1
|
Panahizadeh R, Panahi P, Asghariazar V, Makaremi S, Noorkhajavi G, Safarzadeh E. A literature review of recent advances in gastric cancer treatment: exploring the cross-talk between targeted therapies. Cancer Cell Int 2025; 25:23. [PMID: 39856676 PMCID: PMC11762578 DOI: 10.1186/s12935-025-03655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks fourth in global mortality rates and fifth in prevalence, making it one of the most common cancers worldwide. Recent clinical studies have highlighted the potential of immunotherapies as a promising approach to treating GC. This study aims to shed light on the most impactful therapeutic strategies in the context of GC immunotherapy, highlighting both established and emerging approaches. MAIN BODY This review examines over 160 clinical studies conducted globally, focusing on the effectiveness of various immunotherapy modalities, including cancer vaccines, adoptive cell therapy, immune checkpoint inhibitors (ICIs), and monoclonal antibodies (mAbs). A comprehensive search of peer-reviewed literature was performed using databases such as Web of Science, PubMed, and Scopus. The selection criteria included peer-reviewed articles published primarily within the last 10 years, with a focus on studies that provided insights into targeted therapies and their mechanisms of action, clinical efficacy, and safety profiles. The findings indicate that these immunotherapy strategies can enhance treatment outcomes for GC, aligning with current treatment guidelines. ICIs like pembrolizumab and nivolumab have shown significant survival benefits in specific GC subgroups. Cancer vaccines and CAR-T cell therapies demonstrate potential, while mAbs targeting HER2 and VEGFR pathways enhance outcomes in combination regimens. We discuss the latest advancements and challenges in targeted therapy and immunotherapy for GC. Given the evolving nature of this field, this research emphasizes significant evidence-based therapies and those currently under evaluation rather than providing an exhaustive overview. Challenges include resistance mechanisms, immunosuppressive tumor environments, and inconsistent results from combination therapies. Biomarker-driven approaches and further research into emerging modalities like CAR-T cells and cancer vaccines are critical for optimizing treatments. CONCLUSIONS Immunotherapy is reshaping GC management by improving survival and quality of life. Ongoing research and clinical evaluations are crucial for refining personalized and effective therapies.
Collapse
Affiliation(s)
- Reza Panahizadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Padideh Panahi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shima Makaremi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ghasem Noorkhajavi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 85991-56189, Iran.
| |
Collapse
|
2
|
Scheck MK, Hofheinz RD, Lorenzen S. HER2-Positive Gastric Cancer and Antibody Treatment: State of the Art and Future Developments. Cancers (Basel) 2024; 16:1336. [PMID: 38611014 PMCID: PMC11010911 DOI: 10.3390/cancers16071336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Despite a decreasing incidence in Western countries, gastric cancer is among the most common cancer subtypes globally and is associated with one of the highest tumor-related mortality rates. Biomarkers play an increasing role in the treatment against gastric cancer. HER2 was one of the first biomarkers that found its way into clinical practice. Since the ToGA trial, trastuzumab has been part of first-line palliative chemotherapy in metastatic or unresectable gastric cancer. HER2-targeting agents, such as the tyrosine kinase inhibitor lapatinib, the antibody drug conjugate (ADC) trastuzumab-emtansine or dual HER2 inhibition (pertuzumab and trastuzumab), have been investigated in the second-line setting but led to negative study results. More recently, the ADC trastuzumab-deruxtecan was authorized after the failure of trastuzumab-based treatment. However, further improvements in HER2-directed therapy are required as resistance mechanisms and HER2 heterogeneity limit the existing treatment options. This review aims to give an overview of the current standard-of-care HER2-directed therapy in gastric cancer, as well as its challenges and future developments.
Collapse
Affiliation(s)
- Magdalena K. Scheck
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der TU München, 81675 Munich, Germany;
| | - Ralf D. Hofheinz
- Mannheim Cancer Center, Universitätsklinikum Mannheim, 68167 Mannheim, Germany;
| | - Sylvie Lorenzen
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der TU München, 81675 Munich, Germany;
| |
Collapse
|
3
|
Shaban N, Kamashev D, Emelianova A, Buzdin A. Targeted Inhibitors of EGFR: Structure, Biology, Biomarkers, and Clinical Applications. Cells 2023; 13:47. [PMID: 38201251 PMCID: PMC10778338 DOI: 10.3390/cells13010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Members of the EGFR family of tyrosine kinase receptors are major regulators of cellular proliferation, differentiation, and survival. In humans, abnormal activation of EGFR is associated with the development and progression of many cancer types, which makes it an attractive target for molecular-guided therapy. Two classes of EGFR-targeted cancer therapeutics include monoclonal antibodies (mAbs), which bind to the extracellular domain of EGFR, and tyrosine kinase inhibitors (TKIs), which mostly target the intracellular part of EGFR and inhibit its activity in molecular signaling. While EGFR-specific mAbs and three generations of TKIs have demonstrated clinical efficacy in various settings, molecular evolution of tumors leads to apparent and sometimes inevitable resistance to current therapeutics, which highlights the need for deeper research in this field. Here, we tried to provide a comprehensive and systematic overview of the rationale, molecular mechanisms, and clinical significance of the current EGFR-targeting drugs, highlighting potential candidate molecules in development. We summarized the underlying mechanisms of resistance and available personalized predictive approaches that may lead to improved efficacy of EGFR-targeted therapies. We also discuss recent developments and the use of specific therapeutic strategies, such as multi-targeting agents and combination therapies, for overcoming cancer resistance to EGFR-specific drugs.
Collapse
Affiliation(s)
- Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Dmitri Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Aleksandra Emelianova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
4
|
Șandor A, Ionuț I, Marc G, Oniga I, Eniu D, Oniga O. Structure-Activity Relationship Studies Based on Quinazoline Derivatives as EGFR Kinase Inhibitors (2017-Present). Pharmaceuticals (Basel) 2023; 16:534. [PMID: 37111291 PMCID: PMC10141396 DOI: 10.3390/ph16040534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a critical role in the tumorigenesis of various forms of cancer. Targeting the mutant forms of EGFR has been identified as an attractive therapeutic approach and led to the approval of three generations of inhibitors. The quinazoline core has emerged as a favorable scaffold for the development of novel EGFR inhibitors due to increased affinity for the active site of EGFR kinase. Currently, there are five first-generation (gefitinib, erlotinib, lapatinib, vandetanib, and icotinib) and two second-generation (afatinib and dacomitinib) quinazoline-based EGFR inhibitors approved for the treatment of various types of cancers. The aim of this review is to outline the structural modulations favorable for the inhibitory activity toward both common mutant (del19 and L858R) and resistance-conferring mutant (T790M and C797S) EGFR forms, and provide an overview of the newly synthesized quinazoline derivatives as potentially competitive, covalent or allosteric inhibitors of EGFR.
Collapse
Affiliation(s)
- Alexandru Șandor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Dan Eniu
- Department of Surgical Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 34-36 Republicii Street, 40015 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| |
Collapse
|
5
|
Jeong K, Kong SH, Bae SW, Park CR, Berlth F, Shin JH, Lee YS, Youn H, Koo E, Suh YS, Park DJ, Lee HJ, Yang HK. Evaluation of Near-infrared Fluorescence-conjugated Peptides for Visualization of Human Epidermal Receptor 2-overexpressed Gastric Cancer. J Gastric Cancer 2021; 21:191-202. [PMID: 34234980 PMCID: PMC8255305 DOI: 10.5230/jgc.2021.21.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Purpose A near-infrared (NIR) fluorescence imaging is a promising tool for cancer-specific image guided surgery. Human epidermal receptor 2 (HER2) is one of the candidate markers for gastric cancer. In this study, we aimed to synthesize HER2-specific NIR fluorescence probes and evaluate their applicability in cancer-specific image-guided surgeries using an animal model. Materials and Methods An NIR dye emitting light at 800 nm (IRDye800CW; Li-COR) was conjugated to trastuzumab and an HER2-specific affibody using a click mechanism. HER2 affinity was assessed using surface plasmon resonance. Gastric cancer cell lines (NCI-N87 and SNU-601) were subcutaneously implanted into female BALB/c nu (6–8 weeks old) mice. After intravenous injection of the probes, biodistribution and fluorescence signal intensity were measured using Lumina II (Perkin Elmer) and a laparoscopic NIR camera (InTheSmart). Results Trastuzumab-IRDye800CW exhibited high affinity for HER2 (KD=2.093(3) pM). Fluorescence signals in the liver and spleen were the highest at 24 hours post injection, while the signal in HER2-positive tumor cells increased until 72 hours, as assessed using the Lumina II system. The signal corresponding to the tumor was visually identified and clearly differentiated from the liver after 72 hours using a laparoscopic NIR camera. Affibody-IRDye800CW also exhibited high affinity for HER2 (KD=4.71 nM); however, the signal was not identified in the tumor, probably owing to rapid renal clearance. Conclusions Trastuzumab-IRDye800CW may be used as a potential NIR probe that can be injected 2–3 days before surgery to obtain high HER2-specific signal and contrast. Affibody-based NIR probes may require modifications to enhance mobilization to the tumor site.
Collapse
Affiliation(s)
- Kyoungyun Jeong
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Woo Bae
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Cho Rong Park
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Felix Berlth
- Department of General, Visceral and Transplant Surgery, University of Mainz, Mainz, Germany
| | - Jae Hwan Shin
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine Seoul, Korea
| | - Yun-Sang Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine Seoul, Korea
| | - Hyewon Youn
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eunhee Koo
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Do Joong Park
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, Dussor G, Ray PR, Price TJ. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal 2021; 14:14/674/eabe1648. [PMID: 33727337 DOI: 10.1126/scisignal.abe1648] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape sensory experience, including pain. We set out to identify the potential interactions between sensory neurons and peripheral cell types implicated in disease-associated pain. Using mouse and human RNA sequencing datasets and computational analysis, we created interactome maps between dorsal root ganglion (DRG) sensory neurons and an array of normal cell types, as well as colitis-associated glial cells, rheumatoid arthritis-associated synovial macrophages, and pancreatic tumor tissue. These maps revealed a common correlation between the abundance of heparin-binding EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a member of the ErbB family of receptors) in DRG neurons. Subsequently, we confirmed that increased abundance of HBEGF enhanced nociception in mice, likely acting on DRG neurons through ErbB family receptors. Collectively, these interactomes highlight ligand-receptor interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the complexity of cell-to-neuron signaling in chronic pain states.
Collapse
Affiliation(s)
- Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sanjay V Neerukonda
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Dhananjay K Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Eric T David
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Pradipta R Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
7
|
Comprehensive Molecular Characterization of Adenocarcinoma of the Gastroesophageal Junction Between Esophageal and Gastric Adenocarcinomas. Ann Surg 2020; 275:706-717. [PMID: 33086305 DOI: 10.1097/sla.0000000000004303] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the molecular characteristics of AGEJ compared with EAC and gastric adenocarcinoma. SUMMARY OF BACKGROUND DATA Classification of AGEJ based on differential molecular characteristics between EAC and gastric adenocarcinoma has been long-standing controversy but rarely conducted due to anatomical ambiguity and epidemiologic difference. METHODS The molecular classification model with Bayesian compound covariate predictor was developed based on differential mRNA expression of EAC (N = 78) and GCFB (N = 102) from the Cancer Genome Atlas (TCGA) cohort. AGEJ/cardia (N = 48) in TCGA cohort and AGEJ/upper third GC (N = 46 pairs) in Seoul National University cohort were classified into the EAC-like or GCFB-like groups whose genomic, transcriptomic, and proteomic characteristics were compared. RESULTS AGEJ in both cohorts was similarly classified as EAC-like (31.2%) or GCFB-like (68.8%) based on the 400-gene classifier. The GCFB-like group showed significantly activated phosphoinositide 3-kinase-AKT signaling with decreased expression of ERBB2. The EAC-like group presented significantly different alternative splicing including the skipped exon of RPS24, a significantly higher copy number amplification including ERBB2 amplification, and increased protein expression of ERBB2 and EGFR compared with GCFB-like group. High-throughput 3D drug test using independent cell lines revealed that the EAC-like group showed a significantly better response to lapatinib than the GCFB-like group (P = 0.015). CONCLUSIONS AGEJ was the combined entity of the EAC-like and GCFB-like groups with consistently different molecular characteristics in both Seoul National University and TCGA cohorts. The EAC-like group with a high Bayesian compound covariate predictor score could be effectively targeted by dual inhibition of ERBB2 and EGFR.
Collapse
|
8
|
Ding N, Sano K, Kanazaki K, Shimizu Y, Watanabe H, Namita T, Shiina T, Ono M, Saji H. Sensitive Photoacoustic/Magnetic Resonance Dual Imaging Probe for Detection of Malignant Tumors. J Pharm Sci 2020; 109:3153-3159. [PMID: 32679213 DOI: 10.1016/j.xphs.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 01/18/2023]
Abstract
In order to completely remove tumors in surgeries, probes are needed both preoperatively and intraoperatively. For tumor diagnosis, magnetic resonance imaging (MRI) has been widely used as a precise preoperative method, and photoacoustic imaging (PAI) is a recently emerged intraoperative (or preoperative) method, which detects ultrasonic waves thermoelastically induced by optical absorbers irradiated by laser. Iron oxide nanoparticles (IONPs) can be used as both MR and PA imaging probes. In order to improve the sensitivity of IONPs as MR/PA imaging probes, we newly prepared liposomes encapsulated with a number of IONPs (Lipo-IONPs). Interestingly, Lipo-IONPs showed 2.6 and 3.8-times higher PA and MR signals, respectively, compared to dispersed IONPs at the same concentration. Furthermore, trastuzumab (Tra) (anti-human epidermal growth factor receptor 2 (EGFR2; HER2) monoclonal antibody) was introduced onto the surface of liposomes for detection of HER2 related to tumor malignancy. In an cellular uptake study, Tra-Lipo-IONPs were taken up by HER2-positive tumor cells and HER2-specific MR/PA dual imaging was achieved. Finally, a biodistribution study using radiolabeled Tra-Lipo-IONPs showed HER2-specific tumor accumulation. In conclusion, we demonstrated the usefulness of Lipo-IONPs as platforms for sensitive MR/PA dual imaging and the possibility of HER2-specific tumor MR/PA imaging using Tra-Lipo-IONPs.
Collapse
Affiliation(s)
- Ning Ding
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohei Sano
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Kengo Kanazaki
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Medical Imaging Project, Corporate R&D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo 146-8501, Japan
| | - Yoichi Shimizu
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Namita
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tsuyoshi Shiina
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Quantitative Proteomics of the Cancer Cell Line Encyclopedia. Cell 2020; 180:387-402.e16. [PMID: 31978347 DOI: 10.1016/j.cell.2019.12.023] [Citation(s) in RCA: 553] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/14/2019] [Accepted: 12/13/2019] [Indexed: 01/22/2023]
Abstract
Proteins are essential agents of biological processes. To date, large-scale profiling of cell line collections including the Cancer Cell Line Encyclopedia (CCLE) has focused primarily on genetic information whereas deep interrogation of the proteome has remained out of reach. Here, we expand the CCLE through quantitative profiling of thousands of proteins by mass spectrometry across 375 cell lines from diverse lineages to reveal information undiscovered by DNA and RNA methods. We observe unexpected correlations within and between pathways that are largely absent from RNA. An analysis of microsatellite instable (MSI) cell lines reveals the dysregulation of specific protein complexes associated with surveillance of mutation and translation. These and other protein complexes were associated with sensitivity to knockdown of several different genes. These data in conjunction with the wider CCLE are a broad resource to explore cellular behavior and facilitate cancer research.
Collapse
|
10
|
Kim JW, Lee KH, Kim JW, Suh KJ, Nam AR, Bang JH, Bang YJ, Oh DY. Enhanced antitumor effect of binimetinib in combination with capecitabine for biliary tract cancer patients with mutations in the RAS/RAF/MEK/ERK pathway: phase Ib study. Br J Cancer 2019; 121:332-339. [PMID: 31312030 PMCID: PMC6738070 DOI: 10.1038/s41416-019-0523-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 01/19/2023] Open
Abstract
Background A phase Ib study of binimetinib and capecitabine for gemcitabine-pretreated biliary tract cancer (BTC) patients was conducted. Methods Binimetinib and capecitabine were dosed twice daily on days 1–14, in 3-week cycles. In the dose-escalation (DE) part, three dose levels (DL) were tested (DL1: binimetinib/capecitabine, 15 mg/1000 mg/m2; DL2: 30 mg/1000 mg/m2; DL3: 30 mg/1250 mg/m2). Results In the DE part, nine patients were recruited and no dose-limiting toxicity was noted. Therefore, the recommended phase 2 dose was determined as DL3. In the expansion part, 25 patients were enrolled. In total, 34 patients, 25 (73.5%) and 9 patients (26.5%) were second-line and third-line settings, respectively. The 3-month progression-free survival (PFS) rate was 64.0%, and the median PFS and overall survival (OS) were 4.1 and 7.8 months. The objective response rate and disease control rate were 20.6% and 76.5%. In total, 68.4% of stable diseases were durable (> 12 weeks). Furthermore, patients with RAS/RAF/MEK/ERK pathway mutations (38.5%) showed significantly better tumour response (p = 0.028), PFS (5.4 vs. 3.5 months, p = 0.010) and OS (10.8 vs. 5.9 months, p = 0.160) than wild type. Most of the adverse events were grade 1/2 and manageable. Conclusions A combination of binimetinib and capecitabine shows acceptable tolerability and promising antitumor efficacy for gemcitabine-pretreated BTC, especially in patients with RAS/RAF/MEK/ERK pathway mutations. Clinical trial registration ClinicalTrials.gov (Identifier: NCT02773459).
Collapse
Affiliation(s)
- Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Guan NN, Zhao Y, Wang CC, Li JQ, Chen X, Piao X. Anticancer Drug Response Prediction in Cell Lines Using Weighted Graph Regularized Matrix Factorization. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:164-174. [PMID: 31265947 PMCID: PMC6610642 DOI: 10.1016/j.omtn.2019.05.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Precision medicine has become a novel and rising concept, which depends much on the identification of individual genomic signatures for different patients. The cancer cell lines could reflect the “omic” diversity of primary tumors, based on which many works have been carried out to study the cancer biology and drug discovery both in experimental and computational aspects. In this work, we presented a novel method to utilize weighted graph regularized matrix factorization (WGRMF) for inferring anticancer drug response in cell lines. We constructed a p-nearest neighbor graph to sparsify drug similarity matrix and cell line similarity matrix, respectively. Using the sparsified matrices in the graph regularization terms, we performed matrix factorization to generate the latent matrices for drug and cell line. The graph regularization terms including neighbor information could help to exclude the noisy ingredient and improve the prediction accuracy. The 10-fold cross-validation was implemented, and the Pearson correlation coefficient (PCC), root-mean-square error (RMSE), PCCsr, and RMSEsr averaged over all drugs were calculated to evaluate the performance of WGRMF. The results on the Genomics of Drug Sensitivity in Cancer (GDSC) dataset are 0.64 ± 0.16, 1.37 ± 0.35, 0.73 ± 0.14, and 1.71 ± 0.44 for PCC, RMSE, PCCsr, and RMSEsr in turn. And for the Cancer Cell Line Encyclopedia (CCLE) dataset, WGRMF got results of 0.72 ± 0.09, 0.56 ± 0.19, 0.79 ± 0.07, and 0.69 ± 0.19, respectively. The results showed the superiority of WGRMF compared with previous methods. Besides, based on the prediction results using the GDSC dataset, three types of case studies were carried out. The results from both cross-validation and case studies have shown the effectiveness of WGRMF on the prediction of drug response in cell lines.
Collapse
Affiliation(s)
- Na-Na Guan
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Xue Piao
- School of Medical Informatics, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
12
|
Shi Y, Zhang W, Li L, Tong Z, Bai C. Design and synthesis of novel triazolo-lapatinib hybrids as inhibitors of breast cancer cells. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2247-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Sakai K, Maeda S, Saeki K, Nakagawa T, Murakami M, Endo Y, Yonezawa T, Kadosawa T, Mori T, Nishimura R, Matsuki N. Anti-tumour effect of lapatinib in canine transitional cell carcinoma cell lines. Vet Comp Oncol 2018; 16:642-649. [PMID: 30246405 DOI: 10.1111/vco.12434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
Transitional cell carcinoma (TCC) accounts for >90% of canine malignant tumours occurring in urinary bladder, and the prognosis is poor. Our previous study, using RNA sequencing, showed that human epidermal growth factor 2 (HER2) was the most activated upstream regulator related to carcinogenesis in canine TCC. The aim of this study was to examine the anti-tumour effect of lapatinib, a tyrosine kinase inhibitor of HER2, on canine TCC cell lines in vitro and in vivo. Five canine TCC cell lines (TCCUB, Love, Sora, LCTCC, and MCTCC) were used. Western blotting showed that HER2 protein expression was observed in all of the canine TCC cell lines. Lapatinib inhibited phosphorylation of HER2 and cell growth in a dose-dependent manner. Cell cycle analyses using flow cytometry showed that lapatinib significantly increased the sub-G1 and G0 /G1 phase fractions and significantly decreased the S and G2 /M phase fractions in the cell lines (Sora and TCCUB). For the in vivo experiments, the canine TCC cells (Sora) were subcutaneously injected into nude mice. Six days after inoculation, lapatinib (100 mg/kg) or vehicle was administered daily via intraperitoneal administration for 14 days. Tumour volume was significantly smaller in the lapatinib group compared with the vehicle control group. Histologically, lapatinib significantly increased necrotic areas in the tumour tissues. These findings suggest that lapatinib exerts anti-tumour effects on canine TCC cells by inhibiting HER2 signalling and inducing cell cycle arrest.
Collapse
Affiliation(s)
- Kosei Sakai
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Saeki
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mami Murakami
- Department of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yoshifumi Endo
- Laboratory of Veterinary Clinical Oncology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Kadosawa
- Laboratory of Veterinary Clinical Oncology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Takashi Mori
- Department of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Ryohei Nishimura
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoaki Matsuki
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Pirpour Tazehkand A, Akbarzadeh M, Velaie K, Sadeghi MR, Samadi N. The role of Her2-Nrf2 axis in induction of oxaliplatin resistance in colon cancer cells. Biomed Pharmacother 2018; 103:755-766. [PMID: 29684854 DOI: 10.1016/j.biopha.2018.04.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in promoting chemoresistance by regulation of antioxidants and detoxification enzymes. Her2 is a member of tyrosine kinase receptor family with a key function in resistance of cancer cells to chemotherapeutics. The aim of this study was to investigate the possible cross talk between Nrf2 and Her2 mediated signaling pathways in development of oxaliplatin resistance in colon cancer cells. We first generated oxaliplatin-resistant LS174T and SW480 colon cancer cells with different Her2 expression levels by employing IC50 concentrations followed by a resting period. We evaluated the viability and apoptosis of the cells by MTT and flow cytometry assays, respectively. Nrf2 and Her2 gene expression levels were examined by qRT-PCR. The morphology analysis and combination index calculation were performed using the ImagJ and CompuSyn softwares, respectively. Development of resistant cells revealed a marked increase in half maximal inhibitory concentration (IC50) value from 3.95 ± 0.92 μM to 29.27 ± 3.13 μM in SW480 cells and 377 ± 46 nM to 9.59 ± 0.76 μM in LS174T cells with a significant change in morphology of the cells from elongated to small round shape (p < 0.05). Her2 expression level was increased in both types of resistant cells, but the Nrf2 expression was increased in LS174T resistant (LS174T/Res) cells and decreased in SW480/Res cells which were consistent with the level of resistance in these cells (25 fold increase in IC50 value in LS174T/Res cells versus 7 fold increase in this value in SW480/Res cells). Inhibition of either Nrf2 or Her2 alone and in combination caused a significant increase in oxaliplatin-induced cytotoxicity and apoptosis with maximum effects in SW480/Res cells with low Her2 and Nrf2 expression levels. Altogether, our results suggest that inhibition of Nrf2 signaling in colon cancer patients with Her2 overexpression can be considered as an important strategy to overcome oxaliplatin resistance.
Collapse
Affiliation(s)
- Abbas Pirpour Tazehkand
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Golgasht Street, Imam Reza Hospital, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, Iran; Students' Research Committee, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Golbad Street, Shahid Madani Hospital, Tabriz, Iran.
| | - Kobra Velaie
- Department of Anatomical Science, Faculty of Medicine, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasser Samadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Golgasht Street, Imam Reza Hospital, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, Iran; Immunology Research Center, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Wang SE, Lin RJ. MicroRNA and HER2-overexpressing cancer. Microrna 2018; 2:137-47. [PMID: 25070783 PMCID: PMC4120065 DOI: 10.2174/22115366113029990011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/26/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
Abstract
The discovery of microRNAs (miRNAs) has opened up new avenues for studying cancer at the molecular level, featuring a post-genomic era of biomedical research. These non-coding regulatory RNA molecules of ~22 nucleotides have emerged as important cancer biomarkers, effectors, and targets. In this review, we focus on the dysregulated biogenesis and function of miRNAs in cancers with an overexpression of the proto-oncogene HER2. Many of the studies reviewed here were carried out in breast cancer, where HER2 overexpression has been extensively studied and HER2-targeted therapy practiced for more than a decade. MiRNA signatures that can be used to classify tumors with different HER2 status have been reported but little consensus can be established among various studies, emphasizing the needs for additional well-controlled profiling approaches and meta-analyses in large and well-balanced patient cohorts. We further discuss three aspects of microRNA dysregulation in or contribution to HER2-associated malignancies or therapies: (a) miRNAs that are up- or down-regulated by HER2 and mediate the downstream signaling of HER2; (b) miRNAs that suppress the expression of HER2 or a factor in HER2 receptor complexes, such as HER3; and (c) miRNAs that affect responses to anti-HER2 therapies. The regulatory mechanisms are elaborated using mainly examples of miR-205, miR-125, and miR-21. Understanding the regulation and function of miRNAs in HER2-overexpressing tumors shall shed new light on the pathogenic mechanisms of microRNAs and the HER2 proto-oncogene in cancer, as well as on individualized or combinatorial anti-HER2 therapies.
Collapse
Affiliation(s)
| | - Ren-Jang Lin
- Department of Cancer Biology, Beckman Research Institute of City of Hope, KCRB2007, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
16
|
Nam AR, Kim JW, Cha Y, Ha H, Park JE, Bang JH, Jin MH, Lee KH, Kim TY, Han SW, Im SA, Kim TY, Oh DY, Bang YJ. Therapeutic implication of HER2 in advanced biliary tract cancer. Oncotarget 2018; 7:58007-58021. [PMID: 27517322 PMCID: PMC5295408 DOI: 10.18632/oncotarget.11157] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/27/2016] [Indexed: 12/24/2022] Open
Abstract
Currently, there is no validated therapeutic target for biliary tract cancer (BTC). This study aimed to investigate the pre-clinical and clinical implication of HER2 as a therapeutic target in BTC. We established two novel HER2-amplified BTC cell lines, SNU-2670 and SNU-2773, from gallbladder cancer patients. SNU-2670 and SNU-2773 cells were sensitive to trastuzumab, dacomitinib, and afatinib compared with nine HER2-negative BTC cell lines. Dacomitinib and afatinib led to G1 cell cycle arrest in SNU-2773 cells and apoptosis in SNU-2670 cells. Furthermore, dacomitinib, afatinib, and trastuzumab showed synergistic cytotoxicity when combined with some cytotoxic drugs including gemcitabine, cisplatin, paclitaxel, and 5-fluorouracil. In a SNU-2670 mouse xenograft model, trastuzumab demonstrated a good anti-tumor effect as a monotherapy and in combination with gemcitabine increasing apoptosis. In our clinical data, 13.0% of patients with advanced BTC were defined as HER2-positive. Of these, three patients completed HER2-targeted chemotherapy. Two of them demonstrated a partial response, and the other one showed stable disease for 18 weeks. In summary, these pre-clinical and clinical data suggest that HER2 could be a therapeutic target, and that a HER2-targeting strategy should be developed further in patients with HER2-positive advanced BTC.
Collapse
Affiliation(s)
- Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yongjun Cha
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyerim Ha
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ji Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mei Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
17
|
Abstract
The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases plays an important role in the biology of many cancers. In breast and gastrointestinal cancer, and at lower rates also in additional tumor types, HER2 and its homo- or heterodimerization with HER1 or HER3 are essential for cancer cell growth and survival. Breast cancer patients overexpressing HER2 have a more aggressive course of their disease. The poor prognosis associated with HER2 overexpression can be substantially improved by adding HER2-targeted therapy to standard of care using the monoclonal antibody trastuzumab. Lapatinib, an oral dual tyrosine kinase inhibitor, blocks HER1 and HER2 tyrosine kinase activity by binding to the ATP-binding site of the receptor's intracellular domain, resulting in inhibition of tumor cell growth. Lapatinib is generally well tolerated with diarrhea being the most common adverse effect. However, although being mainly of mild to moderate severity, interruption or discontinuation of treatment has been reported in a substantial proportion of patients in clinical trials. In 2007, lapatinib has been approved in combination with capecitabine in patients with advanced HER2-positive breast cancer upon progressive disease following standard therapy with anthracyclines, taxanes, and trastuzumab. In 2013, the approval was extended to a chemotherapy-free combination with trastuzumab for patients with metastatic HER2-positive, hormone receptor-negative breast cancer progressing on prior trastuzumab and chemotherapy. Since 2010, lapatinib is approved in combination with letrozole in the treatment of postmenopausal women with advanced HER2- and hormone receptor-positive breast cancer. In contrast, in first-line cytotoxic-based therapy of both early and advanced HER2-positive breast cancer, data from clinical trials did not provide evidence of additional benefit of lapatinib compared to trastuzumab. Moreover, over the past few years, novel HER2-targeted drugs, either alone or as a combined anti-HER2 approach, have been extensively evaluated, demonstrating a more favorable outcome. Also, neither in first- nor second-line treatment of advanced gastric cancer, lapatinib has been proven to be superior compared to trastuzumab as hitherto standard of care HER2 blockade. Therefore, lapatinib has become somewhat less important in patients with HER2-positive breast cancer during the past 10 years since its first introduction. Nevertheless, consideration of treatment with lapatinib appears to be reasonable in selected patients not only in the approved applications but also beyond, and further indications such as HER2-positive refractory metastatic colorectal cancer may arise in future. Also, lapatinib may have distinct advantages over antibodies in targeting truncated HER2 and crossing the blood-brain barrier. Finally, the favorable cardiac toxicity profile of lapatinib makes it an attractive alternative to trastuzumab-based regimens in patients at risk for cardiac events.
Collapse
Affiliation(s)
- Minna Voigtlaender
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Schneider-Merck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Glaxo Smith Kline, Hamburg, Germany
| | - Martin Trepel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department of Hematology and Oncology, Interdisciplinary Cancer Center Augsburg, Augsburg Medical Center, Stenglinstr. 2, 86156, Augsburg, Germany.
| |
Collapse
|
18
|
Pool M, Kol A, de Jong S, de Vries EGE, Lub-de Hooge MN, Terwisscha van Scheltinga AGT. 89Zr-mAb3481 PET for HER3 tumor status assessment during lapatinib treatment. MAbs 2017; 9:1370-1378. [PMID: 28873009 PMCID: PMC5680796 DOI: 10.1080/19420862.2017.1371382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Treatment of human epidermal growth factor receptor 2 (HER2)-driven breast cancer with tyrosine kinase inhibitor lapatinib can induce a compensatory HER3 increase, which may attenuate antitumor efficacy. Therefore, we explored in vivo HER3 tumor status assessment after lapatinib treatment with zirconium-89 (89Zr)-labeled anti-HER3 antibody mAb3481 positron emission tomography (PET). Lapatinib effects on HER3 cell surface expression and mAb3481 internalization were evaluated in human breast (BT474, SKBR3) and gastric (N87) cancer cell lines using flow cytometry. Next, in vivo effects of daily lapatinib treatment on89Zr-mAb3481 BT474 and N87 xenograft tumor uptake were studied. PET-scans (BT474 only) were made after daily lapatinib treatment for 9 days, starting 3 days prior to 89Zr-mAb3481 administration. Subsequently, ex vivo 89Zr-mAb3481 organ distribution analysis was performed and HER3 tumor levels were measured with Western blot and immunohistochemistry. In vitro, lapatinib increased membranous HER3 in BT474, SKBR3 and N87 cells, and consequently mAb3481 internalization 1.7-fold (BT474), 1.4-fold (SKBR3) and 1.4-fold (N87). 89Zr-mAb3481 BT474 tumor uptake was remarkably high at SUVmean 5.6±0.6 (51.8±7.7%ID/g) using a 10 μg 89Zr-mAb3481 protein dose in vehicle-treated mice. However, compared to vehicle, lapatinib did not affect 89Zr-mAb3481 ex vivo uptake in BT474 and N87 tumors, while HER3 tumor expression remained unchanged. In conclusion, lapatinib increased in vitro HER3 tumor cell expression, but not when these cells were xenografted. 89Zr-mAb3481 PET accurately reflected HER3 tumor status. 89Zr-mAb3481 PET showed high, HER3-specific tumor uptake, and such an approach might sensitively assess HER3 tumor heterogeneity and treatment response in patients.
Collapse
Affiliation(s)
- Martin Pool
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Arjan Kol
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Steven de Jong
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Elisabeth G E de Vries
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Marjolijn N Lub-de Hooge
- b Departments of Clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,c Departments of Nuclear Medicine and Molecular Imaging , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Anton G T Terwisscha van Scheltinga
- b Departments of Clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
19
|
Shepard G, Arrowsmith ER, Murphy P, Barton JH, Peyton JD, Mainwaring M, Blakely L, Maun NA, Bendell JC. A Phase II Study with Lead-In Safety Cohort of 5-Fluorouracil, Oxaliplatin, and Lapatinib in Combination with Radiation Therapy as Neoadjuvant Treatment for Patients with Localized HER2-Positive Esophagogastric Adenocarcinomas. Oncologist 2017; 22:1152-e98. [PMID: 28765502 PMCID: PMC5634766 DOI: 10.1634/theoncologist.2017-0186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/23/2017] [Indexed: 11/17/2022] Open
Abstract
Lessons Learned. Neoadjuvant 5‐fluorouracil, oxaliplatin, and lapatinib in combination with radiation therapy is safe for neoadjuvant treatment for patients with localized human epidermal growth receptor 2‐positive esophagogastric adenocarcinoma. Evaluation of this drug combination in a larger patient pool would allow for more accurate analysis of its efficacy.
Background. The optimal design of neoadjuvant chemoradiation for the treatment of localized esophagogastric cancers is the subject of much debate. In this nonrandomized trial, we evaluated neoadjuvant 5‐fluorouracil (5‐FU), oxaliplatin, and lapatinib in combination with radiation therapy as neoadjuvant treatment for patients with localized human epidermal growth receptor 2 (HER2)‐positive esophagogastric adenocarcinomas. Methods. Patients received neoadjuvant 5‐FU (225 mg/m2 continuous intravenous infusion, days 1–42), oxaliplatin (85 mg/m2 intravenously [IV], days 1, 15, and 29), and lapatinib (six patients, 1,000 mg p.o., days 1–42; six patients, 750 mg p.o., days 1–42) plus radiation (1.8 Gy/day Monday through Friday for 50.4 Gy total). Following restaging, eligible patients underwent definitive resection, and pathologic response to neoadjuvant therapy was assessed. Planned enrollment was 42 patients. The primary endpoint was the pathologic complete response (pCR) rate. Results. Twelve patients (median age 64 years; 67% male) received a median of 5.6 weeks of treatment (range: 1.1–8.4). The pCR rate was 8%; four of the 12 patients underwent tumor resection and one patient had a pCR, with pathologic partial response in the remaining three. The most common lapatinib‐related adverse events included (all grades) nausea (67%) and diarrhea (58%), although these were all grade 1 or 2. Enrollment was halted due to low accrual. Conclusion. The treatment regimen was determined to be safe. The study was terminated early due to low accrual.
Collapse
Affiliation(s)
- Gregg Shepard
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Edward R Arrowsmith
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Patrick Murphy
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - John H Barton
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - James D Peyton
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Mark Mainwaring
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Laura Blakely
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Noel A Maun
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Florida Cancer Specialists, Venice, Florida, USA
| | - Johanna C Bendell
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Chae YK, Arya A, Chiec L, Shah H, Rosenberg A, Patel S, Raparia K, Choi J, Wainwright DA, Villaflor V, Cristofanilli M, Giles F. Challenges and future of biomarker tests in the era of precision oncology: Can we rely on immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) to select the optimal patients for matched therapy? Oncotarget 2017; 8:100863-100898. [PMID: 29246028 PMCID: PMC5725070 DOI: 10.18632/oncotarget.19809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/11/2017] [Indexed: 12/22/2022] Open
Abstract
Molecular techniques have improved our understanding of the pathogenesis of cancer development. These techniques have also fueled the rational development of targeted drugs for patient populations stratified by their genetic characteristics. These novel methods have changed the classic paradigm of diagnostic pathology; among them are IHC, FISH, polymerase chain reaction (PCR) and microarray technology. IHC and FISH detection methods for human epidermal growth factor receptor-2 (HER2), epidermal growth factor receptor (EGFR) and programmed death ligand-1 (PD-L1) were recently approved by the Food and Drug Administration (FDA) as routine clinical practice for cancer patients. Here, we discuss general challenges related to the predictive power of these molecular biomarkers for targeted therapy in cancer medicine. We will also discuss the prospects of utilizing new biomarkers for fibroblast growth factor receptor (FGFR) and hepatocyte growth factor receptor (cMET/MET) targeted therapies for developing new and robust predictive biomarkers in oncology.
Collapse
Affiliation(s)
- Young Kwang Chae
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ayush Arya
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Lauren Chiec
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Hiral Shah
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
| | - Ari Rosenberg
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Sandip Patel
- University of California San Diego, San Diego, CA, USA
| | - Kirtee Raparia
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek A Wainwright
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria Villaflor
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Massimo Cristofanilli
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis Giles
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
21
|
Zhang Z, Tang H, Lin J, Hu Y, Luo G, Luo Z, Cheng C, Wang P. Clinicopathologic and prognostic significance of human epidermal growth factor receptor in patients with gastric cancer: An updated meta-analysis. Oncotarget 2017; 8:17202-17215. [PMID: 28199988 PMCID: PMC5370033 DOI: 10.18632/oncotarget.15231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/06/2017] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this update meta-analysis was to clarify the clinicopathologic and prognostic significance of human epidermal growth factor receptor(EGFR) expression in gastric cancer patients. Experimental Design Several electronic databases were searched from January 1970 to May 2016. The odds ratio (OR) was calculated to assess the association between EGFR expression and pathological parameters. The hazard ratio (HR) and 95% CI were calculated to explore the relationship between EGFR expression and overall survival. Results Finally 7229 patients with gastric cancer from 25 eligible studies were included in the present meta analysis. High EGFR expression was found to be significantly related with tumor differentiation (OR=1.96, 95%CI: 1.14-3.34, Z=2.43, P=0.015), lymph node metastasis (OR=2.20, 95% CI: 1.63-2.96, Z=5.17, P=0.001), and tumor stage (OR=2.13, 95% CI: 1.35-3.36, Z=3.25, P=0.001). However, high EGFR expression was not significantly associated with invasion depth (OR=2.09, 95% CI: 0.4-11.05, Z=0.87, P=0.385). The pooled HR suggested that high EGFR expression was significantly correlated with overall survival (HR=1.19, 95% CI 1.04-1.37, Z=2.44, P=0.015). Conclusions The present meta-analysis demonstrated that high EGFR expression significantly predicts poor prognosis, suggesting that high EGFR expression may serve as a predictive biomarker for poor prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Zhiqiao Zhang
- Department of Infectious Disease, The First People's Hospital of Shunde, Shunde, Guangdong, China.,Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Hongfeng Tang
- Department of Science and Education, The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Jixin Lin
- Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Yunzhao Hu
- Department of Infectious Disease, The First People's Hospital of Shunde, Shunde, Guangdong, China.,Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Guanying Luo
- Department of Infectious Disease, The First People's Hospital of Shunde, Shunde, Guangdong, China.,Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Zhaowen Luo
- Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Canchang Cheng
- Department of Infectious Disease, The First People's Hospital of Shunde, Shunde, Guangdong, China.,Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Peng Wang
- Department of Infectious Disease, The First People's Hospital of Shunde, Shunde, Guangdong, China.,Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| |
Collapse
|
22
|
Srivastava S, Mohibi S, Mirza S, Band H, Band V. Epidermal Growth Factor Receptor activation promotes ADA3 acetylation through the AKT-p300 pathway. Cell Cycle 2017; 16:1515-1525. [PMID: 28759294 PMCID: PMC5584872 DOI: 10.1080/15384101.2017.1339846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ADA3 (Alteration/Deficiency in Activation 3) protein is an essential adaptor component of several Lysine Acetyltransferase (KAT) complexes involved in chromatin modifications. Previously, we and others have demonstrated a crucial role of ADA3 in cell cycle progression and in maintenance of genomic stability. Recently, we have shown that acetylation of ADA3 is key to its role in cell cycle progression. Here, we demonstrate that AKT activation downstream of Epidermal Growth Factor Receptor (EGFR) family proteins stimulation leads to phosphorylation of p300, which in turn promotes the acetylation of ADA3. Inhibition of upstream receptor tyrosine kinases (RTKs), HER1 (EGFR)/HER2 by lapatinib and the accompanying reduction of phospho-AKT levels led to a decrease in p300 phosphorylation and ADA3 protein levels. The p300/PCAF inhibitor garcinol also destabilized the ADA3 protein in a proteasome-dependent manner and an ADA3 mutant with K→R mutations exhibited a marked increase in half-life, consistent with opposite role of acetylation and ubiquitination of ADA3 on shared lysine residues. ADA3 knockdown led to cell cycle inhibitory effects, as well as apoptosis similar to those induced by lapatinib treatment of HER2+ breast cancer cells, as seen by accumulation of CDK inhibitor p27, reduction in mitotic marker pH3(S10), and a decrease in the S-phase marker PCNA, as well as the appearance of cleaved PARP. Taken together our results reveal a novel RTK-AKT-p300-ADA3 signaling pathway involved in growth factor-induced cell cycle progression.
Collapse
Affiliation(s)
- Shashank Srivastava
- a Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| | - Shakur Mohibi
- a Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| | - Sameer Mirza
- a Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| | - Hamid Band
- a Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA.,b Pathology & Microbiology , University of Nebraska Medical Center , Omaha , NE , USA.,c Biochemistry & Molecular Biology , College of Medicine, University of Nebraska Medical Center , Omaha , NE , USA.,d Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , NE , USA.,e Fred & Pamela Buffett Cancer Center; University of Nebraska Medical Center , Omaha , NE , USA
| | - Vimla Band
- a Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA.,d Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , NE , USA.,e Fred & Pamela Buffett Cancer Center; University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
23
|
Park J, Choi Y, Ko YS, Kim Y, Pyo JS, Jang BG, Kim MA, Lee JS, Chang MS, Park JW, Lee BL. FOXO1 Suppression is a Determinant of Acquired Lapatinib-Resistance in HER2-Positive Gastric Cancer Cells Through MET Upregulation. Cancer Res Treat 2017; 50:239-254. [PMID: 28343375 PMCID: PMC5784629 DOI: 10.4143/crt.2016.580] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Purpose Lapatinib is a candidate drug for treatment of trastuzumab-resistant, human epidermal growth factor receptor 2 (HER2)–positive gastric cancer (GC). Unfortunately, lapatinib resistance renders this drug ineffective. The present study investigated the implication of forkhead box O1 (FOXO1) signaling in the acquired lapatinib resistance in HER2-positive GC cells. Materials and Methods Lapatinib-resistant GC cell lines (SNU-216 LR2-8) were generated in vitro by chronic exposure of lapatinib-sensitive, HER2-positive SNU-216 cells to lapatinib. SNU-216 LR cells with FOXO1 overexpression were generated by stable transfection of a constitutively active FOXO1 mutant (FOXO1A3). HER2 and MET in SNU-216 LR cells were downregulated using RNA interference. The sensitivity of GC cells to lapatinib and/or cisplatin was determined by crystal violet assay. In addition, Western blot analysis, luciferase reporter assay and reverse transcription–polymerase chain reaction were performed. Results SNU-216 LR cells showed upregulations of HER2 and MET, but downregulation of FOXO1 compared to parental SNU-216 cells. FOXO1 overexpression in SNU-216 LR cells significantly suppressed resistance to lapatinib and/or cisplatin. In addition, FOXO1 negatively controlled HER2 and MET at the transcriptional level and was negatively controlled by these molecules at the post-transcriptional level. A positive crosstalk was shown between HER2 and MET, each of which increased resistance to lapatinib and/or cisplatin. Conclusion FOXO1 serves as an important linker between HER2 and MET signaling pathways through negative crosstalks and is a key regulator of the acquired lapatinib resistance in HER2-positive GC cells. These findings provide a rationale for establishing a novel treatment strategy to overcome lapatinib resistance in a subtype of GC patients.
Collapse
Affiliation(s)
- Jinju Park
- Tumour Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yiseul Choi
- Tumour Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young San Ko
- Department of Forensic Medicine, National Forensic Service Busan Institute, Yangsan, Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Bo Gun Jang
- Department of Pathology, Jeju National University Hospital, Jeju, Korea
| | - Min A Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Wan Park
- Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Lan Lee
- Tumour Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Elizalde PV, Cordo Russo RI, Chervo MF, Schillaci R. ErbB-2 nuclear function in breast cancer growth, metastasis and resistance to therapy. Endocr Relat Cancer 2016; 23:T243-T257. [PMID: 27765799 DOI: 10.1530/erc-16-0360] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
Approximately 15-20% of breast cancers (BC) show either membrane overexpression of ErbB-2 (MErbB-2), a member of the ErbBs family of receptor tyrosine kinases, or ERBB2 gene amplification. Until the development of MErbB-2-targeted therapies, this BC subtype, called ErbB-2-positive, was associated with increased metastatic potential and poor prognosis. Although these therapies have significantly improved overall survival and cure rates, resistance to available drugs is still a major clinical issue. In its classical mechanism, MErbB-2 activates downstream signaling cascades, which transduce its effects in BC. The fact that ErbB-2 is also present in the nucleus of BC cells was discovered over twenty years ago. Also, compelling evidence revealed a non-canonical function of nuclear ErbB-2 as a transcriptional regulator. As a deeper understanding of nuclear ErbB-2 actions would be crucial to the disclosure of its role as a biomarker and a target of therapy in BC, we will here review its function in BC, in particular, its role in growth, metastatic spreading and response to currently available MErbB-2-positive BC therapies.
Collapse
Affiliation(s)
- Patricia V Elizalde
- Laboratory of Molecular Mechanisms of CarcinogenesisInstituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Rosalía I Cordo Russo
- Laboratory of Molecular Mechanisms of CarcinogenesisInstituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Maria F Chervo
- Laboratory of Molecular Mechanisms of CarcinogenesisInstituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of CarcinogenesisInstituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
25
|
Shi H, Zhang W, Zhi Q, Jiang M. Lapatinib resistance in HER2+ cancers: latest findings and new concepts on molecular mechanisms. Tumour Biol 2016; 37:15411–15431. [PMID: 27726101 DOI: 10.1007/s13277-016-5467-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
In the era of new and mostly effective molecular targeted therapies, human epidermal growth factor receptor 2 positive (HER2+) cancers are still intractable diseases. Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor, has greatly improved breast cancer prognosis in recent years after the initial introduction of trastuzumab (Herceptin). However, clinical evidence indicates the existence of both primary unresponsiveness and secondary lapatinib resistance, which leads to the failure of this agent in HER2+ cancer patients. It remains a major clinical challenge to target the oncogenic pathways with drugs having low resistance. Multiple pathways are involved in the occurrence of lapatinib resistance, including the pathways of receptor tyrosine kinase, non-receptor tyrosine kinase, autophagy, apoptosis, microRNA, cancer stem cell, tumor metabolism, cell cycle, and heat shock protein. Moreover, understanding the relationship among these mechanisms may contribute to future tumor combination therapies. Therefore, it is of urgent necessity to elucidate the precise mechanisms of lapatinib resistance and improve the therapeutic use of this agent in clinic. The present review, in the hope of providing further scientific support for molecular targeted therapies in HER2+ cancers, discusses about the latest findings and new concepts on molecular mechanisms underlying lapatinib resistance.
Collapse
Affiliation(s)
- Huiping Shi
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu Province, 215131, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
26
|
Moon SK, Park SR, Park A, Oh HM, Shin HJ, Jeon EJ, Kim S, Park HJ, Yeon YJ, Yoo YJ. Substitution of Heavy Complementarity Determining Region 3 (CDR-H3) Residues Can Synergistically Enhance Functional Activity of Antibody and Its Binding Affinity to HER2 Antigen. Mol Cells 2016; 39:217-28. [PMID: 26743905 PMCID: PMC4794604 DOI: 10.14348/molcells.2016.2235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 12/03/2022] Open
Abstract
To generate a biobetter that has improved therapeutic activity, we constructed scFv libraries via random mutagenesis of several residues of CDR-H3 and -L3 of hu4D5. The scFv clones were isolated from the phage display libraries by stringent panning, and their anti-proliferative activity against HER2-positive cancer cells was evaluated as a primary selection criterion. Consequently, we selected AH06 as a biobetter antibody that had a 7.2-fold increase in anti-proliferative activity (IC50: 0.81 nM) against the gastric cancer cell line NCI-N87 and a 7.4-fold increase in binding affinity (KD: 60 pM) to HER2 compared to hu4D5. The binding energy calculation and molecular modeling suggest that the substitution of residues of CDR-H3 to W98, F100c, A101 and L102 could stabilize binding of the antibody to HER2 and there could be direct hydrophobic interactions between the aromatic ring of W98 and the aliphatic group of I613 within HER2 domain IV as well as the heavy and light chain hydrophobic interactions by residues F100c, A101 and L102 of CDR-H3. Therefore, we speculate that two such interactions were exerted by the residues W98 and F100c. A101 and L102 may have a synergistic effect on the increase in the binding affinity to HER2. AH06 specifically binds to domain IV of HER2, and it decreased the phosphorylation level of HER2 and AKT. Above all, it highly increased the overall level of p27 compared to hu4D5 in the gastric cancer cell line NCI-N82, suggesting that AH06 could potentially be a more efficient therapeutic agent than hu4D5.
Collapse
Affiliation(s)
- Seung Kee Moon
- Bio Medicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 446-916,
Korea
- Graduate Program of Bioengineering, Seoul National University, Seoul 151-742,
Korea
| | - So Ra Park
- Bio Medicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 446-916,
Korea
| | - Ami Park
- Bio Medicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 446-916,
Korea
| | - Hyun Mi Oh
- Bio Medicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 446-916,
Korea
| | - Hyun Jung Shin
- Bio Medicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 446-916,
Korea
| | - Eun Ju Jeon
- Bio Medicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 446-916,
Korea
| | - Seiwhan Kim
- Bio Medicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 446-916,
Korea
| | - Hyun June Park
- Graduate Program of Bioengineering, Seoul National University, Seoul 151-742,
Korea
| | - Young Joo Yeon
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742,
Korea
| | - Young Je Yoo
- Graduate Program of Bioengineering, Seoul National University, Seoul 151-742,
Korea
| |
Collapse
|
27
|
de Haydu C, Black JD, Schwab CL, English DP, Santin AD. An update on the current pharmacotherapy for endometrial cancer. Expert Opin Pharmacother 2015; 17:489-99. [DOI: 10.1517/14656566.2016.1127351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Heindl S, Eggenstein E, Keller S, Kneissl J, Keller G, Mutze K, Rauser S, Gasteiger G, Drexler I, Hapfelmeier A, Höfler H, Luber B. Relevance of MET activation and genetic alterations of KRAS and E-cadherin for cetuximab sensitivity of gastric cancer cell lines. J Cancer Res Clin Oncol 2015; 138:843-58. [PMID: 22290393 DOI: 10.1007/s00432-011-1128-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE The therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated. Reliable biomarkers for the identification of patients who are likely to benefit from the treatment are not available. The aim of the study was to examine the drug sensitivity of five gastric cancer cell lines towards cetuximab as a single agent and to establish predictive markers for chemosensitivity in this cell culture model. The effect of a combination of cetuximab with chemotherapy was compared between a sensitive and a nonsensitive cell line. METHODS EGFR expression, activation and localisation, the presence and subcellular localisation of the cell adhesion molecule E-cadherin as well as MET activation were examined by Western blot analysis, flow cytometry and immunofluorescence staining. Cells were treated with varying concentrations of cetuximab and cisplatin and 5-fluorouracil in tumour-relevant concentrations. The biological endpoint was cell viability, which was measured by XTT cell proliferation assay. Response to treatment was evaluated using statistical methods. RESULTS We assessed the activity of cetuximab in five gastric cancer cell lines (AGS, KATOIII, MKN1, MKN28 and MKN45). The viability of two cell lines, MKN1 and MKN28, was significantly reduced by cetuximab treatment. High EGFR expression and low levels of receptor activation were associated with cetuximab responsiveness. MET activation as well as mutations of KRAS and CDH1 (gene encoding E-cadherin) was associated with cetuximab resistance. CONCLUSION These data indicate that our examinations may be clinically relevant, and the candidate markers should therefore be tested in clinical studies.
Collapse
Affiliation(s)
- Stefan Heindl
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, 81675, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nie W, Song W, Zhang W, Wang Y, Zhu A, Shao J, Guan X. miR-1470 mediates lapatinib induced p27 upregulation by targeting c-jun. J Cell Physiol 2015; 230:1630-9. [PMID: 25545366 DOI: 10.1002/jcp.24910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Weiwei Nie
- Department of Medical Oncology; Jinling Hospital; School of Medicine; Southern Medical University; Guangzhou P.R. China
| | - Wei Song
- Department of Medical Oncology; Jinling Hospital; School of Medicine; Southern Medical University; Guangzhou P.R. China
| | - Wenwen Zhang
- Department of Medical Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing P.R. China
| | - Yanru Wang
- Department of Medical Oncology; Jinling Hospital; School of Medicine; Southern Medical University; Guangzhou P.R. China
| | - Aiyu Zhu
- Department of Medical Oncology; Jinling Hospital; School of Medicine; Southern Medical University; Guangzhou P.R. China
| | - Jiaqing Shao
- Department of Medical Oncology; Jinling Hospital; School of Medicine; Southern Medical University; Guangzhou P.R. China
- Department of Endocrinology; Jinling Hospital; School of Medicine; Southern Medical University; Guangzhou P.R. China
| | - Xiaoxiang Guan
- Department of Medical Oncology; Jinling Hospital; School of Medicine; Southern Medical University; Guangzhou P.R. China
- Department of Medical Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing P.R. China
| |
Collapse
|
30
|
Lapatinib sensitivities of two novel trastuzumab-resistant HER2 gene-amplified gastric cancer cell lines. Gastric Cancer 2015; 17:450-62. [PMID: 23948998 DOI: 10.1007/s10120-013-0290-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/28/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Trastuzumab (Tmab) resistance is a major clinical problem to be resolved in patients with HER2-positive gastric cancers. However, in contrast to the situation for HER2-positive breast cancer lines, the Tmab-resistant gastric cancer preclinical models that are needed to develop a new therapy to overcome this problem are not yet available. METHODS We developed three new cell lines from HER2 gene-amplified gastric cancer cell lines (GLM-1, GLM-4, NCI N-87) by a new in vivo selection method consisting of the repeated culture of small residual peritoneal metastasis but not subcutaneous tumor after Tmab treatment. We then evaluated the anti-tumor efficacy of lapatinib for these Tmab-resistant cells. RESULTS We successfully isolated two Tmab-resistant cell lines (GLM1-HerR2(3), GLM4-HerR2) among the three tested cell lines. These resistant cells differed from the parental cells in their flat morphology and rapid growth in vitro, but HER2, P95HER2 expression, and Tmab binding were essentially the same for the parental and resistant cells. MUC4 expression was up- or downregulated depending on the cell line. These resistant cells were still sensitive to lapatinib, similar to the parental cells, in vitro. This growth inhibition of the Tmab-resistant cells by lapatinib was due to both G1 cell-cycle arrest and apoptosis induction via effective blockade of the PI3K/Akt and MAPK pathways. A preclinical study confirmed that the Tmab-resistant tumors are significantly susceptible to lapatinib. CONCLUSION These results suggest that lapatinib has antitumor activity against the Tmab-resistant gastric cancer cell lines, and that these cell lines are useful for understanding the mechanism of Tmab resistance and for developing a new molecular therapy for Tmab-resistant HER2-positive gastric cancers.
Collapse
|
31
|
Evaluation of Lapatinib Powder-Entrapped Biodegradable Polymeric Microstructures Fabricated by X-Ray Lithography for a Targeted and Sustained Drug Delivery System. MATERIALS 2015; 8:519-534. [PMID: 28787954 PMCID: PMC5455267 DOI: 10.3390/ma8020519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 01/09/2023]
Abstract
An oral medication of a molecular targeted drug, lapatinib, is taken regularly to maintain the drug concentration within the desired therapeutic levels. To alleviate the need for such cumbersome administration schedules in several drugs, advanced drug delivery systems (DDSs), which can provide time-controlled and sustained drug release, have recently received significant attention. A biodegradable synthetic polymer, such as polycaprolactone (PCL), is usually used as a carrier material for DDSs. In this paper, lapatinib powder-entrapped, PCL microstructures were fabricated with a precise X-ray lithography-based method. In vitro experiments on HER2 positive-human gastric cancer derived NCI-N87 cells were performed to appraise the drug release characteristics of the fabricated DDSs. The in vitro results indicate that after the X-ray lithography process, the lapatinib powder is still working well and show time- and dose- dependent drug release efficiencies. The cell growth inhibition characteristics of one hundred 40-μm sized microstructures were similar to those of a 1 μM lapatinib solution for over 144 h. In conclusion, the developed lapatinib-entrapped PCL microstructures can be used in molecular targeted delivery and sustained release as effective cancer-targeted DDSs.
Collapse
|
32
|
Kim TY, Oh DY, Bang YJ. Treatment for unresectable gastric cancer. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2015; 58:209. [DOI: 10.5124/jkma.2015.58.3.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Affiliation(s)
- Tae-Yong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Black JD, English DP, Roque DM, Santin AD. Targeted therapy in uterine serous carcinoma: an aggressive variant of endometrial cancer. ACTA ACUST UNITED AC 2014; 10:45-57. [PMID: 24328598 DOI: 10.2217/whe.13.72] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Uterine serous carcinoma (USC) is a highly aggressive variant of endometrial cancer. Although it only represents less than 10% of all cases, it accounts for a disproportionate number of deaths from endometrial cancer. Comprehensive surgical staging followed by carboplatin and paclitaxel chemotherapy represents the mainstay of USC therapy. Vaginal cuff brachytherapy is also of potential benefit in USC. Recent whole-exome sequencing studies have demonstrated gain of function of the HER2/NEU gene, as well as driver mutations in the PIK3CA/AKT/mTOR and cyclin E/FBXW7 oncogenic pathways in a large number of USCs. These results emphasize the relevance of these novel therapeutic targets for biologic therapy of chemotherapy-resistant recurrent USC.
Collapse
Affiliation(s)
- Jonathan D Black
- Yale University School of Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, Room 305 Laboratory for Surgery, Obstetrics & Gynecology, 333 Cedar Street; PO Box 208063, New Haven, CT 06520-8063, USA
| | | | | | | |
Collapse
|
34
|
Ye Y, Zhou X, Li X, Tang Y, Sun Y, Fang J. Inhibition of epidermal growth factor receptor signaling prohibits metastasis of gastric cancer via downregulation of MMP7 and MMP13. Tumour Biol 2014; 35:10891-6. [PMID: 25085584 DOI: 10.1007/s13277-014-2383-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022] Open
Abstract
The molecular pathway regulating gastric carcinoma (GC) invasiveness and metastasis remains elusive. Here, we detected significant increase in the phosphorylated epidermal growth factor receptor (pEGFR), MMP7, and MMP13 in the resected GC, compared with the adjacent normal tissue, in patients. Moreover, strong positive correlation was detected between pEGFR and MMP7, and between pEGFR and MMP13 in GC. To examine whether a causal link exists, we used two human GC lines, SNU-5 and AGS, to study the cross talk between EGFR signaling activation, and expression of MMP7 and MMP13. We found that EGF-induced EGFR phosphorylation activated both MMP7 and MMP13, and consequently cancer invasiveness. EGF-induced activation of MMP7 and MMP13 can be both inhibited by use of an inhibitor for EGFR. EGF-induced activation of MMP7 can be also significantly inhibited by use of an inhibitor for Akt, but not an inhibitor for ERK1/2, while EGF-induced activation of MMP13 can be significantly inhibited by use of an inhibitor for ERK1/2, but not by an inhibitor for Akt. These data suggest that EGF-induced activation of MMP7 and MMP13 in GC is through phosphatidylinositol 3-kinase (PI3K) and extracellular-related kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway, respectively. Our study thus highlights EGFR signaling regulated MMP7 and MMP13 activation as molecular basis for metastasis of GC, and further demonstrate that different signaling pathway cascades are involved in the downstream signaling transduction.
Collapse
Affiliation(s)
- Yinghai Ye
- Department of Surgery, Wenzhou Central Hospital, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
35
|
Liu G, Jiang C, Li D, Wang R, Wang W. MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol 2014; 35:9801-6. [PMID: 24981249 DOI: 10.1007/s13277-014-2273-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/23/2014] [Indexed: 01/30/2023] Open
Abstract
The molecular mechanism underlying cancer invasiveness and metastasis of gastric carcinoma remains elusive. Here, we reported significant decrease in microRNA (miRNA)-34a and significant increase in phosphorylated epidermal growth factor receptor (EGFR) and matrix metalloproteinase-7 (MMP7) in the resected gastric carcinoma from the patients, compared with adjacent normal tissue. Moreover, strong correlation was detected among these three factors. To examine whether a causal link exists, we used two human gastric carcinoma lines, SNU-5 and HGC27, to study the molecular basis of miRNA-34a, EGFR signaling, and MMP7 activation. We found that EGF-induced EGFR phosphorylation in SNU-5 or HGC27 cells activated MMP7 and consequently cancer invasiveness. Both an inhibitor for EGFR and an inhibitor for Akt significantly inhibited the EGF-induced activation of MMP7, suggesting a phosphatidylinositol 3-kinase (PI3K) signaling cascade dependent pathway. Moreover, miRNA-34a levels were not affected by EGF-induced EGFR phosphorylation. However, overexpression of miRNA-34a antagonized EGF-induced MMP7 activation without affecting EGFR phosphorylation in SNU-5 or HGC27 cells. Taken together, our data suggest that miRNA-34 inhibits EGFR signaling via downstream PI3K signaling cascades to regulate MMP7 expression in gastric carcinoma. Thus, miRNA-34a, EGFR, and MMP7 appear to be promising therapeutic targets for preventing the metastasis of gastric carcinoma.
Collapse
Affiliation(s)
- Gang Liu
- Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, 156 West Second Ring Road, Fuzhou, 350025, China
| | | | | | | | | |
Collapse
|
36
|
Moorcraft SY, Chau I. Investigational therapies targeting the ErbB family in oesophagogastric cancer. Expert Opin Investig Drugs 2014; 23:1349-63. [PMID: 24949530 DOI: 10.1517/13543784.2014.930126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The prognosis for patients with oesophagogastric (OG) cancer remains poor, with a median survival of approximately 9 - 11 months for patients with metastatic disease. However, a more personalised approach to treatment, using drugs tailored to the molecular characteristics of patients' tumours, has the potential to improve patient outcomes. Drugs targeting the ErbB family of receptors have been developed, but these have had varying degrees of success in clinical practice. AREAS COVERED The authors provide an overview of the ErbB receptor family with regard to OG cancers. Furthermore, they evaluate the evidence from preclinical and clinical trials of therapeutics targeting this family, including monoclonal antibodies, tyrosine kinase inhibitors and novel agents. EXPERT OPINION Drugs targeting the ErbB family have been evaluated in OG cancer, with a notable success story in the case of trastuzumab, although there have been disappointing failures with anti-EGFR therapy. The response to targeted treatment remains variable and further biomarker research is essential to identify patients most likely to benefit from these therapies. The treatment of OG cancer remains challenging, but new anti-HER2 therapies and combination therapies hold promise for the future.
Collapse
Affiliation(s)
- Sing Yu Moorcraft
- The Royal Marsden NHS Foundation Trust, Gastrointestinal Unit, Department of Medicine , Sutton SM2 5PT , UK +44 020 8642 6011 ; +44 020 8643 9414 ;
| | | |
Collapse
|
37
|
Aprile G, Giampieri R, Bonotto M, Bittoni A, Ongaro E, Cardellino GG, Graziano F, Giuliani F, Fasola G, Cascinu S, Scartozzi M. The challenge of targeted therapies for gastric cancer patients: the beginning of a long journey. Expert Opin Investig Drugs 2014; 23:925-42. [PMID: 24806575 DOI: 10.1517/13543784.2014.912631] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite significant improvements in systemic chemotherapy over the last two decades, the prognosis of patients with advanced disease remains dismal. Collaborative, high-quality research and advances in high-throughput technologies have contributed to elucidate molecular pathways underpinning disease progression and have stimulated many clinical studies testing target therapies in the advanced disease setting. Although progress has been made thanks to trastuzumab in HER2 positive tumours, antiangiogenic drugs have produced conflicting results and EGFR-inhibitors have failed to show major improvements. AREAS COVERED While commenting on the results of many key Phase III randomized trials, the Authors discuss the most promising classes of novel targeted agents and present the current challenges toward a customized treatment. EXPERT OPINION Palliative chemotherapy became the worldwide standard of care for patients with advanced gastric cancers, producing significant life prolongation and improvement of life quality. Nevertheless, long-term outcomes of those patients remain poor. Because of the encouraging advancement in novel targeted therapies, such a disappointing scenario is now evolving. While results serve as a springboard for future research, more comprehensive efforts are needed to clarify the biological mechanisms underpinning cancer progression and help clinicians to develop new effective treatments.
Collapse
Affiliation(s)
- Giuseppe Aprile
- University and General Hospital, Department of Medical Oncology , Piazzale S Maria della Misericordia 1, 33100, Udine , Italy +39 432 559308 ; +39 432 559305 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jørgensen JT. Role of human epidermal growth factor receptor 2 in gastric cancer: biological and pharmacological aspects. World J Gastroenterol 2014; 20:4526-35. [PMID: 24782605 PMCID: PMC4000489 DOI: 10.3748/wjg.v20.i16.4526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/18/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Amplification of the human epidermal growth factor receptor 2 (HER2) gene and overexpression of the HER2 protein is found in 15%-20% of patients with gastric and gastroesophageal junction cancer. The degree of HER2 overexpression and amplification varies with the location of the carcinoma, with higher expression in the gastroesophageal and proximal parts compared to the distal parts of the stomach. Further, HER2 overexpression and amplification also seems to be related to the Lauren histological classification, with higher levels found in the intestinal phenotype compared to the diffuse and mixed types. The prognostic properties of HER2 overexpression and amplification are still under debate, but a large number of studies seem to indicate that HER2 is a negative prognostic factor. The usefulness of HER2 targeted therapy in gastric cancer was demonstrated in the ToGA trial, where HER2-positive patients with advanced gastric and gastroesophageal junction adenocarcinoma were randomized to receive 5-FU/capecitabine and cisplatin, either alone or in combination with trastuzumab. A statically significant gain in overall survival was seen in patients who received the combined treatment of trastuzumab and chemotherapy. Patients with a strong overexpression of the HER2 protein (IHC3+) specifically benefited from the treatment, with a median overall survival of 17.9 mo. As a consequence of the positive results of the ToGA trial, patients with advanced gastric or gastroesophageal junction adenocarcinoma are now routinely tested for HER2. The ToGA trial must be characterized as a landmark in the treatment of gastric cancer and it has paved the way for a number of new HER2 targeted compounds such as pertuzumab, ado-trastuzumab emtansine, lapatinib, afatinib, and dacomitinib, which are currently undergoing phase II and III clinical testing. Overall, this review will discuss the current status of HER2 in gastric and gastroesophageal junction cancer and the future direction in relation to HER2 target therapy.
Collapse
|
39
|
SHIMOYAMA SHOUJI. Unraveling trastuzumab and lapatinib inefficiency in gastric cancer: Future steps (Review). Mol Clin Oncol 2014; 2:175-181. [PMID: 24649329 PMCID: PMC3917765 DOI: 10.3892/mco.2013.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/19/2013] [Indexed: 12/12/2022] Open
Abstract
The newly developed concept of oncogene addiction provides a rationale for the use of targeted therapies. In sharp contrast to the field of breast cancer treatment, attempts to target human epidermal growth factor receptor 2 (HER2) among gastric cancer (GC) patients have been unsatisfactory. The ToGA trial reported only a modest prolongation of progression-free survival (PFS) with trastuzumab and the subsequent TYTAN and LOGiC trials failed to demonstrate any survival advantage with lapatinib. These results suggest that a response to the molecular-targeted therapies is achieved in only a fraction of the patients; in addition, even responders may experience secondary resistance, with the efficacy of the treatment being decreased or abrogated over a short period of time. Considering the increased recognition of primary or acquired resistance, recent investigations on targeted therapies have been primarily focused on determining in advance the mechanisms that may mediate resistance to treatment and the methods through which such obstacles may be circumvented. The proposed molecules or mechanisms that may be responsible for the development of resistance to single HER2-targeted therapy include a dimerization partner or crosstalk with HER2, such as HER3 and MET, as well as any subsequent activation of their downstream pathways, which exhibit a partial overlap with those of HER2. Furthermore, genetic alterations that stimulate the aberrant activation of the pathways downstream of HER2 may be the underlying mechanisms that restore prosurvival signaling. These mechanisms generate a complex signaling network with a significant potential for signal amplification and diversification. Although in the early stages of description, several compounds have been suggested as next generation treatments for GC, with expectations for their delineating the function of such receptors or molecules, with subsequent contributions of specific survival signaling blockades. This review focuses on the current achievements of anti-HER2 therapies in GC and the plausible mechanisms of resistance to these therapies. Elucidating these mechanisms of resistance may provide valuable information pertinent to the design of future strategies to improve molecular-targeted therapies.
Collapse
|
40
|
Abstract
The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases plays an important role in the biology of many cancers. In breast and gastric cancer, and maybe also additional tumor types, HER2 and its homo- or heterodimerization with HER1 or HER3 are essential for cancer cell growth and survival. Breast cancer patients overexpressing HER2 have a poor prognosis, which can be substantially improved upon HER2-targeted therapy using the monoclonal antibody trastuzumab. Lapatinib is a dual tyrosine kinase inhibitor (TKI), blocking HER1 and HER2 tyrosine kinase activity by binding to the ATP-binding site of the receptor's intracellular domain. This results in the inhibition of tumor cell growth. In patients, the drug is relatively well tolerated with mostly low-grade adverse effects. In particular and unlike to trastuzumab, it has very little, if any, adverse effects on cardiac function. In 2007, lapatinib has been approved in combination with capecitabine in patients with advanced HER2-positive breast cancer upon progressive disease following standard therapy with anthracyclines, taxanes, and trastuzumab. In 2010, the approval was extended to the treatment of postmenopausal women with advanced, hormone receptor- and HER2-positive breast cancer, for whom hormonal therapy is indicated. Ongoing and future studies will explore its role in the (neo)adjuvant therapy setting, in further drug combinations as well as in the treatment of HER2-positive tumors other than breast cancer.
Collapse
Affiliation(s)
- Minna Nolting
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | | | | |
Collapse
|
41
|
Hong L, Han Y, Brain L. The role of epidermal growth factor receptor in prognosis and treatment of gastric cancer. Expert Rev Gastroenterol Hepatol 2014; 8:111-7. [PMID: 24410474 DOI: 10.1586/17474124.2014.844648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite tremendous efforts to reduce deaths due to gastric cancer, it represents the second leading cause of cancer-related deaths worldwide. EGF receptor (EGFR) plays important roles in gastric carcinogenesis by regulation of cell cycle, angiogenesis and apoptosis. This review evaluates the functions, mechanisms and clinical uses of EGFR in gastric cancer. Although EGFR targeted single therapy shows limited effect, the combination of EGFR targeted agents with traditional chemotherapy regimens may bring about important progress in cancer therapy. More clinical trials should be performed to clarify both the prognostic and therapeutic value of EGFR in gastric cancer.
Collapse
Affiliation(s)
- Liu Hong
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | | | | |
Collapse
|
42
|
Cbl-b enhances sensitivity to 5-fluorouracil via EGFR- and mitochondria-mediated pathways in gastric cancer cells. Int J Mol Sci 2013; 14:24399-411. [PMID: 24351824 PMCID: PMC3876118 DOI: 10.3390/ijms141224399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 01/08/2023] Open
Abstract
5-Fluorouracil (5-FU) is an essential component of anticancer chemotherapy against gastric cancer. However, the response rate of single drug is still limited. The ubiquitin ligase Cbl-b is a negative regulator of growth factor receptor signaling and is involved in the suppression of cancer cell proliferation. However, whether Cbl-b could affect 5-FU sensitivity remains unclear. The present study showed that Cbl-b knockdown caused higher proliferation concomitant with the decrease of apoptosis induced by 5-FU treatment in gastric cancer cell. Further mechanism investigation demonstrated that Cbl-b knockdown caused significant increase of phosphorylation of EGFR, ERK and Akt, decrease of mitochondrial membrane potential, and increase of expression ratio of Bcl-2/Bax. These results suggest that Cbl-b enhances sensitivity to 5-FU via EGFR- and mitochondria-mediated pathways in gastric cancer cells.
Collapse
|
43
|
Sato Y, Yashiro M, Takakura N. Heregulin induces resistance to lapatinib-mediated growth inhibition of HER2-amplified cancer cells. Cancer Sci 2013; 104:1618-25. [PMID: 24112719 PMCID: PMC7653524 DOI: 10.1111/cas.12290] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 12/17/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 20% of gastric and gastroesophageal junction cancers in the United States and European Union. Lapatinib, a dual HER2 and epidermal growth factor receptor tyrosine kinase inhibitor, has demonstrated clinical efficacy in HER2-amplified cancer cells. However, several studies have shown that some cytokines can mediate resistance to lapatinib using their receptor tyrosine kinase (RTK) pathways. One of these, Heregulin1 (HRG1), can confer resistance to lapatinib-mediated growth inhibition in HER2-amplified breast cancer cells, but the underlying mechanisms remain unknown. Here, we investigated whether and how HRG1 causes resistance to lapatinib in gastric and gastroesophageal junction cancers in vitro. HER2-amplified gastric and gastroesophageal junction cancer cell lines were highly sensitive to lapatinib. Exposure to HRG1 together with lapatinib rescued cells from lapatinib-induced cell cycle arrest and apoptosis. Downregulation of HER3 with siRNA in the presence of HRG1 re-sensitized HER2-amplified cancer cells to lapatinib. Immunoblotting analysis indicated that HRG1 re-activated HER3 and AKT in the presence of lapatinib, which persisted for at least 72 h. Activation of HER3 and downstream AKT was mediated by residual activity of HER2. HRG1-mediated resistance could be reduced by PI3K/mTOR inhibitors or by complete inhibition of HER2. Thus, we conclude that HRG1 mediates resistance to lapatinib through HER3 and AKT activation, and that this depends on residual HER2 activity. Lapatinib in combination with anti-PI3K therapies or more potent HER2 inhibitors would improve the efficacy and avoid the emergence of resistant cells.
Collapse
Affiliation(s)
- Yuji Sato
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Medicinal Research Laboratories, Shionogi Pharmaceutical, Toyonaka, Osaka, Japan
| | | | | |
Collapse
|
44
|
Lee YY, Kim HP, Kang MJ, Cho BK, Han SW, Kim TY, Yi EC. Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line. Exp Mol Med 2013; 45:e64. [PMID: 24263233 PMCID: PMC3849569 DOI: 10.1038/emm.2013.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/25/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022] Open
Abstract
Lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) tyrosine kinases, has shown promising results as a growth inhibitor of HER2-positive cancer cells in vitro. However, similar to other EGFR-targeting drugs, acquired resistance to lapatinib by HER2-positive cancer cells remains a major clinical challenge. To elucidate resistance mechanisms to EGFR/HER2-targeting agents, we performed a systematic quantitative comparison of the phosphoproteome of lapatinib-resistant (LR) human gastric cancer cells (SNU216-LR) versus parental cells (SNU216) using a titanium dioxide (TiO2) phosphopeptide enrichment method and analysis with a Q-Exactive hybrid quadrupole-Orbitrap mass spectrometer. Biological network analysis of differentially expressed phosphoproteins revealed apparent constitutive activation of the MET-axis phosphatidylinositide 3-kinase (PI3K)/α-serine/threonine-protein kinase (AKT) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways in SNU216-LR. Inhibition of the PI3K/AKT and MAPK/ERK signaling pathways in SNU216-LR also leads to cell cycle arrest, confirming the biological network analysis. Lapatinib sensitivity was restored when cells were treated with several molecular targeting agents in combination with lapatinib. Thus, by integrating phosphoproteomic data, protein networks and effects of signaling pathway modulation on cell proliferation, we found that SNU216-LR maintains constitutive activation of the PI3K/AKT and MAPK/ERK pathways in a MET-dependent manner. These findings suggest that pathway activation is a key compensatory intracellular phospho-signaling event that may govern gastric cancer cell resistance to drug treatment.
Collapse
Affiliation(s)
- Yong Yook Lee
- 1] WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea [2] Wide River Institute of Immunology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Gastric cancer imposes a considerable health burden around the globe despite its declining incidence. The disease is often diagnosed in advanced stages and is associated with a poor prognosis for patients. An in-depth understanding of the molecular underpinnings of gastric cancer has lagged behind many other cancers of similar incidence and morbidity, owing to our limited knowledge of germline susceptibility traits for risk and somatic drivers of progression (to identify novel therapeutic targets). A few germline (PLCE1) and somatic (ERBB2, ERBB3, PTEN, PI3K/AKT/mTOR, FGF, TP53, CDH1 and MET) alterations are emerging and some are being pursued clinically. Novel somatic gene targets (ARID1A, FAT4, MLL and KMT2C) have also been identified and are of interest. Variations in the therapeutic approaches dependent on geographical region are evident for localized gastric cancer-differences that are driven by preferences for the adjuvant strategies and the extent of surgery coupled with philosophical divides. However, greater uniformity in approach has been noted in the metastatic cancer setting, an incurable condition. Having realized only modest successes, momentum is building for carrying out more phase III comparative trials, with some using biomarker-based patient selection strategies. Overall, rapid progress in biotechnology is improving our molecular understanding and can help with new drug discovery. The future prospects are excellent for defining biomarker-based subsets of patients and application of specific therapeutics. However, many challenges remain to be tackled. Here, we review representative molecular and clinical dimensions of gastric cancer.
Collapse
Affiliation(s)
- Roopma Wadhwa
- Department of Gastrointestinal Medical Oncology, The University of
Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of
Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas M. D.
Anderson Cancer Center, Houston, Texas, 77030
| | - Yixin Yao
- Department of Gastrointestinal Medical Oncology, The University of
Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Qingyi Wei
- Department of Epidemiology, The University of Texas M. D. Anderson
Cancer Center, Houston, Texas, 77030
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of
Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
- Department of Epidemiology, The University of Texas M. D. Anderson
Cancer Center, Houston, Texas, 77030
| |
Collapse
|
46
|
English DP, Roque DM, Santin AD. HER2 expression beyond breast cancer: therapeutic implications for gynecologic malignancies. Mol Diagn Ther 2013; 17:85-99. [PMID: 23529353 DOI: 10.1007/s40291-013-0024-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
HER2 or ErbB2 is a member of the epidermal growth factor family and is overexpressed in subsets of breast, ovarian, gastric, colorectal, pancreatic, and endometrial cancers. HER2 regulates signaling through several pathways (Ras/Raf/mitogen-activated protein kinase and phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin pathways) associated with cell survival and proliferation. HER2-overexpressed and/or gene-amplified tumors are generally regarded as biologically aggressive neoplasms. In breast, cervical, endometrial, and ovarian cancer, there have been several studies linking the amplification of the c-erbB2 gene with chemoresistance and overall poor survival. Tyrosine kinase inhibitors and immunotherapy with monoclonal antibodies targeting HER2 hold promise for patients harboring these aggressive neoplasms. Trastuzumab combined with cytotoxic chemotherapy agents or conjugated with radioactive isotopes is currently being investigated in clinical trials of several tumor types.
Collapse
Affiliation(s)
- Diana P English
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, LSOG 305, P.O. Box 208063, New Haven, CT 06520-8063, USA
| | | | | |
Collapse
|
47
|
Abstract
Gastric cancer imposes a considerable health burden around the globe despite its declining incidence. The disease is often diagnosed in advanced stages and is associated with a poor prognosis for patients. An in-depth understanding of the molecular underpinnings of gastric cancer has lagged behind many other cancers of similar incidence and morbidity, owing to our limited knowledge of germline susceptibility traits for risk and somatic drivers of progression (to identify novel therapeutic targets). A few germline (PLCE1) and somatic (ERBB2, ERBB3, PTEN, PI3K/AKT/mTOR, FGF, TP53, CDH1 and MET) alterations are emerging and some are being pursued clinically. Novel somatic gene targets (ARID1A, FAT4, MLL and KMT2C) have also been identified and are of interest. Variations in the therapeutic approaches dependent on geographical region are evident for localized gastric cancer-differences that are driven by preferences for the adjuvant strategies and the extent of surgery coupled with philosophical divides. However, greater uniformity in approach has been noted in the metastatic cancer setting, an incurable condition. Having realized only modest successes, momentum is building for carrying out more phase III comparative trials, with some using biomarker-based patient selection strategies. Overall, rapid progress in biotechnology is improving our molecular understanding and can help with new drug discovery. The future prospects are excellent for defining biomarker-based subsets of patients and application of specific therapeutics. However, many challenges remain to be tackled. Here, we review representative molecular and clinical dimensions of gastric cancer.
Collapse
|
48
|
Tang L, Wang Y, Strom A, Gustafsson JÅ, Guan X. Lapatinib induces p27(Kip1)-dependent G₁ arrest through both transcriptional and post-translational mechanisms. Cell Cycle 2013; 12:2665-74. [PMID: 23907131 PMCID: PMC3865056 DOI: 10.4161/cc.25728] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/14/2023] Open
Abstract
Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, has been shown to have potent antitumor effects against human breast cancer. Recent studies have shown that lapatinib upregulates p27(Kip1) (here after referred to as p27) expression and induces G₁ cell cycle arrest in various types of cancer cells. However, the regulation of p27 in lapatinib-induced cell cycle arrest is not well studied. Here we demonstrate that lapatinib-induced cell growth inhibition and G₁ cell cycle arrest in HER2-overexpressing human breast cancer cells were dependent on p27. We also show that lapatinib-induced upregulation of p27 expression was mediated through both transcriptional and post-translational mechanisms. On the one hand, lapatinib treatment led to increased FOXO3a expression and enhanced p27 transcription. On the other hand, lapatinib treatment resulted in increased DYRK1B expression, which correlated with increased p27 phosphorylation at Ser10 and decreased p27 degradation. Interestingly, we found that ERβ1 but not ERβ2 expression also upregulated p27 and enhanced lapatinib-induced cell proliferation inhibition and G₁ cell cycle arrest in HER2-overexpressing breast cancer cells. Taken together, our results suggest that lapatinib induces p27 expression via both transcriptional and post-translational upregulations, leading to cell cycle arrest and cell proliferation inhibition, and that its effect on breast cancer cells may be modified by ER expression status.
Collapse
Affiliation(s)
- Lin Tang
- Department of Medical Oncology; Jinling Hospital; Nanjing University School of Medicine; Nanjing, PR China
| | - Yucai Wang
- Department of Experimental Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Anders Strom
- Department of Biology and Biochemistry; Center for Nuclear Receptors and Cell Signaling; University of Houston; Houston, TX USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry; Center for Nuclear Receptors and Cell Signaling; University of Houston; Houston, TX USA
| | - Xiaoxiang Guan
- Department of Medical Oncology; Jinling Hospital; Nanjing University School of Medicine; Nanjing, PR China
| |
Collapse
|
49
|
Hong L, Han Y, Yang J, Zhang H, Jin Y, Brain L, Li M, Zhao Q. Prognostic value of epidermal growth factor receptor in patients with gastric cancer: a meta-analysis. Gene 2013; 529:69-72. [PMID: 23954221 DOI: 10.1016/j.gene.2013.07.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/20/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) plays important roles in the development of gastric cancer. This study aims to analyze the prognostic value of EGFR in patients with gastric cancer. METHODS A meta-analysis is performed by searching Cochrane Library, PubMed, EMBASE and Science Direct databases from Jan 1970 to May 2013. Data are extracted from studies evaluating the survival of gastric cancer patients with either positive or negative EGFR expression. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) are calculated. RESULTS Totally 1600 cases of gastric cancer patients from five studies are subjected to final analysis. The HR of post-operational survival of patients with positive EGFR expression is 1.16 (95% CI: 0.94-1.43) as compared with those with negative expression, indicating that positive EGFR expression does not significantly predict the poor survival of gastric cancer. CONCLUSIONS EGFR expression is not an independent predictor for the survival of gastric cancer patients.
Collapse
Affiliation(s)
- Liu Hong
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032 Shaanxi Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim HP, Han SW, Song SH, Jeong EG, Lee MY, Hwang D, Im SA, Bang YJ, Kim TY. Testican-1-mediated epithelial-mesenchymal transition signaling confers acquired resistance to lapatinib in HER2-positive gastric cancer. Oncogene 2013; 33:3334-41. [PMID: 23873022 DOI: 10.1038/onc.2013.285] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/26/2013] [Accepted: 05/28/2013] [Indexed: 12/17/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-directed treatment using trastuzumab has shown clinical benefit in HER2-positive gastric cancer. Clinical trials using lapatinib in HER2-positive gastric cancer are also currently underway. As with other molecularly targeted agents, the emergence of acquired resistance to HER2-directed treatment is an imminent therapeutic problem for HER2-positive gastric cancer. In order to investigate the mechanisms of acquired resistance to HER2-directed treatment in gastric cancer, we generated lapatinib-resistant gastric cancer cell lines (SNU216 LR) in vitro by chronic exposure of a HER2-positive gastric cancer cell line (SNU216) to lapatinib. The resultant SNU216 LR cells were also resistant to gefitinib, cetuximab, trastuzumab, afatinib and dacomitinib. Interestingly, SNU216 LR cells displayed an epithelial-mesenchymal transition (EMT) phenotype and maintained the activation of MET, HER3, Stat3, Akt and mitogen-activated protein kinase signaling in the presence of lapatinib. Using gene expression arrays, we identified the upregulation of a variety of EMT-related genes and extracellular matrix molecules, such as Testican-1, in SNU216 LR cells. We showed that the inhibition of Testican-1 by small interfering RNA decreased Testican-1-induced, MET-dependent, downstream signaling, and restored sensitivity to lapatinib in these cells. Furthermore, treatment with XAV939 selectively inhibited β-catenin-mediated transcription and Testican-1-induced EMT signaling, leading to G1 arrest. Taken together, these data support the potential role of EMT in acquired resistance to HER2-directed treatment in HER2-positive gastric cancer, and provide insights into strategies for preventing and/or overcoming this resistance in patients.
Collapse
Affiliation(s)
- H-P Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S-W Han
- 1] Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S-H Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - E-G Jeong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - M-Y Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology(POSTECH), Pohang, Republic of Korea
| | - D Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology(POSTECH), Pohang, Republic of Korea
| | - S-A Im
- 1] Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y-J Bang
- 1] Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - T-Y Kim
- 1] Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea [3] WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|