1
|
Deregowska A, Lewinska A, Warzybok A, Stoklosa T, Wnuk M. Telomere loss is accompanied by decreased pool of shelterin proteins TRF2 and RAP1, elevated levels of TERRA and enhanced glycolysis in imatinib-resistant CML cells. Toxicol In Vitro 2023; 90:105608. [PMID: 37149272 DOI: 10.1016/j.tiv.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Telomere length may be maintained by telomerase nucleoprotein complex and shelterin complex, namely TRF1, TRF2, TIN2, TPP1, POT1 and RAP1 proteins and modulated by TERRA expression. Telomere loss is observed during progression of chronic myeloid leukemia (CML) from the chronic phase (CML-CP) to the blastic phase (CML-BP). The introduction of tyrosine kinase inhibitors (TKIs), such as imatinib (IM), has changed outcome for majority of patients, however, a number of patients treated with TKIs may develop drug resistance. The molecular mechanisms underlying this phenomenon are not fully understood and require further investigation. In the present study, we demonstrate that IM-resistant BCR::ABL1 gene-positive CML K-562 and MEG-A2 cells are characterized by decreased telomere length, lowered protein levels of TRF2 and RAP1 and increased expression of TERRA in comparison to corresponding IM-sensitive CML cells and BCR::ABL1 gene-negative HL-60 cells. Furthermore, enhanced activity of glycolytic pathway was observed in IM-resistant CML cells. A negative correlation between a telomere length and advanced glycation end products (AGE) was also revealed in CD34+ cells isolated from CML patients. In conclusion, we suggest that affected expression of shelterin complex proteins, namely TRF2 and RAP1, TERRA levels, and glucose consumption rate may promote telomere dysfunction in IM-resistant CML cells.
Collapse
Affiliation(s)
- Anna Deregowska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland; Department of Tumor Biology and Genetics, Medical University of Warsaw, Pawinskiego 7, Warsaw 02-106, Poland.
| | - Anna Lewinska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland.
| | - Aleksandra Warzybok
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Tomasz Stoklosa
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Pawinskiego 7, Warsaw 02-106, Poland.
| | - Maciej Wnuk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland.
| |
Collapse
|
2
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
3
|
ATM inhibition overcomes resistance to histone deacetylase inhibitor due to p21 induction and cell cycle arrest. Oncotarget 2020; 11:3432-3442. [PMID: 32973968 PMCID: PMC7500109 DOI: 10.18632/oncotarget.27723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/20/2020] [Indexed: 12/05/2022] Open
Abstract
The antiproliferative effect induced by histone deactylase inhibitors (HDACi) is associated with the up-regulated expression of the cyclin-dependent kinase inhibitor p21. Paradoxically, the increased expression of p21 correlates with a reduced cell killing to the drug. The direct targeting of p21 is not feasible. An alternate approach could selectively target factors upstream or downstream of p21 that affect one or more specific aspects of p21 function. HDAC inhibitors appear to activate p21 expression via ataxia telangiectasia mutated (ATM) activity. KU60019, a specific ATM inhibitor, has shown to decrease the p21 protein levels in a concentration dependent manner. We explored the potential synergistic interaction of the ATM inhibitor with romidepsin, given the potential complementary impact around p21. A synergistic cytotoxic effect was observed in all lymphoma cell lines examined when the HDACi was combined with KU60019. The increase in apoptosis correlates with decreased expression of p21 due to the ATM inhibitor. KU60019 decreased expression of the cyclin-dependent kinase inhibitor at the transcriptional level, compromising the ability of HDACi to induce p21 and cell cycle arrest and ultimately facilitating a shift toward the apoptotic phase. Central to the increased apoptosis observed when romidepsin is combined with KU60019 is the reduced expression of p21 and the absence of a G2/M cell cycle arrest that would be exploited by the tumor cells to evade the cytotoxic effect of the HDAC inhibitor. We believe this strategy may offer a promising way to identify rational combinations for HDACi directed therapy, improving their activity in malignant disease.
Collapse
|
4
|
Tsubaki M, Takeda T, Kino T, Sakai K, Itoh T, Imano M, Nakayama T, Nishio K, Satou T, Nishida S. Contributions of MET activation to BCR-ABL1 tyrosine kinase inhibitor resistance in chronic myeloid leukemia cells. Oncotarget 2018; 8:38717-38730. [PMID: 28418880 PMCID: PMC5503566 DOI: 10.18632/oncotarget.16314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/20/2017] [Indexed: 12/02/2022] Open
Abstract
Resistance to the breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitor (TKI) imatinib poses a major problem when treating chronic myeloid leukemia (CML). Imatinib resistance often results from a secondary mutation in BCR-ABL1. However, in the absence of a mutation in BCR-ABL1, the basis of BCR-ABL1-independent resistance must be elucidated. To gain insight into the mechanisms of BCR-ABL1-independent imatinib resistance, we performed an array-based comparative genomic hybridization. We identified various resistance-related genes, and focused on MET. Treatment with a MET inhibitor resensitized K562/IR cells to BCR-ABL1 TKIs. Combined treatment of K562/IR cells with imatinib and a MET inhibitor suppressed extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) activation, but did not affect AKT activation. Our findings implicate the MET/ERK and MET/JNK pathways in conferring resistance to imatinib, providing new insights into the mechanisms of BCR-ABL1 TKI resistance in CML.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Toshiki Kino
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Tatsuki Itoh
- Department of Food Science and Nutrition, Kindai University School of Agriculture, Nara, Nara, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| |
Collapse
|
5
|
Microfluidic cell sorting by stiffness to examine heterogenic responses of cancer cells to chemotherapy. Cell Death Dis 2018; 9:239. [PMID: 29445159 PMCID: PMC5833447 DOI: 10.1038/s41419-018-0266-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Cancers consist of a heterogeneous populations of cells that may respond differently to treatment through drug-resistant sub-populations. The scarcity of these resistant sub-populations makes it challenging to understand how to counter their resistance. We report a label-free microfluidic approach to separate cancer cells treated with chemotherapy into sub-populations enriched in chemoresistant and chemosensitive cells based on the differences in cellular stiffness. The sorting approach enabled analysis of the molecular distinctions between resistant and sensitive cells. Consequently, the role of multiple mechanisms of drug resistance was identified, including decreased sensitivity to apoptosis, enhanced metabolism, and extrusion of drugs, and, for the first time, the role of estrogen receptor in drug resistance of leukemia cells. To validate these findings, several inhibitors for the identified resistance pathways were tested with chemotherapy to increase cytotoxicity sevenfold. Thus, microfluidic sorting can identify molecular mechanisms of drug resistance to examine heterogeneous responses of cancers to therapies.
Collapse
|
6
|
Moreno-Lorenzana D, Avilés-Vazquez S, Sandoval Esquivel MA, Alvarado-Moreno A, Ortiz-Navarrete V, Torres-Martínez H, Ayala-Sánchez M, Mayani H, Chavez-Gonzalez A. CDKIs p18(INK4c) and p57(Kip2) are involved in quiescence of CML leukemic stem cells after treatment with TKI. Cell Cycle 2017; 15:1276-87. [PMID: 26985855 PMCID: PMC4889309 DOI: 10.1080/15384101.2016.1160976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chronic Myeloid Leukemia (CML) is sustained by a small population of cells with stem cell characteristics known as Leukemic Stem Cells that are positive to BCR-ABL fusion protein, involved with several abnormalities in cell proliferation, expansion, apoptosis and cell cycle regulation. Current treatment options for CML involve the use of Tirosine Kinase Inhibitor (Imatinib, Nilotinib and Dasatinib), that efficiently reduce proliferation proliferative cells but do not kill non proliferating CML primitive cells that remain and contributes to the persistence of the disease. In order to understand the role of Cyclin Dependent Kinase Inhibitors in CML LSC permanence after TKI treatment, in this study we analyzed cell cycle status, the levels of several CDKIs and the subcellular localization of such molecules in different CML cell lines, as well as primary CD34+CD38−lin− LSC and HSC. Our results demonstrate that cellular location of p18INK4c and p57Kip2 seems to be implicated in the antiproliferative activity of Imatinib and Dasatinib in CML cells and also suggest that the permanence of quiescent stem cells after TKI treatment could be associated with a decrease in p18INK4c and p57Kip2 nuclear location. The differences in p18INK4cand p57Kip2activities in CML and normal stem cells suggest a different cell cycle regulation and provide a platform that could be considered in the development of new therapeutic options to eliminate LSC.
Collapse
Affiliation(s)
- Dafne Moreno-Lorenzana
- a Oncology Research Unit , Oncology Hospital, National Medical Center , Mexican Institute for Social Security , Mexico City , Mexico.,b Molecular Biomedicine Department , CINVESTAV , Mexico City , Mexico
| | - Sócrates Avilés-Vazquez
- a Oncology Research Unit , Oncology Hospital, National Medical Center , Mexican Institute for Social Security , Mexico City , Mexico
| | - Miguel Angel Sandoval Esquivel
- a Oncology Research Unit , Oncology Hospital, National Medical Center , Mexican Institute for Social Security , Mexico City , Mexico
| | - Antonio Alvarado-Moreno
- c Thrombosis Haemostasia and Atherogenesis Research Unit , Mexican Institute for Social Security , Mexico City , Mexico
| | | | - Héctor Torres-Martínez
- d Department of Hip Surgery , Villa Coapa General Hospital , Mexican Institute for Social Security , Mexico City , Mexico
| | - Manuel Ayala-Sánchez
- e Department of Hematology , La Raza Medical Center , Mexican Institute for Social Security , Mexico City , Mexico
| | - Héctor Mayani
- a Oncology Research Unit , Oncology Hospital, National Medical Center , Mexican Institute for Social Security , Mexico City , Mexico
| | - Antonieta Chavez-Gonzalez
- a Oncology Research Unit , Oncology Hospital, National Medical Center , Mexican Institute for Social Security , Mexico City , Mexico
| |
Collapse
|
7
|
Salcher S, Hermann M, Kiechl-Kohlendorfer U, Ausserlechner MJ, Obexer P. C10ORF10/DEPP-mediated ROS accumulation is a critical modulator of FOXO3-induced autophagy. Mol Cancer 2017; 16:95. [PMID: 28545464 PMCID: PMC5445297 DOI: 10.1186/s12943-017-0661-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/15/2017] [Indexed: 11/15/2022] Open
Abstract
Background Neuroblastoma is the most common solid tumor in childhood and develops from undifferentiated progenitor cells of the sympathetic nervous system. In neuronal tumor cells DNA-damaging chemotherapeutic agents activate the transcription factor FOXO3 which regulates the formation of reactive oxygen species (ROS) and cell death as well as a longevity program associated with therapy resistance. We demonstrated before that C10ORF10/DEPP, a transcriptional target of FOXO3, localizes to peroxisomes and mitochondria and impairs cellular ROS detoxification. In the present study, we investigated the impact of FOXO3 and DEPP on the regulation of autophagy. Autophagy serves to reduce oxidative damage as it triggers a self-degradative process for the removal of aggregated or misfolded proteins and damaged organelles. Methods The effect of FOXO3 and DEPP on autophagy induction was analyzed using live cell fluorescence microscopy and immunoblot analyses of SH-EP cells transfected with a plasmid for EYFP-LC3 and with siRNAs specific for LC3, respectively. ROS steady-state levels were measured with reduced MitoTrackerRed CM-H2XROS. Cellular apoptosis was analyzed by flow cytometry and the caspase 3/7 assay. Results We report for the first time that DEPP induces ROS accumulation and thereby mediates the formation of autophagosomes as inhibition of ROS formation by N-acetyl-cysteine completely blocks autophagy. We further demonstrate that H2O2-treatment triggers autophagy-induction by FOXO3-mediated DEPP expression. Importantly, knockdown of DEPP was sufficient to efficiently inhibit autophagy-induction under different stress conditions such as serum starvation and genotoxic stress, suggesting that DEPP expression is critical for the initiation of autophagy in neuroblastoma. FOXO3-triggered autophagy partially protects neuroblastoma cells from cell death. Consistent with this concept, we demonstrate that inhibition of autophagy by LC3-knockdown significantly increased etoposide- and doxorubicin-induced apoptosis. These results were also confirmed by the use of the autophagy-inhibitor chloroquine that significantly enhanced the chemotherapeutic effect of etoposide and doxorubicin in neuronal tumor cells. Conclusion Targeting FOXO3/DEPP-triggered autophagy is a promising strategy to sensitize neuroblastoma cells to chemotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0661-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Salcher
- Department of Pediatrics II, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, A-6020, Innsbruck, Austria
| | - M Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - U Kiechl-Kohlendorfer
- Department of Pediatrics II, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria
| | - M J Ausserlechner
- Department of Pediatrics I, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria.
| | - P Obexer
- Department of Pediatrics II, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria. .,Tyrolean Cancer Research Institute, Innrain 66, A-6020, Innsbruck, Austria.
| |
Collapse
|
8
|
García-Alegría E, Lafita-Navarro MC, Aguado R, García-Gutiérrez L, Sarnataro K, Ruiz-Herguido C, Martín F, Bigas A, Canelles M, León J. NUMB inactivation confers resistance to imatinib in chronic myeloid leukemia cells. Cancer Lett 2016; 375:92-99. [PMID: 26944313 DOI: 10.1016/j.canlet.2016.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/21/2023]
Abstract
Chronic myeloid leukemia (CML) progresses from a chronic to a blastic phase, where the leukemic cells are proliferative and undifferentiated. The CML is nowadays successfully treated with BCR-ABL kinase inhibitors as imatinib and its derivatives. NUMB is an evolutionary well-conserved protein initially described as a functional antagonist of NOTCH function. NUMB is an endocytic protein associated with receptor internalization, involved in multiple cellular functions. It has been reported that MSI2 protein, a NUMB inhibitor, is upregulated in CML blast crisis, whereas NUMB itself is downregulated. This suggest that NUMB plays a role in the malignant progression of CML. Here we have generated K562 cells (derived from CML in blast crisis) constitutively expressing a dominant negative form of NUMB (dnNUMB). We show that dnNUMB expression confers a high proliferative phenotype to the cells. Importantly, dnNUMB triggers a partial resistance to imatinib in these cells, antagonizing the apoptosis mediated by the drug. Interestingly, imatinib resistance is not linked to p53 status or NOTCH signaling, as K562 lack p53 and imatinib resistance is reproduced in the presence of NOTCH inhibitors. Taken together, our data support the hypothesis that NUMB activation could be a new therapeutic target in CML.
Collapse
Affiliation(s)
- Eva García-Alegría
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Carmen Lafita-Navarro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Rocío Aguado
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, Granada, Spain
| | - Lucia García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Kyle Sarnataro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | | - Anna Bigas
- Stem Cells and Cancer Group. IMIM, Barcelona, Spain
| | - Matilde Canelles
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, Granada, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
9
|
Cardoso HJ, Vaz CV, Correia S, Figueira MI, Marques R, Maia CJ, Socorro S. Paradoxical and contradictory effects of imatinib in two cell line models of hormone-refractory prostate cancer. Prostate 2015; 75:923-35. [PMID: 25786656 DOI: 10.1002/pros.22976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/13/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Imatinib mesylate is a chemotherapeutic drug that inhibits the tyrosine kinase activity of c-KIT and has been successfully used to treat leukemias and some solid tumors. However, its application for treatment of hormone-refractory prostate cancer (HRPC) has shown modest effectiveness and did not follow the outcomes in cultured cells or animal models. Moreover, the molecular pathways by which imatinib induces cytotoxicity in prostate cancer cells are poorly characterized. METHODS Two cell line models of HRPC (DU145 and PC3) were exposed to 20 μM of imatinib for 6-72 hr. MTS assay was used to assess cell viability during the course of experiment. Gene expression analysis of c-KIT, cell-cycle and apoptosis regulators, and angiogenic factors was determined by means of real-time PCR, western blot, and/or immunocytochemistry. The enzymatic activity of the apoptosis effector, caspase-3, was determined by a colorimetric assay. RESULTS Imatinib significantly decreased the viability of DU145 cells but paradoxically augmented the viability of PC3 cells. DU145 cells displayed diminished expression of anti-apoptotic Bcl-2 protein and augmented levels of caspase-8 and -9, as well as, increased enzymatic activity of caspase-3 in response to imatinib. No differences existed on the expression levels of apoptosis-related proteins in PC3 cells treated with imatinib, though the activity of caspase-3 was decreased. The mRNA levels of angiogenic factor VEGF were decreased in DU145-treated cells, whereas an opposite effect was seen in PC3. In addition, it was shown that DU145 and PC3 cells present a differential expression of c-KIT protein variants. CONCLUSION DU145 and PC3 cells displayed a contradictory behavior in response to imatinib, which was underpinned by a distinct expression pattern (or activity) of target regulators of cell-cycle, apoptosis, and angiogenesis. The paradoxical effect of imatinib in PC3 cells may be related with the differential expression of c-KIT protein variants. Moreover, the present findings helped to understand the discrepancies in the efficacy of imatinib as therapeutic option in HRPC.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Y, Geng L, Talmon G, Wang J. MicroRNA-520g confers drug resistance by regulating p21 expression in colorectal cancer. J Biol Chem 2015; 290:6215-25. [PMID: 25616665 DOI: 10.1074/jbc.m114.620252] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Development of drug resistance is one of the major causes of colorectal cancer recurrence, yet mechanistic understanding and therapeutic options remain limited. Here, we show that expression of microRNA (miR)-520g is correlated with drug resistance of colon cancer cells. Ectopic expression of miR-520g conferred resistance to 5-fluorouracil (5-FU)- or oxaliplatin-induced apoptosis in vitro and reduced the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicated that miR-520g mediated drug resistance through down-regulation of p21 expression. Moreover, p53 suppressed miR-520g expression, and deletion of p53 up-regulated miR-520g expression. Inhibition of miR-520g in p53(-/-) cells increased their sensitivity to 5-FU treatment. Importantly, studies of patient samples indicated that expression of miR-520g correlated with chemoresistance in colorectal cancer. These findings indicate that the p53/miR-520g/p21 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of miR-520g or restoration of p21 expression may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, especially in those with mutant p53.
Collapse
Affiliation(s)
- Yang Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Genetics, Cell Biology, and Anatomy
| | - Liying Geng
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jing Wang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Genetics, Cell Biology, and Anatomy, Department of Biochemistry and Molecular Biology and Fred & Pamela Buffett Cancer Center, and
| |
Collapse
|
11
|
Safa M, Mousavizadeh K, Noori S, Pourfathollah A, Zand H. cAMP protects acute promyelocytic leukemia cells from arsenic trioxide-induced caspase-3 activation and apoptosis. Eur J Pharmacol 2014; 736:115-23. [PMID: 24815320 DOI: 10.1016/j.ejphar.2014.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/19/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
More recently, arsenic trioxide (ATO), was integrated into acute promyelocytic leukemia (APL) treatment, showing high efficacy and tolerability in patients with both ATRA-sensitive and ATRA-resistant APL. ATO could induce apoptosis at relatively high concentrations (0.5 to 2.0 micromol/L) and partial differentiation at low concentrations (0.1 to 0.5 micromol/L) in leukemic promyelocytes. It is known that cAMP agonists enhance low-dose ATO-induced APL cells differentiation. Less well appreciated was the possible interaction between relatively high-doses of ATO and enhanced levels of cAMP in APL cells. Here, we show that elevation of cAMP levels by forskolin inhibited ATO-mediated apoptosis in APL-derived NB4 cells, and this inhibition could be averted by cell permeable cAMP-dependent protein kinase inhibitor (14-22) amide. Inactivating phosphorylation of the proapoptotic protein Bad at Ser118 and phosphorylation of the CREB proto-oncogene at Ser133 were observed upon elevation of cAMP levels in NB4 cells. Phosphorylation of these PKA target proteins is known to promote cell survival in AML cells. The ability of cAMP to endow the APL cells with survival advantage is of particular importance when cAMP agonists may be considered as adjuncts to APL therapy.
Collapse
Affiliation(s)
- Majid Safa
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Kazem Mousavizadeh
- Oncopathology Research Center, and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shekoofeh Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefeh Pourfathollah
- Department of Medical Laboratory Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- National Institute and Faculty of Nutrition and Food Technology, Department of Molecular Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Pharmacodynamic study of the 7,8-dihydroxy-4-methylcoumarin-induced selective cytotoxicity toward U-937 leukemic cells versus mature monocytes: cytoplasmic p21(Cip1/WAF1) as resistance factor. Biochem Pharmacol 2013; 86:210-21. [PMID: 23665351 DOI: 10.1016/j.bcp.2013.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 01/04/2023]
Abstract
The development of tumor-selective drugs with low systemic toxicity has always been a major challenge in cancer treatment. Our group previously identified the 7,8-dihydroxy-4-methylcoumarin (DHMC) as a potential chemotherapeutic agent due to its potent, selective anti-proliferative and apoptosis-inducing effects on several cancer cell lines over peripheral blood mononuclear cells. However, there are still no published reports that can explain such selectivity of action. Herein, we addressed this question by using the U-937 promonocytic leukemia cell line, which can be forced to differentiate into a monocyte-like phenotype in vitro. U-937 cells differentiation is dependent on the nuclear expression of p21(Cip1/WAF1), a protein that is absent in immature U-937 cells but present in both the nucleus and the cytoplasm of normal DHMC-resistant monocytes. Considering that induction of differentiation rendered U-937 cells resistant to DHMC, we evaluated the possible causal role of cytoplasmic p21(Cip1/WAF1) in the onset of such resistance by employing U-937 cells stably transfected with a ZnCl2-inducible p21(Cip1/WAF1) variant lacking the nuclear localization signal (U-937/CB6-ΔNLS-p21 cells). Expression of cytoplasmic p21(Cip1/WAF1) did not induce differentiation of the cells but turned them resistant to DHMC through inhibition of JNK, a crucial mediator of DHMC-induced apoptosis in U-937 cells. Sub-acute toxicity evaluation of DHMC in Balb/c mice indicated that DHMC administered intraperitoneally at doses up to 100mg/kg induced no systemic damage. Collectively, our results explain for the first time the selective cytotoxicity of DHMC for tumor cells over normal monocytes, and encourage further in vivo studies on this compound as potential anti-leukemic agent.
Collapse
|
13
|
Amaru Calzada A, Pedrini O, Finazzi G, Leoni F, Mascagni P, Introna M, Rambaldi A, Golay J. Givinostat and hydroxyurea synergize in vitro to induce apoptosis of cells from JAK2V617F myeloproliferative neoplasm patients. Exp Hematol 2013; 41:253-60.e2. [DOI: 10.1016/j.exphem.2012.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
14
|
Ferrándiz N, Caraballo JM, García-Gutierrez L, Devgan V, Rodriguez-Paredes M, Lafita MC, Bretones G, Quintanilla A, Muñoz-Alonso MJ, Blanco R, Reyes JC, Agell N, Delgado MD, Dotto GP, León J. p21 as a transcriptional co-repressor of S-phase and mitotic control genes. PLoS One 2012; 7:e37759. [PMID: 22662213 PMCID: PMC3360621 DOI: 10.1371/journal.pone.0037759] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/23/2012] [Indexed: 12/27/2022] Open
Abstract
It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.
Collapse
Affiliation(s)
- Nuria Ferrándiz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Juan M. Caraballo
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Lucía García-Gutierrez
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Vikram Devgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachussetts, United States of America
| | - Manuel Rodriguez-Paredes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC, Américo Vespucio s/n, Sevilla, Spain
| | - M. Carmen Lafita
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Gabriel Bretones
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Andrea Quintanilla
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - M. Jose Muñoz-Alonso
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, Madrid, Spain
| | - Rosa Blanco
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Jose C. Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC, Américo Vespucio s/n, Sevilla, Spain
| | - Neus Agell
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - M. Dolores Delgado
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - G. Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachussetts, United States of America
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Javier León
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
- * E-mail:
| |
Collapse
|
15
|
p21(WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis. PLoS One 2011; 6:e20254. [PMID: 21637851 PMCID: PMC3102688 DOI: 10.1371/journal.pone.0020254] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/28/2011] [Indexed: 12/24/2022] Open
Abstract
Background p21WAF1/CIP1 is a well known cyclin-dependent kinase inhibitor induced by various stress stimuli. Depending on the stress applied, p21 upregulation can either promote apoptosis or prevent against apoptotic injury. The stress-mediated induction of p21 involves not only its transcriptional activation but also its posttranscriptional regulation, mainly through stabilization of p21 mRNA levels. We have previously reported that the proteasome inhibitor MG132 induces the stabilization of p21 mRNA, which correlates with the formation of cytoplasmic RNA stress granules. The mechanism underlying p21 mRNA stabilization, however, remains unknown. Methodology/Principal Findings We identified the stress granules component CUGBP1 as a factor required for p21 mRNA stabilization following treatment with bortezomib ( = PS-341/Velcade). This peptide boronate inhibitor of the 26S proteasome is very efficient for the treatment of myelomas and other hematological tumors. However, solid tumors are sometimes refractory to bortezomib treatment. We found that depleting CUGBP1 in cancer cells prevents bortezomib-mediated p21 upregulation. FISH experiments combined to mRNA stability assays show that this effect is largely due to a mistargeting of p21 mRNA in stress granules leading to its degradation. Altering the expression of p21 itself, either by depleting CUGBP1 or p21, promotes bortezomib-mediated apoptosis. Conclusions/Significance We propose that one key mechanism by which apoptosis is inhibited upon treatment with chemotherapeutic drugs might involve upregulation of the p21 protein through CUGBP1.
Collapse
|
16
|
Fan C, Xiong Y, Zhu N, Lu Y, Zhang J, Wang S, Liang Z, Shen Y, Chen M. Random small interfering RNA library screen identifies siRNAs that induce human erythroleukemia cell differentiation. Leuk Lymphoma 2011; 52:502-14. [DOI: 10.3109/10428194.2010.543712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Caspase-independent apoptosis induction of quorum-sensing autoinducer analogs against chronic myeloid leukemia K562. Invest New Drugs 2011; 30:862-9. [PMID: 21207239 DOI: 10.1007/s10637-010-9623-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/14/2010] [Indexed: 12/15/2022]
Abstract
Quorum sensing is defined as the ability of microorganisms to sense their population density via the release of signaling molecules called autoinducers (AIs). Various types of AI analogs were prepared and their antitumor properties against chronic myeloid leukemia (CML) K562 cells were investigated. Two AI analogs induced progressive apoptosis with JNK activation and p21 induction. In addition, this induction of apoptosis is not related to bcr-abl kinase, which sustains CML proliferation. However, the progression of apoptosis was not inhibited by a caspase family inhibitor. These results suggested that AI analogs could induce caspase-independent apoptosis in CML K562.
Collapse
|