicity. Therefore, choosing the most appropriate payload molecule is a particularly important part of the early design phase of ADC development, especially given the highly competitive environment ADCs find themselves in today.2. The focus of the current review is to describe critical attributes/considerations needed in the discovery and ultimately development of cytotoxic payloads in support of ADC design. In addition to potency, several key dispositional characteristics including solubility, permeability and bystander effect, pharmacokinetics, metabolism, and drug-drug interactions, are described as being an integral part of the integrated activities required in the design of clinically safe and useful ADC therapeutic agents.
Collapse
Affiliation(s)
- Hao Sun
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Larry C Wienkers
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Anthony Lee
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| |
Collapse
|
3
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
4
|
Sharma A, Singh M, Sharma V, Vashishth A, Raj M, Upadhyay SK, Singh S, Ramniwas S, Dhama K, Sharma AK, Bhatia SK. Current paradigms in employing self-assembled structures: Drug delivery implications with improved therapeutic potential. Colloids Surf B Biointerfaces 2024; 234:113745. [PMID: 38241890 DOI: 10.1016/j.colsurfb.2024.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Recent efforts have focused on developing improved drug delivery systems with enhanced therapeutic efficacy and minimal side effects. Micelles, self-assembled from amphiphilic block copolymers in aqueous solutions, have gained considerable attention for drug delivery. However, there is a need to further enhance their efficiency. These micelles offer benefits like biodegradability, biocompatibility, sustained drug release, and improved patient compliance. Yet, researchers must address stability issues and reduce toxicity. Nanoscale self-assembled structures have shown promise as efficient drug carriers, offering an alternative to conventional methods. Fine-tuning at the monomeric and molecular levels, along with structural modifications, is crucial for optimal drug release profiles. Various strategies, such as entrapping hydrophobic drugs and using polyethylene oxide diblock copolymer micelles to resist protein adsorption and cellular adhesion, protect the hydrophobic core from degradation. The polyethylene oxide corona also provides stealth properties, prolonging blood circulation for extended drug administration. Amphiphilic copolymers are attractive for drug delivery due to their adjustable properties, allowing control over micelle size and morphology. Emerging tools promise complex and multifunctional platforms. This article summarizes about the challenges as far as the use of micelles is concerned, including optimizing performance, rigorous pre-clinical and clinical research, and suggests further improvement for drug delivery efficacy.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh 176041, India; Center for Nanoscience and Technology, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India.
| | - Manoj Singh
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh 160019, India.
| | - Amit Vashishth
- Department of Science and Humanities, SRM Institute of Science & Technology (Deemed to be University) Delhi-NCR Campus, Ghaziabad, UP 201204, India.
| | - Mayank Raj
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Sushil K Upadhyay
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Sandeep Singh
- Department of Chemistry, Sri Guru Gobind Singh College, Sector -26, Chandigarh, India.
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India.
| | - Anil K Sharma
- Department of Biotechnology, Amity University, Sector 82 A, IT City Rd, Block D, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Shashi Kant Bhatia
- Biotransformation and Biomaterials Lab, Department of Biological Engineering, College of Engineering, KonkukUniversity, Hwayang-dong Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
5
|
Kumari S, Raj S, Babu MA, Bhatti GK, Bhatti JS. Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions. Arch Pharm Res 2024; 47:40-65. [PMID: 38153656 DOI: 10.1007/s12272-023-01479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The emergence of antibody-drug conjugates (ADCs) as a potential therapeutic avenue in cancer treatment has garnered significant attention. By combining the selective specificity of monoclonal antibodies with the cytotoxicity of drug molecules, ADCs aim to increase the therapeutic index, selectively targeting cancer cells while minimizing systemic toxicity. Various ADCs have been licensed for clinical usage, with ongoing research paving the way for additional options. However, the manufacture of ADCs faces several challenges. These include identifying suitable target antigens, enhancing antibodies, linkers, and payloads, and managing resistance mechanisms and side effects. This review focuses on the strategies to overcome these hurdles, such as site-specific conjugation techniques, novel antibody formats, and combination therapy. Our focus lies on current advancements in antibody engineering, linker technology, and cytotoxic payloads while addressing the challenges associated with ADC development. Furthermore, we explore the future potential of personalized medicine, leveraging individual patients' molecular profiles, to propel ADC treatments forward. As our understanding of the molecular mechanisms driving cancer progression continues to expand, we anticipate the development of new ADCs that offer more effective and personalized therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Shivangi Kumari
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sonam Raj
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
6
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
7
|
Babbar R, Vanya, Bassi A, Arora R, Aggarwal A, Wal P, Dwivedi SK, Alolayan S, Gulati M, Vargas-De-La-Cruz C, Behl T, Ojha S. Understanding the promising role of antibody drug conjugates in breast and ovarian cancer. Heliyon 2023; 9:e21425. [PMID: 38027672 PMCID: PMC10660083 DOI: 10.1016/j.heliyon.2023.e21425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
A nascent category of anticancer therapeutic drugs called antibody-drug conjugates (ADCs) relate selectivity of aimed therapy using chemotherapeutic medicines with high cytotoxic power. Progressive linker technology led to the advancement of more efficacious and safer treatments. It offers neoteric as well as encouraging therapeutic strategies for treating cancer. ADCs selectively administer a medication by targeting antigens which are abundantly articulated on the membrane surface of tumor cells. Tumor-specific antigens are differently expressed in breast and ovarian cancers and can be utilized to direct ADCs. Compared to conventional chemotherapeutic drugs, this approach enables optimal tumor targeting while minimizing systemic damage. A cleavable linker improves the ADCs because it allows the toxic payload to be distributed to nearby cells that do not express the target protein, operating on assorted tumors with dissimilar cell aggregation. Presently fifteen ADCs are being studied in breast and ovarian carcinoma preclinically, and assortment of few have already undergone promising early-phase clinical trial testing. Furthermore, Phase I and II studies are investigating a wide variety of ADCs, and preliminary findings are encouraging. An expanding sum of ADCs will probably become feasible therapeutic choices as solo agents or in conjunction with chemotherapeutic agents. This review accentuates the most recent preclinical findings, pharmacodynamics, and upcoming applications of ADCs in breast and ovarian carcinoma.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Aarti Bassi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ankur Aggarwal
- Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19 Bhauti, Kanpur, Uttar Pradesh, India
| | | | - Salma Alolayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Bromatology and Toxicology, Universidad Nacional Mayor de San Marcos, Lima, 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, 15001, Peru
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, 140306, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
8
|
Zhao Y, Chudasama V, Baker JR. Trifunctional Dibromomaleimide Reagents Built Around A Lysine Scaffold Deliver Site-selective Dual-modality Antibody Conjugation. Chembiochem 2023; 24:e202300356. [PMID: 37548625 DOI: 10.1002/cbic.202300356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Indexed: 08/08/2023]
Abstract
We describe the synthesis and application of a selection of trifunctional reagents for the dual-modality modification of native, solvent accessible disulfide bonds in trastuzumab. The reagents were developed from the dibromomaleimide (DBM) platform with two orthogonal clickable functional groups built around a lysine core. We also describe the development of an aryl diselenide additive which enables antibody disulfide reduction in 4 minutes and a rapid overall reduction-bridging-double click sequence.
Collapse
Affiliation(s)
- Yanbo Zhao
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| | - James R Baker
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| |
Collapse
|
9
|
Mark C, Lee JS, Cui X, Yuan Y. Antibody-Drug Conjugates in Breast Cancer: Current Status and Future Directions. Int J Mol Sci 2023; 24:13726. [PMID: 37762027 PMCID: PMC10531043 DOI: 10.3390/ijms241813726] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody drug conjugates (ADCs) are novel medications that combine monoclonal antibodies with cytotoxic payloads, enabling the selective delivery of potent drugs to cancer cells expressing specific surface antigens. This targeted strategy seeks to optimize treatment effectiveness while reducing the risk of systemic toxicity, distinguishing ADCs from conventional chemotherapy. The rapid growth in ADC research has led to numerous developments and approvals for cancer treatment, with significant impacts on the management of breast cancer. ADCs like T-DXd for HER2-low disease and sacituzumab govitecan for triple negative breast cancer (TNBC) have provided valuable options for challenging subtypes of breast cancer. However, essential questions still need to be addressed, including the optimal order of ADCs amidst the growing number of newly developed ones and strategies to overcome resistance mechanisms. Preclinical studies have shed light on potential resistance mechanisms, emphasizing the potential benefit of combinational approaches with other agents such as immune checkpoint inhibitors (ICIs) and targeted tyrosine kinase inhibitors (TKIs) to enhance treatment effectiveness. Additionally, personalized approaches based on molecular profiling hold promise in tailoring ADC treatments to individual tumors, identifying unique molecular markers for each patient to optimize treatment efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Cynthia Mark
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jin Sun Lee
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yuan Yuan
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
10
|
Nader-Marta G, Molinelli C, Debien V, Martins-Branco D, Aftimos P, de Azambuja E, Awada A. Antibody-drug conjugates: the evolving field of targeted chemotherapy for breast cancer treatment. Ther Adv Med Oncol 2023; 15:17588359231183679. [PMID: 37435563 PMCID: PMC10331351 DOI: 10.1177/17588359231183679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of antineoplastic agents whose structure is composed of three main components: a monoclonal antibody (mAB) targeting a specific target antigen, a cytotoxic payload, and a linker binding the antibody to the payload. By combining the specificity of mABs with the high potency of the payloads, ADCs constitute a smart drug delivery system with improved therapeutic index. After recognition and binding of the mAB to its target surface antigen, ADCs are internalized by endocytosis by the tumor cell, releasing the payloads into the cytoplasm, where they exert their cytotoxic activity, eventually leading to cell death. The composition of some of the new ADCs confers additional functional properties that allow expanding their activity to neighboring cells not expressing the target antigen, constituting a valuable strategy to overcome tumor heterogeneity. Some of these 'off-target effects', such as the bystander effect, are possibly the mechanism underlying the antitumor activity demonstrated in patients with low expression of the target antigens, which represents an important paradigm shift in anticancer targeted therapy. Three ADCs are currently approved for the treatment of breast cancer (BC); two anti-HER2 (human epidermal growth factor receptor 2) ADCs (trastuzumab emtansine and trastuzumab deruxtecan); and one Trop-2-targeted ADC (sacituzumab govitecan). Based on the unprecedented efficacy data demonstrated by these agents, ADCs have been incorporated as part of standard regimens for all subtypes of advanced BC, as well as for high-risk early HER2-positive BC. Despite the remarkable advances, several hurdles still remain to overcome, including the development of reliable biomarkers for patient selection, prevention, and management of potentially severe toxicities, ADC resistance mechanisms, post-ADC resistance patterns, and optimal treatment sequencing and combinations. In this review, we will summarize the currently available evidence related to the use of these agents, as well as explore the current landscape of ADC development for BC treatment.
Collapse
Affiliation(s)
- Guilherme Nader-Marta
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Rue Meylemeersch, 90, Anderlecht, Brussels 1070, Belgium
| | - Chiara Molinelli
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Véronique Debien
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Diogo Martins-Branco
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Philippe Aftimos
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Evandro de Azambuja
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Ahmad Awada
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| |
Collapse
|
11
|
Al Meslamani AZ, Bostanudin MF. Antibody-drug conjugates in oncology: insights into Current challenges. Expert Opin Biol Ther 2023; 23:1035-1038. [PMID: 37883244 DOI: 10.1080/14712598.2023.2276288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Affiliation(s)
- Ahmad Z Al Meslamani
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Passaro A, Jänne PA, Peters S. Antibody-Drug Conjugates in Lung Cancer: Recent Advances and Implementing Strategies. J Clin Oncol 2023:JCO2300013. [PMID: 37224424 DOI: 10.1200/jco.23.00013] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest-growing oncology therapeutics, merging the cytotoxic effect of conjugated payload with the high specific ability and selectivity of monoclonal antibody targeted on a specific cancer cell membrane antigen. The main targets for ADC development are antigens commonly expressed by lung cancer cells, but not in normal tissues. They include human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, trophoblast cell surface antigen 2, c-MET, carcinoembryonic antigen-related cell adhesion molecule 5, and B7-H3, each with one or more specific ADCs that showed encouraging results in the lung cancer field, more in non-small-cell lung cancer than in small-cell lung cancer histology. To date, multiple ADCs are under evaluation, alone or in combination with different molecules (eg, chemotherapy agents or immune checkpoint inhibitors), and the optimal strategy for selecting patients who may benefit from the treatment is evolving, including an improvement of biomarker understanding, involving markers of resistance or response to the payload, besides the antibody target. In this review, we discuss the available evidence and future perspectives on ADCs for lung cancer treatment, including a comprehensive discussion on structure-based drug design, mechanism of action, and resistance concepts. Data were summarized by specific target antigen, biology, efficacy, and safety, differing among ADCs according to the ADC payload and their pharmacokinetics and pharmacodynamics properties.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| |
Collapse
|
13
|
Akyildiz A, Guven DC, Yildirim HC, Ismayilov R, Yilmaz F, Tatar OD, Chalabiyev E, Kus F, Yalcin S, Aksoy S. Do statins enhance the antitumor effect of trastuzumab emtansine (T-DM1)?: Real-life cohort. Medicine (Baltimore) 2023; 102:e33677. [PMID: 37145008 PMCID: PMC10158859 DOI: 10.1097/md.0000000000033677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-targeting therapies have become crucial in the management of HER2-positive breast cancer. Trastuzumab emtansine (T-DM1) is a microtubule inhibitor and HER2-targeted antibody conjugate. T-DM1 resistance is most likely influenced by factors involved in the biological mechanisms of T-DM1 action. This study aimed to examine the efficacy of statins, which influence HER-2-based therapies via the caveolin-1 (CAV-1) protein, in female breast cancer patients receiving T-DM1. Our study included 105 patients with HER2-positive metastatic breast cancer treated with T-DM1. The progression-free survival (PFS) and overall survival (OS) of patients who received statins concurrently with T-DM1 versus those who did not were compared. During the median 39.5 (95% confidence interval [CI]: 35.6-43.5) months of follow-up, 16 (15.2%) patients received statins, and 89 (84.8%) patients did not. Median OS was significantly higher in patients using statins than in patients not using statins (58.8 vs 26.5 months, P = .016). The association between statin use and PFS did not reach statistical significance (34.7 vs 9.9 months, P = .159). Multivariate Cox regression analysis showed that better performance status (hormone receptor [HR]: 0.30, 95% CI: 0.13-0.71, P = .006), use of trastuzumab plus pertuzumab prior to T-DM1 (HR: 0.37, 95% CI: 0.18-0.76, P = .007) and use of statins with T-DM1 (HR: 0.29, 95% CI: 0.12-0.70, P = .006) were independent factors that prolong OS duration. Our study showed that T-DM1 is more effective at treating HER2-positive breast cancer in people who receive statins concurrently with T-DM1 than those who do not.
Collapse
Affiliation(s)
- Arif Akyildiz
- Hacettepe University Medical School, Department of Medical Oncology, Ankara, Turkey
| | - Deniz Can Guven
- Hacettepe University Medical School, Department of Medical Oncology, Ankara, Turkey
| | - Hasan Cagri Yildirim
- Hacettepe University Medical School, Department of Medical Oncology, Ankara, Turkey
| | - Rashad Ismayilov
- Hacettepe University Medical School, Department of Internal Medicine, Ankara, Turkey
| | - Feride Yilmaz
- Hacettepe University Medical School, Department of Medical Oncology, Ankara, Turkey
| | - Omer Denizhan Tatar
- Hacettepe University Medical School, Department of Internal Medicine, Ankara, Turkey
| | - Elvin Chalabiyev
- Hacettepe University Medical School, Department of Medical Oncology, Ankara, Turkey
| | - Fatih Kus
- Hacettepe University Medical School, Department of Medical Oncology, Ankara, Turkey
| | - Suayib Yalcin
- Hacettepe University Medical School, Department of Medical Oncology, Ankara, Turkey
| | - Sercan Aksoy
- Hacettepe University Medical School, Department of Medical Oncology, Ankara, Turkey
| |
Collapse
|
14
|
Maiti R, Patel B, Patel N, Patel M, Patel A, Dhanesha N. Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities. Arch Pharm Res 2023; 46:361-388. [PMID: 37071273 PMCID: PMC11345756 DOI: 10.1007/s12272-023-01447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023]
Abstract
Antibody drug conjugates (ADCs) are promising cancer therapeutics with minimal toxicity as compared to small cytotoxic molecules alone and have shown the evidence to overcome resistance against tumor and prevent relapse of cancer. The ADC has a potential to change the paradigm of cancer chemotherapeutic treatment. At present, 13 ADCs have been approved by USFDA for the treatment of various types of solid tumor and haematological malignancies. This review covers the three structural components of an ADC-antibody, linker, and cytotoxic payload-along with their respective structure, chemistry, mechanism of action, and influence on the activity of ADCs. It covers comprehensive insight on structural role of linker towards efficacy, stability & toxicity of ADCs, different types of linkers & various conjugation techniques. A brief overview of various analytical techniques used for the qualitative and quantitative analysis of ADC is summarized. The current challenges of ADCs, such as heterogeneity, bystander effect, protein aggregation, inefficient internalization or poor penetration into tumor cells, narrow therapeutic index, emergence of resistance, etc., are outlined along with recent advances and future opportunities for the development of more promising next-generation ADCs.
Collapse
Affiliation(s)
- Ritwik Maiti
- Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Nrupesh Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Alkesh Patel
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
15
|
Takaya K, Asou T, Kishi K. New Senolysis Approach via Antibody-Drug Conjugate Targeting of the Senescent Cell Marker Apolipoprotein D for Skin Rejuvenation. Int J Mol Sci 2023; 24:ijms24065857. [PMID: 36982931 PMCID: PMC10051536 DOI: 10.3390/ijms24065857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Senescent cells accumulate in aging skin, causing age-related changes and a decline in functional efficiency. Therefore, senolysis, a treatment that specifically removes senescent cells and rejuvenates the skin, should be explored. We targeted apolipoprotein D (ApoD), a previously identified marker expressed on senescent dermal fibroblasts, and investigated a novel senolysis approach using a monoclonal antibody against this antigen and a secondary antibody conjugated with the cytotoxic drug pyrrolobenzodiazepine. Observations using fluorescently labeled antibodies revealed that ApoD functions as a surface marker of senescent cells and that the antibody is taken up and internalized only by such cells. The concurrent administration of the antibody with the PBD-conjugated secondary antibody specifically eliminated only senescent cells without harming young cells. The antibody-drug conjugate treatment of aging mice combined with the administration of antibodies reduced the number of senescent cells in the dermis of mice and improved the senescent skin phenotype. These results provide a proof-of-principle evaluation of a novel approach to specifically eliminate senescent cells using antibody-drug conjugates against senescent cell marker proteins. This approach is a potential candidate for clinical applications to treat pathological skin aging and related diseases via the removal of senescent cells.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toru Asou
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
16
|
Lombardi P, Filetti M, Falcone R, Altamura V, Paroni Sterbini F, Bria E, Fabi A, Giannarelli D, Scambia G, Daniele G. Overview of Trop-2 in Cancer: From Pre-Clinical Studies to Future Directions in Clinical Settings. Cancers (Basel) 2023; 15:1744. [PMID: 36980630 PMCID: PMC10046386 DOI: 10.3390/cancers15061744] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Trophoblast cell surface antigen-2 (Trop-2) is a glycoprotein that was first described as a membrane marker of trophoblast cells and was associated with regenerative abilities. Trop-2 overexpression was also described in several tumour types. Nevertheless, the therapeutic potential of Trop-2 was widely recognized and clinical studies with drug-antibody conjugates have been initiated in various cancer types. Recently, these efforts have been rewarded with the approval of sacituzumab govitecan from both the Food and Drug Administration (FDA) and European Medicines Agency (EMA), for metastatic triple-negative breast cancer patients. In our work, we briefly summarize the various characteristics of cancer cells overexpressing Trop-2, the pre-clinical activities of specific inhibitors, and the role of anti-Trop-2 therapy in current clinical practice. We also review the ongoing clinical trials to provide a snapshot of the future developments of these therapies.
Collapse
Affiliation(s)
- Pasquale Lombardi
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Filetti
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Rosa Falcone
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Altamura
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Universitá Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Fabi
- Precision Medicine in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Diana Giannarelli
- Facility of Epidemiology and Biostatistics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Scambia
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gennaro Daniele
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
17
|
Implementation of Systematic Bioanalysis of Antibody–Drug Conjugates for Preclinical Pharmacokinetic Study of Ado-Trastuzumab Emtansine (T-DM1) in Rats. Pharmaceutics 2023; 15:pharmaceutics15030756. [PMID: 36986616 PMCID: PMC10056844 DOI: 10.3390/pharmaceutics15030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Antibody–drug conjugates (ADCs) are composed of monoclonal antibodies covalently bound to cytotoxic drugs by a linker. They are designed to selectively bind target antigens and present a promising cancer treatment without the debilitating side effects of conventional chemotherapies. Ado-trastuzumab emtansine (T-DM1) is an ADC that received US FDA approval for the treatment of HER2-positive breast cancer. The purpose of this study was to optimize methods for the quantification of T-DM1 in rats. We optimized four analytical methods: (1) an enzyme-linked immunosorbent assay (ELISA) to quantify the total trastuzumab levels in all drug-to-antibody ratios (DARs), including DAR 0; (2) an ELISA to quantify the conjugated trastuzumab levels in all DARs except DAR 0; (3) an LC–MS/MS analysis to quantify the levels of released DM1; and (4) a bridging ELISA to quantify the level of anti-drug antibodies (ADAs) of T-DM1. We analyzed serum and plasma samples from rats injected intravenously with T-DM1 (20 mg/kg, single dose) using these optimized methods. Based on these applied analytical methods, we evaluated the quantification, pharmacokinetics, and immunogenicity of T-DM1. This study establishes the systematic bioanalysis of ADCs with validated assays, including drug stability in matrix and ADA assay, for future investigation on the efficacy and safety of ADC development.
Collapse
|
18
|
Xue J, Lou X, Ning D, Shao R, Chen G. Mechanism and treatment of α-amanitin poisoning. Arch Toxicol 2023; 97:121-131. [PMID: 36271256 DOI: 10.1007/s00204-022-03396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023]
Abstract
Amanita poisoning has a high mortality rate. The α-amanitin toxin in Amanita is the main lethal toxin. There is no specific detoxification drug for α-amanitin, and the clinical treatment mainly focuses on symptomatic and supportive therapy. The pathogenesis of α-amanitin mainly includes: α-amanitin can inhibit the activity of RNA polymeraseII in the nucleus, including the inhibition of the largest subunit of RNA polymeraseII, RNApb1, bridge helix, and trigger loop. In addition, α-amanitin acts in vivo through the enterohepatic circulation and transport system. α-Amanitin can cause the cell death. The existing mechanisms of cell damage mainly focus on apoptosis, oxidative stress, and autophagy. In addition to the pathogenic mechanism, α-amanitin also has a role in cancer treatment, which is the focus of current research. The mechanism of action of α-amanitin on the body is still being explored.
Collapse
Affiliation(s)
- Jinfang Xue
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Deyuan Ning
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, 650032, People's Republic of China.
| |
Collapse
|
19
|
Marei HE, Cenciarelli C, Hasan A. Potential of antibody-drug conjugates (ADCs) for cancer therapy. Cancer Cell Int 2022; 22:255. [PMID: 35964048 PMCID: PMC9375290 DOI: 10.1186/s12935-022-02679-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
The primary purpose of ADCs is to increase the efficacy of anticancer medications by minimizing systemic drug distribution and targeting specific cells. Antibody conjugates (ADCs) have changed the way cancer is treated. However, because only a tiny fraction of patients experienced long-term advantages, current cancer preclinical and clinical research has been focused on combination trials. The complex interaction of ADCs with the tumor and its microenvironment appear to be reliant on the efficacy of a certain ADC, all of which have significant therapeutic consequences. Several clinical trials in various tumor types are now underway to examine the potential ADC therapy, based on encouraging preclinical results. This review tackles the potential use of ADCs in cancer therapy, emphasizing the essential processes underlying their positive therapeutic impacts on solid and hematological malignancies. Additionally, opportunities are explored to understand the mechanisms of ADCs action, the mechanism of resistance against ADCs, and how to overcome potential resistance following ADCs administration. Recent clinical findings have aroused interest, leading to a large increase in the number of ADCs in clinical trials. The rationale behind ADCs, as well as their primary features and recent research breakthroughs, will be discussed. We then offer an approach for maximizing the potential value that ADCs can bring to cancer patients by highlighting key ideas and distinct strategies.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Summarizing the current preclinical and clinical evidence about bystander effect of antibody-drug conjugates (ADCs) in solid tumors. RECENT FINDINGS One of the main challenges of treating solid tumors with ADCs is the heterogeneous expression of the target antigen (Ag), which however may be overcome by the so-called bystander killing effect. This unique, but still debated, feature of certain ADCs is represented by the unintentional payload diffusion from Ag-positive tumor cells to adjacent Ag-negative tumor cells. Some pharmacological characteristics, such as a hydrophobic payload or a cleavable linker, seem to play a major role in this effect. Abundant preclinical evidence of the bystander effect has emerged, and the clinical activity of ADCs in tumors with a heterogeneous Ag expression suggests the relevance of this feature. Additional studies are required to investigate if the bystander effect is necessary for achieving a solid activity with ADCs.
Collapse
|
21
|
Shin SH, Park Y, Park SS, Ju EJ, Park J, Ko EJ, Bae DJ, Kim S, Chung C, Song HY, Jang SJ, Jeong S, Song SY, Choi EK. An Elaborate New Linker System Significantly Enhances the Efficacy of an HER2-Antibody-Drug Conjugate against Refractory HER2-Positive Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102414. [PMID: 34664433 PMCID: PMC8655175 DOI: 10.1002/advs.202102414] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/17/2021] [Indexed: 05/03/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast and gastric cancers and this causes poor clinical outcomes. Although both T-DM1 and Enhertu are approved as an HER2-targeting antibody-drug conjugate (ADC), the effects of these drugs are still not satisfactory to eradicate diverse tumors expressing HER2. To address this shortfall in HER2-targeted therapeutics, an elaborate cleavable linker is created and a novel HER2-targeting ADC composed with trastuzumab and monomethyl auristatin F, which is being investigated in a phase 1 clinical trial and is referred to as LegoChem Bisciences-ADC (LCB-ADC). LCB-ADC displays a higher cytotoxic potency than T-DM1 and it also has a higher G2/M arrest ratio. In animal studies, LCB-ADC produces noticeable tumor growth inhibition compared with trastuzumab or T-DM1 in an HER2 high-expressing N87 xenograft tumor. Especially, LCB-ADC shows good efficacy in terms of suppressing tumor growth in a patient-derived xenograft (PDX) model of HER2-positive gastric cancer as well as in T-DM1-resistant models such as HER2 low-expressing HER2 low expressing JIMT-1 xenograft tumor and PDX. Collectively, the results demonstrate that LCB-ADC with the elaborate linker has a higher efficacy and greater biostability than its ADC counterparts and may successfully treat cancers that are nonresponsive to previous therapeutics.
Collapse
Affiliation(s)
- Seol Hwa Shin
- Asan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
- Asan Institute for Life SciencesASAN Medical CenterSeoul05505Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeuticsASAN Medical CenterSeoul05505Republic of Korea
| | - Yun‐Hee Park
- ADC R&D CenterLegoChem Biosciences, Inc.Daejeon34302Republic of Korea
| | - Seok Soon Park
- Asan Institute for Life SciencesASAN Medical CenterSeoul05505Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeuticsASAN Medical CenterSeoul05505Republic of Korea
| | - Eun Jin Ju
- Asan Institute for Life SciencesASAN Medical CenterSeoul05505Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeuticsASAN Medical CenterSeoul05505Republic of Korea
| | - Jin Park
- Asan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
- Asan Institute for Life SciencesASAN Medical CenterSeoul05505Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeuticsASAN Medical CenterSeoul05505Republic of Korea
| | - Eun Jung Ko
- Asan Institute for Life SciencesASAN Medical CenterSeoul05505Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeuticsASAN Medical CenterSeoul05505Republic of Korea
| | - Dong Jun Bae
- Asan Institute for Life SciencesASAN Medical CenterSeoul05505Republic of Korea
| | - Sang‐Yeob Kim
- Asan Institute for Life SciencesASAN Medical CenterSeoul05505Republic of Korea
- Department of Convergence MedicineASAN Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Chul‐Woong Chung
- ADC R&D CenterLegoChem Biosciences, Inc.Daejeon34302Republic of Korea
| | - Ho Young Song
- ADC R&D CenterLegoChem Biosciences, Inc.Daejeon34302Republic of Korea
| | - Se Jin Jang
- Asan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
- Department of PathologyASAN Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Seong‐Yun Jeong
- Asan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
- Asan Institute for Life SciencesASAN Medical CenterSeoul05505Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeuticsASAN Medical CenterSeoul05505Republic of Korea
- Department of Convergence MedicineASAN Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Si Yeol Song
- Asan Preclinical Evaluation Center for Cancer TherapeuticsASAN Medical CenterSeoul05505Republic of Korea
- Department of Radiation OncologyASAN Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Eun Kyung Choi
- Asan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeuticsASAN Medical CenterSeoul05505Republic of Korea
- Department of Radiation OncologyASAN Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| |
Collapse
|
22
|
Pettinato MC. Introduction to Antibody-Drug Conjugates. Antibodies (Basel) 2021; 10:antib10040042. [PMID: 34842621 PMCID: PMC8628511 DOI: 10.3390/antib10040042] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are innovative biopharmaceutical products in which a monoclonal antibody is linked to a small molecule drug with a stable linker. Most of the ADCs developed so far are for treating cancer, but there is enormous potential for using ADCs to treat other diseases. Currently, ten ADCs have been approved by the United States Food and Drug Administration (FDA), and more than 90 ADCs are under worldwide clinical development. Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Tremendous strides have been made in antibody discovery, protein bioengineering, formulation, and delivery devices. This manuscript provides an overview of the biology, chemistry, and biophysical properties of each component of ADC design. This review summarizes the advances and challenges in the field to date, with an emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, drug-antibody ratio (DAR), and product development. The review emphasizes the lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications. The review discusses resistance mechanisms to ADCs, and give an opinion on future perspectives.
Collapse
Affiliation(s)
- Mark C Pettinato
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064-0001, USA
| |
Collapse
|
23
|
Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci Rep 2021; 11:20358. [PMID: 34645909 PMCID: PMC8514501 DOI: 10.1038/s41598-021-99852-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
A wide range of diseases have been shown to be influenced by the accumulation of senescent cells, from fibrosis to diabetes, cancer, Alzheimer's and other age-related pathologies. Consistent with this, clearance of senescent cells can prolong healthspan and lifespan in in vivo models. This provided a rationale for developing a new class of drugs, called senolytics, designed to selectively eliminate senescent cells in human tissues. The senolytics tested so far lack specificity and have significant off-target effects, suggesting that a targeted approach could be more clinically relevant. Here, we propose to use an extracellular epitope of B2M, a recently identified membrane marker of senescence, as a target for the specific delivery of toxic drugs into senescent cells. We show that an antibody-drug conjugate (ADC) against B2M clears senescent cells by releasing duocarmycin into them, while an isotype control ADC was not toxic for these cells. This effect was dependent on p53 expression and therefore more evident in stress-induced senescence. Non-senescent cells were not affected by either antibody, confirming the specificity of the treatment. Our results provide a proof-of-principle assessment of a novel approach for the specific elimination of senescent cells using a second generation targeted senolytic against proteins of their surfaceome, which could have clinical applications in pathological ageing and associated diseases.
Collapse
|
24
|
Theocharopoulos C, Lialios PP, Samarkos M, Gogas H, Ziogas DC. Antibody-Drug Conjugates: Functional Principles and Applications in Oncology and Beyond. Vaccines (Basel) 2021; 9:1111. [PMID: 34696218 PMCID: PMC8538104 DOI: 10.3390/vaccines9101111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
In the era of precision medicine, antibody-based therapeutics are rapidly enriched with emerging advances and new proof-of-concept formats. In this context, antibody-drug conjugates (ADCs) have evolved to merge the high selectivity and specificity of monoclonal antibodies (mAbs) with the cytotoxic potency of attached payloads. So far, ten ADCs have been approved by FDA for oncological indications and many others are currently being tested in clinical and preclinical level. This paper summarizes the essential components of ADCs, from their functional principles and structure up to their limitations and resistance mechanisms, focusing on all latest bioengineering breakthroughs such as bispecific mAbs, dual-drug platforms as well as novel linkers and conjugation chemistries. In continuation of our recent review on anticancer implication of ADC's technology, further insights regarding their potential usage outside of the oncological spectrum are also presented. Better understanding of immunoconjugates could maximize their efficacy and optimize their safety, extending their use in everyday clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Dimitrios C. Ziogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 115 27 Athens, Greece; (C.T.); (P.-P.L.); (M.S.); (H.G.)
| |
Collapse
|
25
|
Burguin A, Diorio C, Durocher F. Breast Cancer Treatments: Updates and New Challenges. J Pers Med 2021; 11:808. [PMID: 34442452 PMCID: PMC8399130 DOI: 10.3390/jpm11080808] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the most frequent cancer diagnosed in women worldwide. This heterogeneous disease can be classified into four molecular subtypes (luminal A, luminal B, HER2 and triple-negative breast cancer (TNBC)) according to the expression of the estrogen receptor (ER) and the progesterone receptor (PR), and the overexpression of the human epidermal growth factor receptor 2 (HER2). Current BC treatments target these receptors (endocrine and anti-HER2 therapies) as a personalized treatment. Along with chemotherapy and radiotherapy, these therapies can have severe adverse effects and patients can develop resistance to these agents. Moreover, TNBC do not have standardized treatments. Hence, a deeper understanding of the development of new treatments that are more specific and effective in treating each BC subgroup is key. New approaches have recently emerged such as immunotherapy, conjugated antibodies, and targeting other metabolic pathways. This review summarizes current BC treatments and explores the new treatment strategies from a personalized therapy perspective and the resulting challenges.
Collapse
Affiliation(s)
- Anna Burguin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada;
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
- Department of Preventive and Social Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada;
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| |
Collapse
|
26
|
Lucas AT, Moody A, Schorzman AN, Zamboni WC. Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist's Perspective. Antibodies (Basel) 2021; 10:30. [PMID: 34449544 PMCID: PMC8395454 DOI: 10.3390/antib10030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) appear to be in a developmental boom, with five FDA approvals in the last two years and a projected market value of over $4 billion by 2024. Major advancements in the engineering of these novel cytotoxic drug carriers have provided a few early success stories. Although the use of these immunoconjugate agents are still in their infancy, valuable lessons in the engineering of these agents have been learned from both preclinical and clinical failures. It is essential to appreciate how the various mechanisms used to engineer changes in ADCs can alter the complex pharmacology of these agents and allow the ADCs to navigate the modern-day therapeutic challenges within oncology. This review provides a global overview of ADC characteristics which can be engineered to alter the interaction with the immune system, pharmacokinetic and pharmacodynamic profiles, and therapeutic index of ADCs. In addition, this review will highlight some of the engineering approaches being explored in the creation of the next generation of ADCs.
Collapse
Affiliation(s)
- Andrew T. Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Amber Moody
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Allison N. Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
| | - William C. Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Glolytics, LLC, Chapel Hill, NC 27517, USA
| |
Collapse
|
27
|
Li WQ, Guo HF, Li LY, Zhang YF, Cui JW. The promising role of antibody drug conjugate in cancer therapy: Combining targeting ability with cytotoxicity effectively. Cancer Med 2021; 10:4677-4696. [PMID: 34165267 PMCID: PMC8290258 DOI: 10.1002/cam4.4052] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Traditional cancer therapy has many disadvantages such as low selectivity and high toxicity of chemotherapy, as well as insufficient efficacy of targeted therapy. To enhance the cytotoxic effect and targeting ability, while reducing the toxicity of antitumor drugs, an antibody drug conjugate (ADC) was developed to deliver small molecular cytotoxic payloads directly to tumor cells by binding to specific antibodies via linkers. Method By reviewing published literature and the current progress of ADCs, we aimed to summarize the basic characteristics, clinical progress, and challenges of ADCs to provide a reference for clinical practice and further research. Results ADC is a conjugate composed of three fundamental components, including monoclonal antibodies, cytotoxic payloads, and stable linkers. The mechanisms of ADC including the classical internalization pathway, antitumor activity of antibodies, bystander effect, and non‐internalizing mechanism. With the development of new drugs and advances in technology, various ADCs have achieved clinical efficacy. To date, nine ADCs have received US Food and Drug Administration (FDA) approval in the field of hematologic tumors and solid tumors, which have become routine clinical treatments. Conclusion ADC has changed traditional treatment patterns for cancer patients, which enable the same treatment for pancreatic cancer patients and promote individualized precision treatment. Further exploration of indications could focus on early‐stage cancer patients and combined therapy settings. Besides, the mechanisms of drug resistance, manufacturing techniques, optimized treatment regimens, and appropriate patient selection remain the major topics.
Collapse
Affiliation(s)
- Wen-Qian Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Han-Fei Guo
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling-Yu Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yong-Fei Zhang
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiu-Wei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
28
|
Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol 2021; 18:327-344. [PMID: 33558752 PMCID: PMC8287784 DOI: 10.1038/s41571-021-00470-8] [Citation(s) in RCA: 553] [Impact Index Per Article: 184.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Nine different antibody-drug conjugates (ADCs) are currently approved as cancer treatments, with dozens more in preclinical and clinical development. The primary goal of ADCs is to improve the therapeutic index of antineoplastic agents by restricting their systemic delivery to cells that express the target antigen of interest. Advances in synthetic biochemistry have ushered in a new generation of ADCs, which promise to improve upon the tissue specificity and cytotoxicity of their predecessors. Many of these drugs have impressive activity against treatment-refractory cancers, although hurdles impeding their broader use remain, including systemic toxicity, inadequate biomarkers for patient selection, acquired resistance and unknown benefit in combination with other cancer therapies. Emerging evidence indicates that the efficacy of a given ADC depends on the intricacies of how the antibody, linker and payload components interact with the tumour and its microenvironment, all of which have important clinical implications. In this Review, we discuss the current state of knowledge regarding the design, mechanism of action and clinical efficacy of ADCs as well as the apparent limitations of this treatment class. We then propose a path forward by highlighting several hypotheses and novel strategies to maximize the potential benefit that ADCs can provide to patients with cancer.
Collapse
Affiliation(s)
- Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weil Cornell Medicine, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weil Cornell Medicine, New York, NY, USA.
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weil Cornell Medicine, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
29
|
Clinical Pharmacology of Antibody-Drug Conjugates. Antibodies (Basel) 2021; 10:antib10020020. [PMID: 34063812 PMCID: PMC8161445 DOI: 10.3390/antib10020020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are biopharmaceutical products where a monoclonal antibody is linked to a biologically active drug (a small molecule) forming a conjugate. Since the approval of first ADC (Gemtuzumab ozogamicin (trade name: Mylotarg)) for the treatment of CD33-positive acute myelogenous leukemia, several ADCs have been developed for the treatment of cancer. The goal of an ADC as a cancer agent is to release the cytotoxic drug to kill the tumor cells without harming the normal or healthy cells. With time, it is being realized that ADCS can also be used to manage or cure other diseases such as inflammatory diseases, atherosclerosis, and bacteremia and some research in this direction is ongoing. The focus of this review is on the clinical pharmacology aspects of ADC development. From the selection of an appropriate antibody to the finished product, the entire process of the development of an ADC is a difficult and challenging task. Clinical pharmacology is one of the most important tools of drug development since this tool helps in finding the optimum dose of a product, thus preserving the safety and efficacy of the product in a patient population. Unlike other small or large molecules where only one moiety and/or metabolite(s) is generally measured for the pharmacokinetic profiling, there are several moieties that need to be measured for characterizing the PK profiles of an ADC. Therefore, knowledge and understanding of clinical pharmacology of ADCs is vital for the selection of a safe and efficacious dose in a patient population.
Collapse
|
30
|
Baah S, Laws M, Rahman KM. Antibody-Drug Conjugates-A Tutorial Review. Molecules 2021; 26:2943. [PMID: 34063364 PMCID: PMC8156828 DOI: 10.3390/molecules26102943] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a family of targeted therapeutic agents for the treatment of cancer. ADC development is a rapidly expanding field of research, with over 80 ADCs currently in clinical development and eleven ADCs (nine containing small-molecule payloads and two with biological toxins) approved for use by the FDA. Compared to traditional small-molecule approaches, ADCs offer enhanced targeting of cancer cells along with reduced toxic side effects, making them an attractive prospect in the field of oncology. To this end, this tutorial review aims to serve as a reference material for ADCs and give readers a comprehensive understanding of ADCs; it explores and explains each ADC component (monoclonal antibody, linker moiety and cytotoxic payload) individually, highlights several EMA- and FDA-approved ADCs by way of case studies and offers a brief future perspective on the field of ADC research.
Collapse
Affiliation(s)
| | | | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (S.B.); (M.L.)
| |
Collapse
|
31
|
Affibody-Derived Drug Conjugates Targeting HER2: Effect of Drug Load on Cytotoxicity and Biodistribution. Pharmaceutics 2021; 13:pharmaceutics13030430. [PMID: 33806887 PMCID: PMC8005000 DOI: 10.3390/pharmaceutics13030430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Affibody molecules hold great promise as carriers of cytotoxic drugs for cancer therapy due to their typically high affinity, easy production, and inherent control of the drug molecules’ loading and spatial arrangement. Here, the impact of increasing the drug load from one to three on the properties of an affibody drug conjugate targeting the human epidermal growth factor receptor 2 (HER2) was investigated. The affibody carrier was recombinantly expressed as a fusion to an albumin-binding domain (ABD) for plasma half-life extension. One or three cysteine amino acids were placed at the C-terminus to which cytotoxic mcDM1 molecules were conjugated. The resulting drug conjugates, ZHER2–ABD–mcDM1 and ZHER2–ABD–mcDM13, were characterized in vitro, and their biodistribution in mice carrying HER2-overexpressing SKOV3 xenografts was determined. Increasing the drug load from one to three led to a decrease in affinity for HER2, but a significantly more potent cytotoxic effect on SKOV3 cells with high HER2 expression. The difference in cytotoxic effect on other cell lines with high HER2 expression was not significant. In vivo, an increase in drug load led to a 1.45-fold higher amount of cytotoxic mcDM1 delivered to the tumors. The increase in drug load also led to more rapid hepatic clearance, warranting further optimization of the molecular design.
Collapse
|
32
|
Kendsersky NM, Lindsay J, Kolb EA, Smith MA, Teicher BA, Erickson SW, Earley EJ, Mosse YP, Martinez D, Pogoriler J, Krytska K, Patel K, Groff D, Tsang M, Ghilu S, Wang Y, Seaman S, Feng Y, Croix BS, Gorlick R, Kurmasheva R, Houghton PJ, Maris JM. The B7-H3-Targeting Antibody-Drug Conjugate m276-SL-PBD Is Potently Effective Against Pediatric Cancer Preclinical Solid Tumor Models. Clin Cancer Res 2021; 27:2938-2946. [PMID: 33619171 DOI: 10.1158/1078-0432.ccr-20-4221] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Patients with relapsed pediatric solid malignancies have few therapeutic options, and many of these patients die of their disease. B7-H3 is an immune checkpoint protein encoded by the CD276 gene that is overexpressed in many pediatric cancers. Here, we investigate the activity of the B7-H3-targeting antibody-drug conjugate (ADC) m276-SL-PBD in pediatric solid malignancy patient-derived (PDX) and cell line-derived xenograft (CDX) models. EXPERIMENTAL DESIGN B7-H3 expression was quantified by RNA sequencing and by IHC on pediatric PDX microarrays. We tested the safety and efficacy of m276-SL-PBD in two stages. Randomized trials of m276-SL-PBD of 0.5 mg/kg on days 1, 8, and 15 compared with vehicle were performed in PDX or CDX models of Ewing sarcoma (N = 3), rhabdomyosarcoma (N = 4), Wilms tumors (N = 2), osteosarcoma (N = 5), and neuroblastoma (N = 12). We then performed a single mouse trial in 47 PDX or CDX models using a single 0.5 m/kg dose of m276-SL-PBD. RESULTS The vast majority of PDX and CDX samples studied showed intense membranous B7-H3 expression (median H-score 177, SD 52). In the randomized trials, m276-SL-PBD showed a 92.3% response rate, with 61.5% of models showing a maintained complete response (MCR). These data were confirmed in the single mouse trial with an overall response rate of 91.5% and MCR rate of 64.4%. Treatment-related mortality rate was 5.5% with late weight loss observed in a subset of models dosed once a week for 3 weeks. CONCLUSIONS m276-SL-PBD has significant antitumor activity across a broad panel of pediatric solid tumor PDX models.
Collapse
Affiliation(s)
- Nathan M Kendsersky
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Pennsylvania.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jarrett Lindsay
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Pennsylvania.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - E Anders Kolb
- A.I. duPont Hospital for Children, Wilmington, Delaware
| | | | | | | | - Eric J Earley
- RTI International, Research Triangle Park, North Carolina
| | - Yael P Mosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Pennsylvania
| | - Daniel Martinez
- Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer Pogoriler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Pennsylvania
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Pennsylvania
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Pennsylvania
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Pennsylvania
| | - Samson Ghilu
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yifei Wang
- Department of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), NCI-Frederick, Frederick, Maryland
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), NCI-Frederick, Frederick, Maryland
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), NCI-Frederick, Frederick, Maryland
| | - Richard Gorlick
- Department of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raushan Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Pennsylvania. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Abstract
Introduction: Antibody-Drug Conjugates (ADCs) are becoming increasingly important weapons in the fight against cancer, as evidenced by the growing number of approved products. The complex nature of an ADC means that there is a vast array of choices to consider in the design of such drugs.Areas covered: We provide an overview of developments in each facet of ADC structure: the antibody, linker, and payload. Looking at the current clinical landscape, we discuss trends that have led to the evolution of ADC design.Expert opinion:Following a history of setbacks and high discontinuation rates, the understanding of the ADC field has grown. If developers can obtain a firm grasp of the structure-function relationship of their molecule, we expect the advances in ADC design to translate to improved clinical success. Moreover, the breadth of ADC applications will continue to expand to target new indications with novel targets and payloads.
Collapse
Affiliation(s)
| | | | - Lisa L McDermott
- Process and Analytical Development, MilliporeSigma, St. Louis, MO, USA
| |
Collapse
|
34
|
Jiang L, Jung S, Zhao J, Kasinath V, Ichimura T, Joseph J, Fiorina P, Liss AS, Shah K, Annabi N, Joshi N, Akama TO, Bromberg JS, Kobayashi M, Uchimura K, Abdi R. Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. NANO TODAY 2021; 36:101045. [PMID: 33391389 PMCID: PMC7774643 DOI: 10.1016/j.nantod.2020.101045] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cancer patients with malignant involvement of tumor-draining lymph nodes (TDLNs) and distant metastases have the poorest prognosis. A drug delivery platform that targets the primary tumor, TDLNs, and metastatic niches simultaneously, remains to be developed. Here, we generated a novel monoclonal antibody (MHA112) against peripheral node addressin (PNAd), a family of glycoproteins expressed on high endothelial venules (HEVs), which are present constitutively in the lymph nodes (LNs) and formed ectopically in the tumor stroma. MHA112 was endocytosed by PNAd-expressing cells, where it passed through the lysosomes. MHA112 conjugated antineoplastic drug Paclitaxel (Taxol) (MHA112-Taxol) delivered Taxol effectively to the HEV-containing tumors, TDLNs, and metastatic lesions. MHA112-Taxol treatment significantly reduced primary tumor size as well as metastatic lesions in a number of mouse and human tumor xenografts tested. These data, for the first time, indicate that human metastatic lesions contain HEVs and provide a platform that permits simultaneous targeted delivery of antineoplastic drugs to the three key sites of primary tumor, TDLNs, and metastases.
Collapse
Affiliation(s)
- Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Joseph
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Fiorina
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew S. Liss
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard medical School, Boston, MA, 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka, 570-8506, Japan
| | - Jonathan S. Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- CNRS, UMR 8576, Unit of Glycobiology Structures and Functions, University of Lille, F-59000 Lille, France
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
McGuinness JE, Kalinsky K. Antibody-drug conjugates in metastatic triple negative breast cancer: a spotlight on sacituzumab govitecan, ladiratuzumab vedotin, and trastuzumab deruxtecan. Expert Opin Biol Ther 2020; 21:903-913. [PMID: 33089726 DOI: 10.1080/14712598.2021.1840547] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Metastatic triple-negative breast cancers (mTNBC) are characterized by aggressive behavior and worse clinical outcomes than other breast cancer subtypes, as well as poor response to cytotoxic chemotherapies. The use of antibody-drug conjugates (ADCs) has been investigated as a potential treatment strategy, particularly in heavily pretreated disease. AREAS COVERED This article reviews the preclinical and clinical data supporting the use of the ADCs sacituzumab govitecan (SG), ladiratuzumab vedotin (LV), and trastuzumab deruxtecan (T-DXd) in mTNBC, and highlights ongoing clinical trials and future clinical applications. EXPERT OPINION SG, LV, and T-DXd have demonstrated their potential to meaningfully improve clinical outcomes in patients with pretreated mTNBC, as demonstrated by notable response rates in phase I/II and, for SG, phase III clinical trials. Investigation of their use in combination with other agents, including PARP inhibitors and checkpoint inhibitors, is ongoing in the metastatic setting, and their application in early-stage TNBCs are under investigation. ADCs are therefore expected to redefine treatment paradigms in TNBC.
Collapse
Affiliation(s)
- Julia E McGuinness
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin Kalinsky
- Department of Medicine, Division of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
36
|
Molinelli C, Parisi F, Razeti MG, Arecco L, Cosso M, Fregatti P, Del Mastro L, Poggio F, Lambertini M. Trastuzumab emtansine (T-DM1) as adjuvant treatment of HER2-positive early breast cancer: safety and efficacy. Expert Rev Anticancer Ther 2020; 21:241-250. [PMID: 33245671 DOI: 10.1080/14737140.2021.1857243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: The prognosis of patients with HER2-positive early breast cancer has radically improved after the introduction of (neo)adjuvant anti-HER2 targeted therapy. Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate combining the anticancer properties of the anti-HER2 agent trastuzumab and the antineoplastic cytotoxic drug DM1. After demonstrating to be an effective and safe treatment for patients with HER2-positive advanced breast cancer, the development of T-DM1 has moved to the early setting.Areas covered: The aim of this review is to explore the current role of T-DM1 in the treatment landscape of HER2-positive early breast cancer, focusing specifically on the efficacy and safety data available in the adjuvant setting.Expert opinion: T-DM1 is an effective and safe treatment option in the adjuvant setting for patients with HER2-positive breast cancer without pathologic complete response after standard neoadjuvant chemotherapy plus anti-HER2 targeted therapy. With the availability of more effective anti-HER2 targeted agents, including T-DM1, there is an urgent need for more chemotherapy de-escalation research efforts in the early setting.
Collapse
Affiliation(s)
- Chiara Molinelli
- Department of Medical Oncology, Breast Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Parisi
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Grazia Razeti
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Luca Arecco
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maurizio Cosso
- Department of Radiology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Piero Fregatti
- Department of Surgery, U.O.C. Clinica di Chirurgia Senologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Integrated Diagnostic Surgical Sciences, School of Medicine, University of Genova, Genova, Italy
| | - Lucia Del Mastro
- Department of Medical Oncology, Breast Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Francesca Poggio
- Department of Medical Oncology, Breast Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| |
Collapse
|
37
|
Yang W, Song A, Ao M, Xu Y, Zhang H. Large-scale site-specific mapping of the O-GalNAc glycoproteome. Nat Protoc 2020; 15:2589-2610. [PMID: 32681153 PMCID: PMC8620167 DOI: 10.1038/s41596-020-0345-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/21/2020] [Indexed: 01/20/2023]
Abstract
Protein glycosylation is one of the most common protein modifications. A major type of protein glycosylation is O-GalNAcylation, in which GalNAc-type glycans are attached to protein Ser or Thr residues via an O-linked glycosidic bond. O-GalNAcylation is thought to play roles in protein folding, stability, trafficking and protein interactions, and identification of the site-specific O-GalNAc glycoproteome is a crucial step toward understanding the biological significance of the modification. However, lack of suitable methodology, absence of consensus sequon of O-GalNAcylation sites and complex O-GalNAc glycan structures pose analytical challenges. We recently developed a mass spectrometry-based method called extraction of O-linked glycopeptides (EXoO) that enables large-scale mapping of site-specific mucin-type O-GalNAcylation sites. Here we provide a detailed protocol for EXoO, which includes seven stages of: (1) extraction and proteolytic digestion of proteins to peptides, (2) sequential guanidination and de-salting of peptides, (3) enrichment of glycopeptides, (4) solid-phase peptide conjugation and release of O-GalNAc glycopeptides using the OpeRATOR protease, (5) liquid chromatography with tandem mass spectrometry analysis of O-GalNAc glycopeptides, (6) identification of O-GalNAc glycopeptides by database search and (7) quantification of O-GalNAc glycopeptides. Using this protocol, thousands of O-GalNAcylation sites from hundreds of glycoproteins with information regarding site-specific O-GalNAc glycan can be identified and quantified from complex samples. The protocol can be performed by a researcher with basic proteomics skills and takes about 4 d to complete.
Collapse
Affiliation(s)
- Weiming Yang
- Corresponding Author: Address: Department of Pathology, Johns Hopkins University School of Medicine, 400 North Broadway, Room 4001A, Baltimore, Maryland, United States.
| | | | | | | | | |
Collapse
|
38
|
Sauveur J, Conilh L, Beaumel S, Chettab K, Jordheim L, Matera E, Dumontet C. Characterization of T-DM1-resistant breast cancer cells. Pharmacol Res Perspect 2020; 8:e00617. [PMID: 32583565 PMCID: PMC7314699 DOI: 10.1002/prp2.617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
The development of targeted therapies has drastically improved the outcome of patients with different types of cancer. T-DM1 (trastuzumab-emtansine) is an antibody-drug conjugate used for the treatment of HER2-positive breast cancer combining the FDA approved mAb (monoclonal antibody) trastuzumab and the microtubule cytotoxic agent DM1 (emtansine). Despite clinical successes achieved by targeted therapies, a large number of patients develop resistance during treatment. To explore mechanisms of resistance to T-DM1, the MDA-MB-361 HER2-positive breast cancer cell line was exposed in vitro to T-DM1 in the absence or presence of ciclosporin A. Previously reported mechanisms of resistance such as trastuzumab-binding alterations, MDR1 upregulation, and SLC46A3 downregulation were not observed in these models. Despite a decrease in HER2 expression at the cell surface, both resistant cell lines remained sensitive to HER2 targeted therapies such as mAbs and tyrosine kinase inhibitors. In addition, sensitivity to DNA damaging agents and topoisomerase inhibitors were unchanged. Conversely resistance to anti-tubulin agents increased. Resistant cells displayed a decreased content of polymerized tubulin and a decreased content of βIII tubulin although the downregulation of βIII tubulin by siRNA in the parental cell line did not modified the sensitivity to T-DM1. Both cell lines resistant to T-DM1 also presented giant aneuploid cells. Several SLC (solute carrier) transporters were found to be differentially expressed in the resistant cells in comparison to parental cells. These results suggest that some characteristics such as increased baseline aneuploidy and altered intracellular drug trafficking might be involved in resistance to T-DM1.
Collapse
Affiliation(s)
- Juliette Sauveur
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Louise Conilh
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Sabine Beaumel
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Kamel Chettab
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Lars‐Petter Jordheim
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Eva‐Laure Matera
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Charles Dumontet
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| |
Collapse
|
39
|
Chung YC, Chiu HH, Wei WC, Chang KJ, Chao WT. Application of trastuzumab emtansine in HER-2-positive and KRAS/BRAF-mutated colon cancer cells. Eur J Clin Invest 2020; 50:e13255. [PMID: 32350854 DOI: 10.1111/eci.13255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) for the treatment of human epidermal growth factor receptor 2 (HER-2)-positive breast cancer. T-DM1 is based on the trastuzumab antibody and delivers a toxic agent into breast cancer cells through endocytic mechanism. This study evaluated whether T-DM1 can be used in HER-2-positive colon cancer cells which harbour KRAS/ BRAF mutation with limited treatment. MATERIALS AND METHODS LS174T and HT-29 which are KRAS and BRAF mutant HER-2-positive colon cancer cells were used in this study. Cells were first treated with T-DM1; cetuximab and trastuzumab were applied for comparison, the effect of drug sensitivity was determined. Cells were then transfected with plasmid to overexpress HER-2 or the endocytic protein, caveolin-1 or furthermore pretreated with metformin to examine the effect of T-DM1 efficacy. Finally, a xenograft mouse model was used to evaluate the drug efficacy in vivo. RESULTS The results showed that T-DM1 had better inhibitory effect than cetuximab and trastuzumab on LS174T and HT-29 cells. HER-2 or caveolin-1 overexpression with plasmid in the cells to increase T-DM1 recognition or internalization can increase the sensitivity to T-DM1. When cells were pretreated with metformin, caveolin-1 expression was induced and promoted T-DM1 uptake and enhanced cell toxicity. In xenograft mouse model, combined treatment of T-DM1 and metformin had apparent inhibitory effect on subcutaneous tumour growth. CONCLUSION The results of this study suggested that T-DM1 has potential in the treatment of HER-2-positive colon cancer cells, and application of metformin has therapeutic benefits during T-DM1 treatment.
Collapse
Affiliation(s)
- Yuan-Chiang Chung
- Department of Surgery, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Hsi-Hsiung Chiu
- Department of Proctology, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Wan-Chen Wei
- Department of Surgery, Cheng-Ching General Hospital, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - King-Jen Chang
- Department of Breast Surgery, Cardinal Tien Hospital, Taipei, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
40
|
Amani N, Dorkoosh FA, Mobedi H. ADCs, as Novel Revolutionary Weapons for Providing a Step Forward in Targeted Therapy of Malignancies. Curr Drug Deliv 2020; 17:23-51. [DOI: 10.2174/1567201816666191121145109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
:Antibody drug conjugates (ADCs), as potent pharmaceutical trojan horses for cancer treatment, provide superior efficacy and specific targeting along with low risk of adverse reactions compared to traditional chemotherapeutics. In fact, the development of these agents combines the selective targeting capability of monoclonal antibody (mAb) with high cytotoxicity of chemotherapeutics for controlling the neoplastic mass growth. Different ADCs (more than 60 ADCs) in preclinical and clinical trials were introduced in this novel pharmaceutical field. Various design-based factors must be taken into account for improving the functionality of ADC technology, including selection of appropriate target antigen and high binding affinity of fragment (miniaturized ADCs) or full mAbs (preferentially use of humanized or fully human antibodies compared to murine and chimeric ones), use of bispecific antibodies for dual targeting effect, linker engineering and conjugation method efficacy to obtain more controlled drug to antibody ratio (DAR). Challenging issues affecting therapeutic efficacy and safety of ADCs, including bystander effect, on- and off-target toxicities, multi drug resistance (MDR) are also addressed. 4 FDA-approved ADCs in the market, including ADCETRIS ®, MYLOTARG®, BESPONSA ®, KADCYLA®. The goal of the current review is to evaluate the key parameters affecting ADCs development.
Collapse
Affiliation(s)
- Nooshafarin Amani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mobedi
- Novel Drug Delivery Systems (NDDS) Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
41
|
Han Y, Da Y, Yu M, Cheng Y, Wang X, Xiong J, Guo G, Li Y, Jiang X, Cai X. Protein labeling approach to improve lysosomal targeting and efficacy of antibody–drug conjugates. Org Biomol Chem 2020; 18:3229-3233. [DOI: 10.1039/d0ob00265h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An anti-EGFR nanobody was labeled at the C-terminus with a lysosome-sorting NPGY (Asn-Pro-Gly-Tyr) motifviasortase-mediated ligation to enhance the clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Ying Han
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Yifan Da
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Mingjia Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Yaping Cheng
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Xin Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Jiale Xiong
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Guoying Guo
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Yan Li
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
42
|
Hayat SMG, Sahebkar A. Antibody-drug conjugates: smart weapons against cancer. Arch Med Sci 2020; 16:1257-1262. [PMID: 32864020 PMCID: PMC7444717 DOI: 10.5114/aoms.2019.83020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/28/2023] Open
Affiliation(s)
- Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–Drug Conjugates: A Comprehensive Review. Mol Cancer Res 2019; 18:3-19. [DOI: 10.1158/1541-7786.mcr-19-0582] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/22/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
|
44
|
Sikder S, Gote V, Alshamrani M, Sicotte J, Pal D. Long-term delivery of protein and peptide therapeutics for cancer therapies. Expert Opin Drug Deliv 2019; 16:1113-1131. [DOI: 10.1080/17425247.2019.1662785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sadia Sikder
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Vrinda Gote
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Meshal Alshamrani
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Jeff Sicotte
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Dhananjay Pal
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| |
Collapse
|
45
|
Antibody-Drug Conjugates: Pharmacokinetic/Pharmacodynamic Modeling, Preclinical Characterization, Clinical Studies, and Lessons Learned. Clin Pharmacokinet 2019; 57:687-703. [PMID: 29188435 DOI: 10.1007/s40262-017-0619-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antibody-drug conjugates are an emerging class of biopharmaceuticals changing the landscape of targeted chemotherapy. These conjugates combine the target specificity of monoclonal antibodies with the anti-cancer activity of small-molecule therapeutics. Several antibody-drug conjugates have received approval for the treatment of various types of cancer including gemtuzumab ozogamicin (Mylotarg®), brentuximab vedotin (Adcetris®), trastuzumab emtansine (Kadcyla®), and inotuzumab ozogamicin, which recently received approval (Besponsa®). In addition to these approved therapies, there are many antibody-drug conjugates in the drug development pipeline and in clinical trials, although these fall outside the scope of this article. Understanding the pharmacokinetics and pharmacodynamics of antibody-drug conjugates and the development of pharmacokinetic/pharmacodynamic models is indispensable, albeit challenging as there are many parameters to incorporate including the disposition of the intact antibody-drug conjugate complex, the antibody, and the drug agents following their dissociation in the body. In this review, we discuss how antibody-drug conjugates progressed over time, the challenges in their development, and how our understanding of their pharmacokinetics/pharmacodynamics led to greater strides towards successful targeted therapy programs.
Collapse
|
46
|
Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR, Enright BP, Liguori MJ, Van Vleet TR. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther 2019; 200:110-125. [DOI: 10.1016/j.pharmthera.2019.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
|
47
|
Yoder NC, Bai C, Tavares D, Widdison WC, Whiteman KR, Wilhelm A, Wilhelm SD, McShea MA, Maloney EK, Ab O, Wang L, Jin S, Erickson HK, Keating TA, Lambert JM. A Case Study Comparing Heterogeneous Lysine- and Site-Specific Cysteine-Conjugated Maytansinoid Antibody-Drug Conjugates (ADCs) Illustrates the Benefits of Lysine Conjugation. Mol Pharm 2019; 16:3926-3937. [PMID: 31287952 DOI: 10.1021/acs.molpharmaceut.9b00529] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates are an emerging class of cancer therapeutics constructed from monoclonal antibodies conjugated with small molecule effectors. First-generation molecules of this class often employed heterogeneous conjugation chemistry, but many site-specifically conjugated ADCs have been described recently. Here, we undertake a systematic comparison of ADCs made with the same antibody and the same macrocyclic maytansinoid effector but conjugated either heterogeneously at lysine residues or site-specifically at cysteine residues. Characterization of these ADCs in vitro reveals generally similar properties, including a similar catabolite profile, a key element in making a meaningful comparison of conjugation chemistries. In a mouse model of cervical cancer, the lysine-conjugated ADC affords greater efficacy on a molar payload basis. Rather than making general conclusions about ADCs conjugated by a particular chemistry, we interpret these results as highlighting the complexity of ADCs and the interplay between payload class, linker chemistry, target antigen, and other variables that determine efficacy in a given setting.
Collapse
|
48
|
Sokka IK, Ekholm FS, Johansson MP. Increasing the Potential of the Auristatin Cancer-Drug Family by Shifting the Conformational Equilibrium. Mol Pharm 2019; 16:3600-3608. [PMID: 31199662 PMCID: PMC6750905 DOI: 10.1021/acs.molpharmaceut.9b00437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Monomethyl auristatin E and monomethyl
auristatin F are widely
used cytotoxic agents in antibody–drug conjugates (ADCs), a
group of promising cancer drugs. The ADCs specifically target cancer
cells, releasing the auristatins inside, which results in the prevention
of mitosis. The auristatins suffer from a potentially serious flaw,
however. In solution, the molecules exist in an equal mixture of two
conformers, cis and trans. Only the trans-isomer is biologically active
and the isomerization process, i.e., the conversion of cis to trans
is slow. This significantly diminishes the efficiency of the drugs
and their corresponding ADCs, and perhaps more importantly, raises
concerns over drug safety. The potency of the auristatins would be
enhanced by decreasing the amount of the biologically inactive isomer,
either by stabilizing the trans-isomer or destabilizing the cis-isomer.
Here, we follow the computer-aided design strategy of shifting the
conformational equilibrium and employ high-level quantum chemical
modeling to identify promising candidates for improved auristatins.
Coupled cluster calculations predict that a simple halogenation in
the norephedrine/phenylalanine residues shifts the isomer equilibrium
almost completely toward the active trans-conformation, due to enhanced
intramolecular interactions specific to the active isomer.
Collapse
Affiliation(s)
- Iris K Sokka
- Department of Chemistry , University of Helsinki , P.O. Box 55, FI-00014 Helsinki , Finland
| | - Filip S Ekholm
- Department of Chemistry , University of Helsinki , P.O. Box 55, FI-00014 Helsinki , Finland
| | - Mikael P Johansson
- Department of Chemistry , University of Helsinki , P.O. Box 55, FI-00014 Helsinki , Finland.,Helsinki Institute of Sustainability Science, HELSUS , FI-00014 Helsinki , Finland
| |
Collapse
|
49
|
Yaghoubi S, Karimi MH, Lotfinia M, Gharibi T, Mahi-Birjand M, Kavi E, Hosseini F, Sineh Sepehr K, Khatami M, Bagheri N, Abdollahpour-Alitappeh M. Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol 2019; 235:31-64. [PMID: 31215038 DOI: 10.1002/jcp.28967] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023]
Abstract
Cytotoxic small-molecule drugs have a major influence on the fate of antibody-drug conjugates (ADCs). An ideal cytotoxic agent should be highly potent, remain stable while linked to ADCs, kill the targeted tumor cell upon internalization and release from the ADCs, and maintain its activity in multidrug-resistant tumor cells. Lessons learned from successful and failed experiences in ADC development resulted in remarkable progress in the discovery and development of novel highly potent small molecules. A better understanding of such small-molecule drugs is important for development of effective ADCs. The present review discusses requirements making a payload appropriate for antitumor ADCs and focuses on the main characteristics of commonly-used cytotoxic payloads that showed acceptable results in clinical trials. In addition, the present study represents emerging trends and recent advances of payloads used in ADCs currently under clinical trials.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Majid Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Motahare Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Esmaeil Kavi
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Fahimeh Hosseini
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Khatami
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
50
|
Jeibouei S, Akbari ME, Kalbasi A, Aref AR, Ajoudanian M, Rezvani A, Zali H. Personalized medicine in breast cancer: pharmacogenomics approaches. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:59-73. [PMID: 31213877 PMCID: PMC6549747 DOI: 10.2147/pgpm.s167886] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Abstract: Breast cancer is the fifth cause of cancer death among women worldwide and represents a global health concern due to the lack of effective therapeutic regimens that could be applied to all disease groups. Nowadays, strategies based on pharmacogenomics constitute novel approaches that minimize toxicity while maximizing drug efficacy; this being of high importance in the oncology setting. Besides, genetic profiling of malignant tumors can lead to the development of targeted therapies to be included in effective drug regimens. Advances in molecular diagnostics have revealed that breast cancer is a multifaceted disease, characterized by inter-tumoral and intra-tumoral heterogeneity and, unlike the past, molecular classifications based on the expression of individual biomarkers have led to devising novel therapeutic strategies that improve patient survival. In this review, we report and discuss the molecular classification of breast cancer subtypes, the heterogeneity resource, and the advantages and disadvantages of current drug regimens with consideration of pharmacogenomics in response and resistance to treatment.
Collapse
Affiliation(s)
- Shabnam Jeibouei
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Kalbasi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mohammad Ajoudanian
- Department of Tissue Engineering and Applied Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Rezvani
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hakimeh Zali
- Proteomics Research Centre, Department of Tissue Engineering and Applied Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|