1
|
Sabljo K, Ischyropoulou M, Napp J, Alves F, Feldmann C. High-load nanoparticles with a chemotherapeutic SN-38/FdUMP drug cocktail. NANOSCALE 2024; 16:14853-14860. [PMID: 39034735 DOI: 10.1039/d4nr01403k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
[Gd(OH)]2+[(SN-38)0.5(FdUMP)0.5]2- inorganic-organic hybrid nanoparticles (IOH-NPs) with a chemotherapeutic cocktail of ethyl-10-hydroxycamptothecin (SN-38, active form of irinotecan) and 5-fluoro-2'-deoxyuridine-5'-phosphate (FdUMP, active form of 5'-fluoruracil), 40 nm in size, are prepared in water. The IOH-NPs contain a total drug load of 63 wt% with 33 wt% of SN-38 and 30 wt% of FdUMP. Cell-based assays show efficient cellular uptake and promising anti-tumour activity on two pancreatic cancer cell lines of murine origin (KPC, Panc02). Beside the high-load drug cocktail, especially the option to use SN-38, which - although 100- to 1000-times more potent than irinotecan - is usually unsuitable for systemic administration due to poor solubility, low stability, and high toxicity upon non-selective delivery. The [Gd(OH)]2+[(SN-38)0.5(FdUMP)0.5]2- IOH-NPs are a new concept to deliver a drug cocktail with SN-38 and FdUMP directly to the tumour, shielded in a nanoparticle, to reduce side effects.
Collapse
Affiliation(s)
- Kristina Sabljo
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany.
| | - Myrto Ischyropoulou
- University Medical Center Goettingen (UMG), Institute for Diagnostic and Interventional Radiology, Robert Koch Str. 40, 37075 Goettingen, Germany
| | - Joanna Napp
- University Medical Center Goettingen (UMG), Institute for Diagnostic and Interventional Radiology, Robert Koch Str. 40, 37075 Goettingen, Germany
| | - Frauke Alves
- University Medical Center Goettingen (UMG), Institute for Diagnostic and Interventional Radiology, Robert Koch Str. 40, 37075 Goettingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Translational Molecular Imaging, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany
- University Medical Center Goettingen (UMG), Clinic for Haematology and Medical Oncology, Robert Koch Str. 40, 37075 Goettingen, Germany
| | - Claus Feldmann
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
Singh B, Semwal BC. A Compressive Review on Source, Toxicity and Biological Activity of Flavonoid. Curr Top Med Chem 2024; 24:2093-2116. [PMID: 39108008 DOI: 10.2174/0115680266316032240718050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 10/22/2024]
Abstract
Flavonoids are biologically active chemicals in various fruits, plants, vegetables, and leaves, which have promising uses in medicinal science. The health properties of these natural chemicals are widely accepted, and efforts are underway to extract the specific components referred to as flavonoids. Flavonoids demonstrate a diverse range of bio-activities, anticancer, antioxidant activity, anti-cholinesterase activity, antiinflammatory activity, antimalarial activity, antidiabetic activity, neurodegenerative disease, cardiovascular effect, hepatoprotective effects, and antiviral and antimicrobial activity. This study aims to examine the prevailing trends in flavonoid investigation studies, elucidate the activity of flavonoids, examine their various functions and uses, assess the potential of flavonoids as preventive medications for chronic diseases, and outline future research opportunities in this field. This review explores the diverse functions of flavonoids in preventing and managing various diseases.
Collapse
Affiliation(s)
- Bhoopendra Singh
- Department of Pharmacology, GLA University, NH#2 Delhi Mathura Highway, Uttar Pradesh, India
| | - Bhupesh Chander Semwal
- Department of Pharmacology, GLA University, NH#2 Delhi Mathura Highway, Uttar Pradesh, India
| |
Collapse
|
3
|
Guo M, Qin S, Wang S, Sun M, Yang H, Wang X, Fan P, Jin Z. Herbal Medicine Nanocrystals: A Potential Novel Therapeutic Strategy. Molecules 2023; 28:6370. [PMID: 37687199 PMCID: PMC10489021 DOI: 10.3390/molecules28176370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Herbal medicines have gained recognition among physicians and patients due to their lower adverse effects compared to modern medicines. They are extensively used to treat various diseases, including cancer, cardiovascular issues, chronic inflammation, microbial contamination, diabetes, obesity, and hepatic disorders, among others. Unfortunately, the clinical application of herbal medicines is limited by their low solubility and inadequate bioavailability. Utilizing herbal medicines in the form of nanocrystals (herbal medicine nanocrystals) has shown potential in enhancing solubility and bioavailability by reducing the particle size, increasing the specific surface area, and modifying the absorption mechanisms. Multiple studies have demonstrated that these nanocrystals significantly improve drug efficacy by reducing toxicity and increasing bioavailability. This review comprehensively examines therapeutic approaches based on herbal medicine nanocrystals. It covers the preparation principles, key factors influencing nucleation and polymorphism control, applications, and limitations. The review underscores the importance of optimizing delivery systems for successful herbal medicine nanocrystal therapeutics. Furthermore, it discusses the main challenges and opportunities in developing herbal medicine nanocrystals for the purpose of treating conditions such as cancer, inflammatory diseases, cardiovascular disorders, mental and nervous diseases, and antimicrobial infections. In conclusion, we have deliberated regarding the hurdles and forthcoming outlook in the realm of nanotoxicity, in vivo kinetics, herbal ingredients as stabilizers of nanocrystals, and the potential for surmounting drug resistance through the utilization of nanocrystalline formulations in herbal medicine. We anticipate that this review will offer innovative insights into the development of herbal medicine nanocrystals as a promising and novel therapeutic strategy.
Collapse
Affiliation(s)
- Mengran Guo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Sun
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi 832008, China
| | - Huiling Yang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi 832008, China
| | - Xinchun Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi 832008, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaohui Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Yenurkar D, Nayak M, Mukherjee S. Recent advances of nanocrystals in cancer theranostics. NANOSCALE ADVANCES 2023; 5:4018-4040. [PMID: 37560418 PMCID: PMC10408581 DOI: 10.1039/d3na00397c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Emerging cancer cases across the globe and treating them with conventional therapies with multiple limitations have been challenging for decades. Novel drug delivery systems and alternative theranostics are required for efficient detection and treatment. Nanocrystals (NCs) have been established as a significant cancer diagnosis and therapeutic tool due to their ability to deliver poorly water-soluble drugs with sustained release, low toxicity, and flexibility in the route of administration, long-term sustainable drug release, and noncomplicated excretion. This review summarizes several therapies of NCs, including anticancer, immunotherapy, radiotherapy, biotheranostics, targeted therapy, photothermal, and photodynamic. Further, different imaging and diagnostics using NCs are mentioned, including imaging, diagnosis through magnetic resonance imaging (MRI), computed tomography (CT), biosensing, and luminescence. In addition, the limitations and potential solutions of NCs in the field of cancer theranostics are discussed. Preclinical and clinical data depicting the importance of NCs in the spotlight of cancer, its current status, future aspects, and challenges are covered in detail.
Collapse
Affiliation(s)
- Devyani Yenurkar
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Malay Nayak
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| |
Collapse
|
5
|
Koushki M, Farrokhi Yekta R, Amiri-Dashatan N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
6
|
A Review of Pharmaceutical Nano-Cocrystals: A Novel Strategy to Improve the Chemical and Physical Properties for Poorly Soluble Drugs. CRYSTALS 2021. [DOI: 10.3390/cryst11050463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, many commercial drugs have poor solubility and bioavailability. Cocrystals are formulated to modulate active pharmaceutical ingredients’ properties with improved solubility, dissolution, and bioavailability compared to their pristine individual components in the pharmaceutical industry. Nano-cocrystals, crystals in the nano range, can further enhance these properties because of not only the cocrystal structure, but also the large surface to volume ratio of nanocrystals. Even though there are many studies on cocrystals, the research of pharmaceutical nano-cocrystals is still in the initial stage. Thus, it is necessary to conduct a systematic study on pharmaceutical nano-cocrystals. In this review, the possible preparation approaches of nano-cocrystals have been reported. To have a comprehensive understanding of nano-cocrystals, some analytical techniques and characterizations will be discussed in detail. In addition, the feasible therapeutic application of nano-cocrystals will be presented. This work is expected to provide guidance to develop new nano-cocrystals with commercial value in the pharmaceutical industry.
Collapse
|
7
|
Taymouri S, Ahmadi Z, Mirian M, Tavakoli N. Simvastatin nanosuspensions prepared using a combination of pH-sensitive and timed-release approaches for potential treatment of colorectal cancer. Pharm Dev Technol 2021; 26:335-348. [PMID: 33430677 DOI: 10.1080/10837450.2021.1872086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A dual pH- and time-dependent polymeric coated capsule was developed to achieve the site specificity of simvastatin (SIM) release in the colon. To improve the SIM solubility, soluplus-based nanosuspension of the drug were prepared by applying the anti-solvent crystallization technique; this was then followed by lyophilization. Particle size, polydispersity index, and saturation solubility were evaluated. The optimized nanosuspension was combined with SLS and freeze-dried before filling into hard gelatin capsules. Drug release characteristics of the coated capsules were studied in HCl 0.1 N, the phosphate buffers 6.8 and 7.4, and the simulated colonic fluid (pH 6.8). The in-vitro cytotoxic effects of SIM nanoparticles against HT29 cells were then evaluated using the MTT assay. The prepared nanoparticles were spherical with a mean size of 261.66 nm, the zeta potential of -18.20 and the dissolution efficiency of 59.71%. X-ray diffraction and differential scanning calorimetry studies showed that the nanosizing technique transformed the crystalline drug into the more soluble amorphous form. The coated capsules had no release in the gastric media, providing the specific delivery of SIM in the colon. The cytotoxic effect of the SIM nanoparticles was significantly increased, as compared to the free SIM. The findings, therefore, showed that the coated capsules using the two polymers of ethyl cellulose and Eudragit S100 could be suitable for the colon target delivery of SIM.
Collapse
Affiliation(s)
- Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zoha Ahmadi
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naser Tavakoli
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
9
|
Tuli HS, Mittal S, Aggarwal D, Parashar G, Parashar NC, Upadhyay SK, Barwal TS, Jain A, Kaur G, Savla R, Sak K, Kumar M, Varol M, Iqubal A, Sharma AK. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin Cancer Biol 2020; 73:196-218. [PMID: 33130037 DOI: 10.1016/j.semcancer.2020.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
In the last few decades, targeting cancer by the use of dietary phytochemicals has gained enormous attention. The plausible reason and believe or mind set behind this fact is attributed to either lesser or no side effects of natural compounds as compared to the modern chemotherapeutics, or due to their conventional use as dietary components by mankind for thousands of years. Silibinin is a naturally derived polyphenol (a flavonolignans), possess following biochemical features; molecular formula C25H22O10, Molar mass: 482.44 g/mol, Boiling point 793 °C, with strikingly high antioxidant and anti-tumorigenic properties. The anti-cancer properties of Silibinin are determined by a variety of cellular pathways which include induction of apoptosis, cell cycle arrest, inhibition of angiogenesis and metastasis. In addition, Silibinin controls modulation of the expression of aberrant miRNAs, inflammatory response, and synergism with existing anti-cancer drugs. Therefore, modulation of a vast array of cellular responses and homeostatic aspects makes Silibinin an attractive chemotherapeutic agent. However, like other polyphenols, the major hurdle to declare Silibinin a translational chemotherapeutic agent, is its lesser bioavailability. After summarizing the chemistry and metabolic aspects of Silibinin, this extensive review focuses on functional aspects governed by Silibinin in chemoprevention with an ultimate goal of summarizing the evidence supporting the chemopreventive potential of Silibinin and clinical trials that are currently ongoing, at a single platform.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | | | - Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | - Raj Savla
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| |
Collapse
|
10
|
Lazzeroni M, Petrangolini G, Legarreta Iriberri JA, Pascual Avellana J, Tost Robusté D, Cagnacci S, Macis D, Aristarco V, Bonanni B, Morazzoni P, Johansson H, Riva A. Development of an HPLC-MS/MS Method for the Determination of Silybin in Human Plasma, Urine and Breast Tissue. Molecules 2020; 25:molecules25122918. [PMID: 32599946 PMCID: PMC7356828 DOI: 10.3390/molecules25122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 11/01/2022] Open
Abstract
Silybin is a flavonolignan extracted from Silybum marianum with chemopreventive activity against various cancers, including breast. This study was designed to develop an HPLC-MS/MS method for the determination of silybin in human plasma, urine and breast tissue in early breast cancer patients undergoing Siliphos® supplementation, an oral silybin-phosphatidylcholine complex. The determination of silybin was carried out by liquid-liquid extraction with methyl-tert-butyl ether (MTBE); total silybin concentration was determined by treating the samples with β-glucuronidase, while for the determination of free silybin, the hydrolytic step was omitted. Naringenin and naproxen were selected as internal standards. The detection of the analyte was carried out by mass spectrometry and by chromatography. The HPLC-MS/MS method was evaluated in terms of selectivity, linearity, limit of quantification, precision and accuracy, and carryover. The method proved to be selective, linear, precise and accurate for the determination of silybin. To the best of our knowledge, this presents the first analytical method with the capacity to quantify the major bioactive components of milk thistle in three different biological matrices with a lower limit of quantification of 0.5 ng/mL for plasma. Silybin phosphatidylcholine, taken orally, can deliver high blood concentrations of silybin, which selectively accumulates in breast tumor tissue.
Collapse
Affiliation(s)
- Matteo Lazzeroni
- IEO-European Institute of Oncology, Division of Cancer Prevention and Genetics, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.L.); (S.C.); (D.M.); (V.A.); (B.B.); (H.J.)
| | - Giovanna Petrangolini
- Research and Development Department, Indena S.p.A., Viale Ortles 12, 20139 Milan, Italy; (P.M.); (A.R.)
- Correspondence:
| | - José Antonio Legarreta Iriberri
- Bioanalysis Department, Kymos Pharma Services S.L., Ronda Can Fatjó 7-B, 08290 Cerdanyola del Vallès, Spain; (J.A.L.I.); (J.P.A.); (D.T.R.)
| | - Jaume Pascual Avellana
- Bioanalysis Department, Kymos Pharma Services S.L., Ronda Can Fatjó 7-B, 08290 Cerdanyola del Vallès, Spain; (J.A.L.I.); (J.P.A.); (D.T.R.)
| | - Digna Tost Robusté
- Bioanalysis Department, Kymos Pharma Services S.L., Ronda Can Fatjó 7-B, 08290 Cerdanyola del Vallès, Spain; (J.A.L.I.); (J.P.A.); (D.T.R.)
| | - Sara Cagnacci
- IEO-European Institute of Oncology, Division of Cancer Prevention and Genetics, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.L.); (S.C.); (D.M.); (V.A.); (B.B.); (H.J.)
| | - Debora Macis
- IEO-European Institute of Oncology, Division of Cancer Prevention and Genetics, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.L.); (S.C.); (D.M.); (V.A.); (B.B.); (H.J.)
| | - Valentina Aristarco
- IEO-European Institute of Oncology, Division of Cancer Prevention and Genetics, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.L.); (S.C.); (D.M.); (V.A.); (B.B.); (H.J.)
| | - Bernardo Bonanni
- IEO-European Institute of Oncology, Division of Cancer Prevention and Genetics, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.L.); (S.C.); (D.M.); (V.A.); (B.B.); (H.J.)
| | - Paolo Morazzoni
- Research and Development Department, Indena S.p.A., Viale Ortles 12, 20139 Milan, Italy; (P.M.); (A.R.)
| | - Harriet Johansson
- IEO-European Institute of Oncology, Division of Cancer Prevention and Genetics, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.L.); (S.C.); (D.M.); (V.A.); (B.B.); (H.J.)
| | - Antonella Riva
- Research and Development Department, Indena S.p.A., Viale Ortles 12, 20139 Milan, Italy; (P.M.); (A.R.)
| |
Collapse
|
11
|
Kacar S, Bektur Aykanat NE, Sahinturk V. Silymarin inhibited DU145 cells by activating SLIT2 protein and suppressing expression of CXCR4. Med Oncol 2020; 37:18. [PMID: 32062757 DOI: 10.1007/s12032-020-1343-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/02/2020] [Indexed: 01/25/2023]
Abstract
Among other cancers, prostate cancer is globally the second most rampant one with the incidence of 29.4% among men. SLIT2/ROBO1 signaling is very crucial pathway causally implicated in many cancers and reported to inhibit a variety of cancer cell types. CXCR4 is a chemokine receptor implicated in cancer progression. Silymarin is a phytochemical, of which anti-carcinogenic activity was suggested in various cancers, including prostate cancer. However, there are no studies examining the effect of silymarin on SLIT2-Robo1-CXCR4 axis. Herein, our goal is to explore cytotoxic and morphological effects of silymarin on DU145 cells and to reveal its role in Slit2/Robo and CXCR1 pathway. First, 24, 48 and 72 h-long cytotoxicity tests were performed for dose analysis of silymarin, followed H-E stain for morphological evaluation with varying doses of silymarin. Afterward, western blot and immunocytochemistry analyses were carried out for SLIT2, ROBO1 and CXCR4 proteins. According to MTT analysis, IC50 concentrations for silymarin were 315, 126 and 70 µM against DU145 cells for 24, 48 and 72 h treatments. In H-E, several apoptotic hallmarks, including, condensed, kidney-shaped and eccentric nuclei, membrane blebbings and apoptotic body formations were observed. Silymarin increased the expressions of SLIT2 and ROBO1 while decreased CXCR4 when compared to control group in immunocytochemistry and Western blot. To summarize, silymarin inhibited DU145 cells dose-dependently by activating SLIT2 protein and inhibiting expression of CXCR4. This study is the first examining the interplay between Slit2-Robo1-CXCR4 proteins and silymarin in DU145 cells. We believe that our study will provide new insights for future studies.
Collapse
Affiliation(s)
- Sedat Kacar
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Nuriye Ezgi Bektur Aykanat
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Varol Sahinturk
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
12
|
Antal DS, Ardelean F, Avram S, Pavel IZ, Danciu C, Soica C, Dehelean C. Flavonolignans: One Step Further in the Broad-Spectrum Approach of Cancer. Anticancer Agents Med Chem 2020; 20:1817-1830. [PMID: 31976848 DOI: 10.2174/1871520620666200124112649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The small chemical class of flavonolignans encompasses unique hybrid molecules with versatile biological activities. Their anticancer effects have received considerable attention, and a large body of supporting evidence has accumulated. Moreover, their ability to interact with proteins involved in drug resistance, and to enhance the effects of conventional chemotherapeutics in decreasing cell viability make them influential partners in addressing cancer. OBJECTIVE The review provides an outline of the various ways in which flavonolignans advance the combat against cancer. While the main focus falls on flavonolignans from milk thistle, attention is drawn to the yet, underexplored potential of less known flavonolignan subgroups derived from isoflavonoids and aurones. METHODS Proceeding from the presentation of natural flavonolignan subtypes and their occurrence, the present work reviews these compounds with regard to their molecular targets in cancer, anti-angiogenetic effects, synergistic efficacy in conjunction with anticancer agents, reversal of drug resistance, and importance in overcoming the side effects of anticancer therapy. Recent advances in the endeavor to improve flavonolignan bioavailability in cancer are also presented. CONCLUSIONS Significant progress has been achieved in detailing the molecular mechanisms of silybin and its congeners in experimental models of cancer. The availability of novel formulations with improved bioavailability, and data from phase I clinical trials in cancer patients provide an encouraging basis for more extensive trials aimed at evaluating the benefits of Silybum flavonolignans in cancer management. On the other hand, further research on the antitumor efficacy of iso-flavonolignans and other subtypes of flavonolignans should be pursued.
Collapse
Affiliation(s)
- Diana S Antal
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Florina Ardelean
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Stefana Avram
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Z Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Dehelean
- Department of Toxicology, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
13
|
Lai F, Schlich M, Pireddu R, Fadda AM, Sinico C. Nanocrystals as Effective Delivery Systems of Poorly Water-soluble Natural Molecules. Curr Med Chem 2019; 26:4657-4680. [PMID: 30543163 DOI: 10.2174/0929867326666181213095809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Natural products are an important source of therapeutically effective compounds throughout the world. Since ancient times, a huge amount of both plant extracts and isolated compounds have been largely employed in treatment and prevention of human disorders and, currently, more than 60% of the world's population trusts on plant medicaments as demonstrated by the increasing quantity of herbal therapeutics in the market. Unfortunately, several promising natural molecules for the treatment of the most diverse ailments are characterized by extremely unfavourable features, such as low water solubility and poor/irregular bioavailability, which hinder their clinical use. To overcome these limitations and to make herbal therapy more effective, different formulative approaches have been employed. Among the different strategies for increasing drug solubility, nanocrystals can be considered one of the most interesting and successful approaches. Drug nanocrystals are nanosized drug particles usually formulated as nanosuspensions, namely submicron dispersions in liquid media where surfactants, polymers, or a mixture of both act as stabilisers. In this review, we described the most significant results and progresses concerning drug nanocrystal formulations for the delivery of natural compounds with a significant pharmacological activity. The text is organized in nine sections, each focusing on a specific poorly water- soluble natural compound (apigenin, quercetin, rutin, curcumin, baicalin and baicalein, hesperetin and hesperidin, resveratrol, lutein, silybin). To foster the clinical translation of these natural nanomedicines, our opinion is that future research should pair the essential pharmacokinetic studies with carefully designed pre-clinical experiments, able to prove the formulation efficacy in relevant animal models in vivo.
Collapse
Affiliation(s)
- Francesco Lai
- Dept. Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Michele Schlich
- Dept. Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Rosa Pireddu
- Dept. Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Anna Maria Fadda
- Dept. Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Chiara Sinico
- Dept. Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
14
|
Islan GA, Das S, Cacicedo ML, Halder A, Mukherjee A, Cuestas ML, Roy P, Castro GR, Mukherjee A. Silybin-conjugated gold nanoparticles for antimicrobial chemotherapy against Gram-negative bacteria. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Rigon C, Marchiori MCL, da Silva Jardim F, Pegoraro NS, Chaves PDS, Velho MC, Beck RCR, Ourique AF, Sari MHM, Oliveira SMD, Cruz L. Hydrogel containing silibinin nanocapsules presents effective anti-inflammatory action in a model of irritant contact dermatitis in mice. Eur J Pharm Sci 2019; 137:104969. [DOI: 10.1016/j.ejps.2019.104969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/01/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
|
16
|
Di Costanzo A, Angelico R. Formulation Strategies for Enhancing the Bioavailability of Silymarin: The State of the Art. Molecules 2019; 24:E2155. [PMID: 31181687 PMCID: PMC6600503 DOI: 10.3390/molecules24112155] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022] Open
Abstract
Silymarin, a mixture of flavonolignan and flavonoid polyphenolic compounds extractable from milk thistle (Silybum marianum) seeds, has anti-oxidant, anti-inflammatory, anti-cancer and anti-viral activities potentially useful in the treatment of several liver disorders, such as chronic liver diseases, cirrhosis and hepatocellular carcinoma. Equally promising are the effects of silymarin in protecting the brain from the inflammatory and oxidative stress effects by which metabolic syndrome contributes to neurodegenerative diseases. However, although clinical trials have proved that silymarin is safe at high doses (>1500 mg/day) in humans, it suffers limiting factors such as low solubility in water (<50 μg/mL), low bioavailability and poor intestinal absorption. To improve its bioavailability and provide a prolonged silymarin release at the site of absorption, the use of nanotechnological strategies appears to be a promising method to potentiate the therapeutic action and promote sustained release of the active herbal extract. The purpose of this study is to review the different nanostructured systems available in literature as delivery strategies to improve the absorption and bioavailability of silymarin.
Collapse
Affiliation(s)
- Alfonso Di Costanzo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, I-86100 Campobasso, Italy.
| | - Ruggero Angelico
- Department of Agriculture, Environmental and Food Sciences (DIAAA), University of Molise, I-86100 Campobasso, Italy.
| |
Collapse
|
17
|
Vue B, Zhang S, Vignau A, Chen G, Zhang X, Diaz W, Zhang Q, Zheng S, Wang G, Chen QH. O-Aminoalkyl- O-Trimethyl-2,3-Dehydrosilybins: Synthesis and In Vitro Effects Towards Prostate Cancer Cells. Molecules 2018; 23:molecules23123142. [PMID: 30501133 PMCID: PMC6320956 DOI: 10.3390/molecules23123142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
As part of our ongoing silybin project, this study aims to introduce a basic nitrogen-containing group to 7-OH of 3,5,20-O-trimethyl-2,3-dehydrosilybin or 3-OH of 5,7,20-O-trimethyl-2,3-dehydrosilybin via an appropriate linker for in vitro evaluation as potential anti-prostate cancer agents. The synthetic approaches to 7-O-substituted-3,5,20-O-trimethyl-2,3-dehydrosilybins through a five-step procedure and to 3-O-substituted-5,7,20-O-trimethyl-2,3- dehydrosilybins via a four-step transformation have been developed. Thirty-two nitrogen-containing derivatives of silybin have been achieved through these synthetic methods for the evaluation of their antiproliferative activities towards both androgen-sensitive (LNCaP) and androgen-insensitive prostate cancer cell lines (PC-3 and DU145) using the WST-1 cell proliferation assay. These derivatives exhibited greater in vitro antiproliferative potency than silibinin. Among them, 11, 29, 31, 37, and 40 were identified as five optimal derivatives with IC50 values in the range of 1.40⁻3.06 µM, representing a 17- to 52-fold improvement in potency compared to silibinin. All these five optimal derivatives can arrest the PC-3 cell cycle in the G₀/G₁ phase and promote PC-3 cell apoptosis. Derivatives 11, 37, and 40 are more effective than 29 and 31 in activating PC-3 cell apoptosis.
Collapse
Affiliation(s)
- Bao Vue
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Sheng Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Andre Vignau
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - William Diaz
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
18
|
Zhang X, Liu J, Zhang P, Dai L, Wu Z, Wang L, Cao M, Jiang J. Silibinin induces G1 arrest, apoptosis and JNK/SAPK upregulation in SW1990 human pancreatic cancer cells. Oncol Lett 2018; 15:9868-9876. [PMID: 29805688 PMCID: PMC5958732 DOI: 10.3892/ol.2018.8541] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the inhibitory effect of silibinin on SW1990 pancreatic cancer cells. An MTT assay following silibinin treatment demonstrated an inhibitory effect on AsPC-1 and SW1990 cells in a dose- and time-dependent manner. Propidium iodide staining analysis identified the cell cycle arrest of G1 phase and western blotting analysis demonstrated that the expression levels of cyclin D1, cyclin E2, cyclin A and cyclin B1 were decreased. The expression of G1-associated cell cycle-dependent kinases, cyclin-dependent kinase (CDK)4 and CDK6, were also decreased, whereas the expression of p15 (p15INK4B) was increased. In addition, after SW1990 cells were incubated with various concentrations of silibinin, early and late apoptotic cells were detected using flow cytometry. Silibinin increased the activities of caspase-9 and caspase-3, and subsequent cleavage of poly (ADP-ribose) polymerase (PARP) was also observed. The expression levels of B-cell lymphoma (Bcl)-2, Bcl-2-like 1 and myeloid cell leukemia 1 were decreased, whereas the expression of Bcl-like protein 4 did not alter and the expression levels of Bcl-2-like 1 small and Bcl-2-like protein 11 were increased. The expression levels of c-Jun N-terminal kinase (JNK) and phospho-JNK were also increased. In conclusion, silibinin inhibited cell proliferation, induced cell cycle G1 arrest via upregulating p15INK4B and induced mitochondrial apoptosis via upregulating JNK/stress-activated protein kinase (SAPK) signaling pathway in human pancreatic cancer SW1990 cells.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of General Surgery, The First People's Hospital of Nanyang City, Nanyang, Henan 473000, P.R. China
| | - Jiming Liu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Peng Zhang
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Liting Dai
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhihui Wu
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Li Wang
- Department of Laboratory, Panyu Center Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Mingrong Cao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jianwei Jiang
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
19
|
Rodriguez JP, Quilantang NG, Lee JS, Lee JM, Kim HY, Shim JS, Lee S. Determination of Silybin B in the Different Parts of Silybum marianum using HPLC-UV. ACTA ACUST UNITED AC 2018. [DOI: 10.20307/nps.2018.24.2.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joyce P. Rodriguez
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, Korea
| | - Norman G. Quilantang
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, Korea
| | - Ju Sung Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, Korea
| | - Jeong Min Lee
- Natural Products Research Team, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Jae Suk Shim
- Imsil Herbal Medicine Association, Imsil 55955, Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
20
|
Miao X, Yang W, Feng T, Lin J, Huang P. Drug nanocrystals for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1499. [PMID: 29044971 DOI: 10.1002/wnan.1499] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/26/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023]
Abstract
Drug nanocrystals (NCs) with fascinating physicochemical properties have attracted great attention in drug delivery. High drug-loading efficiency, great structural stability, steady dissolution, and long circulation time are a few examples of these properties, which makes drug NCs an excellent formulation for efficient cancer therapy. In the last two decades, there are a lot of hydrophobic or lipophilic drugs, such as paclitaxel (PTX), camptothecin (CPT), thymectacin, busulfan, cyclosporin A, 2-devinyl-2-(1-hexyloxyethyl) pyropheophorbide (HPPH), and so on, which have been formulated into drug NCs for cancer therapy. In this review, we summarized the recent advances in drug NCs-based cancer treatment. So far, there are main three methods to synthesize drug NCs, including top-down, bottom-up, and combination methods. The characterization methods of drug NCs were also elaborated. Furthermore, the applications and mechanisms of drug NCs were introduced by their administration routes. At the end, we gave a brief conclusion and discussed the future perspectives of drug NCs in cancer therapy. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Xiaoqing Miao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wuwei Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Tao Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
21
|
Chen M, Li W, Zhang X, Dong Y, Hua Y, Zhang H, Gao J, Zhao L, Li Y, Zheng A. In vitro and in vivo evaluation of SN-38 nanocrystals with different particle sizes. Int J Nanomedicine 2017; 12:5487-5500. [PMID: 28814865 PMCID: PMC5546766 DOI: 10.2147/ijn.s133816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
7-Ethyl-10-hydroxycamptothecin (SN-38) is a potent broad-spectrum antitumor drug derived from irinotecan hydrochloride (CPT-11). Due to its poor solubility and instability of the active lactone ring, its clinical use is significantly limited. As one of the most promising formulations for poorly water-soluble drugs, nanocrystals have attracted increasing attention. In order to solve these problems and evaluate the antitumor effect of SN-38 in vitro and in vivo, two nanocrystals with markedly different particle sizes were prepared. Dynamic light scattering and transmission electron microscopy were used to investigate the two nanocrystals. The particle sizes of SN-38 nanocrystals A (SN-38/NCs-A) and SN-38 nanocrystals B (SN-38/NCs-B) were 229.5±1.99 and 799.2±14.44 nm, respectively. X-ray powder diffraction analysis showed that the crystalline state of SN-38 did not change in the size reduction process. An accelerated dissolution velocity of SN-38 was achieved by nanocrystals, and release rate of SN-38/NCs-A was significantly faster than that of SN-38/NCs-B. Cellular uptake, cellular cytotoxicity, pharmacokinetics, animal antitumor efficacy, and tissue distribution were subsequently examined. As a result, enhanced intracellular accumulation in HT1080 cells and cytotoxicity on different tumor cells were observed for SN-38/NCs-A compared to that for SN-38/NCs-B and solution. Besides, compared to the SN-38 solution, SN-38/NCs-A had a higher bioavailability after intravenous injection; while the bioavailability of SN-38/NCs-B was even lower than that of the SN-38 solution. SN-38/NCs-A exhibited a significant inhibition of tumor growth compared to SN-38 solution and SN-38/NCs-B in vivo. The antitumor effect of SN-38/NCs-B was stronger than SN-38 solution. The tissue distribution study in tumor-bearing mice showed that nanocrystals could markedly improve the drug accumulation in tumor tissue by the enhanced permeability and retention effect compared to SN-38 solution, and the amount of SN-38 in tumors of SN-38/NCs-A group was much more than that of SN-38/NCs-B group. In conclusion, nanocrystals dramatically enhanced the anticancer efficacy of SN-38 in vitro and in vivo, and the particle size had a significant influence on the dissolution behavior, pharmacokinetic properties, and tumor inhibition of nanocrystals.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology.,School of Pharmacy, Jinzhou Medical University, Jinzhou
| | - Wanqing Li
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xun Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Ye Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Yabing Hua
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou
| | - Ying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology
| |
Collapse
|
22
|
Diaz C, Guzmán J, Jiménez VA, Alderete JB. Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin. Pharm Dev Technol 2017; 23:689-696. [DOI: 10.1080/10837450.2017.1315134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Carola Diaz
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - José Guzmán
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción, Talcahuano, Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
23
|
Suri GS, Kaur A, Sen T. A recent trend of drug-nanoparticles in suspension for the application in drug delivery. Nanomedicine (Lond) 2016; 11:2861-2876. [PMID: 27759500 DOI: 10.2217/nnm-2016-0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Persistent development in nanomedicine has enabled successful nanosizing of most drug samples which, in turn, imparts remarkable properties to the drugs such as enhanced solubility and bioavailability for the applications in drug delivery. In this context, several review articles are available in scientific domain covering inorganic nanoparticles such as Au, Ag, SPIONs, Qdots, carbon nanotubes and graphene; however, this review covers the development of drug nanoparticles together with their possibilities and limitation from fabrication (bottom up vs top down) to application in drug delivery during the last 5 years. In addition, some distinguished studies and novel drug particles are presented in order to contribute significantly toward the understanding of drug nanocrystals and its use in drug delivery.
Collapse
Affiliation(s)
- Gurpreet S Suri
- Nano-biomaterials Research Group, School of Physical Sciences & Computing, Centre of Materials Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Amritvir Kaur
- Nano-biomaterials Research Group, School of Physical Sciences & Computing, Centre of Materials Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Tapas Sen
- Nano-biomaterials Research Group, School of Physical Sciences & Computing, Centre of Materials Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| |
Collapse
|
24
|
Wang Y, Rong J, Zhang J, Liu Y, Meng X, Guo H, Liu H, Chen L. Morphology, in vivo distribution and antitumor activity of bexarotene nanocrystals in lung cancer. Drug Dev Ind Pharm 2016; 43:132-141. [PMID: 27588517 DOI: 10.1080/03639045.2016.1225752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study was to develop and evaluate the morphology, biodistribution and antitumor activity of bexarotene nanocrystals delivery system. The morphology was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope and bexarotene nanocrystals exhibited the advantages of making the efficacy more steady and durable compared with control group in lung with less cardiac accumulation as shown by biodistribution studies in vivo. In addition, MTT assay, flow cytometry analysis, observation of morphological changes and apoptotic body demonstrated that bexarotene nanocrystals could significantly enhance the in vitro cytotoxicity and induced G1 cycle arrest and apoptosis against A549 cells. Also, bexarotene nanocrystals had significant antitumor activity in mice bearing A549 cell line. This finding was correlated with both in vitro and in vivo. Thereby, the overall results suggest that the bexarotene nanocrystals represent a potential source of medicine, which made bexarotene nanocrystals a promising candidate for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yongjie Wang
- b Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , 250012 , P.R. China
| | - Jinghong Rong
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China
| | - Jiaozhen Zhang
- c Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE) , School of Pharmaceutical Sciences, Shandong University , Jinan , 250012 , P.R. China
| | - Yu Liu
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China
| | - Xuelian Meng
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China
| | - Hejian Guo
- b Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , 250012 , P.R. China
| | - Hongsheng Liu
- d Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province , Shenyang , 110036 , P.R. China
| | - Lijiang Chen
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China.,d Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province , Shenyang , 110036 , P.R. China
| |
Collapse
|
25
|
Sak K, Everaus H. Nanotechnological approach to improve the bioavailability of dietary flavonoids with chemopreventive and anticancer properties. NUTRACEUTICALS 2016:427-479. [DOI: 10.1016/b978-0-12-804305-9.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
26
|
Rui TQ, Zhang L, Qiao HZ, Huang P, Qian S, Li JS, Chen ZP, Fu TM, Di LQ, Cai B. Preparation and Physicochemical and Pharmacokinetic Characterization of Ginkgo Lactone Nanosuspensions for Antiplatelet Aggregation. J Pharm Sci 2016; 105:242-9. [DOI: 10.1016/j.xphs.2015.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 08/01/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022]
|
27
|
Wang Y, Song J, Chow SF, Chow AHL, Zheng Y. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation. Int J Pharm 2015; 494:479-89. [PMID: 26302857 DOI: 10.1016/j.ijpharm.2015.08.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023]
Abstract
The present study was aimed at tailoring the particle size of ursolic acid (UA) nanosuspension for improved anticancer activity. UA nanosuspensions were prepared by antisolvent precipitation using a four-stream multi-inlet vortex mixer (MIVM) under defined conditions of varying solvent composition, drug feeding concentration or stream flow rate. The resulting products were characterized for particle size and polydispersity. Two of the UA nanosuspensions with mean particle sizes of 100 and 300 nm were further assessed for their in-vitro activity against MCF-7 breast cancer cells using fluorescence microscopy with 4',6-diamidino-2-phenylindole (DAPI) staining, as well as flow cytometry with propidium (PI) staining and with double staining by fluorescein isothiocyanate. It was revealed that the solvent composition, drug feeding concentration and stream flow rate were critical parameters for particle size control of the UA nanosuspensions generated with the MIVM. Specifically, decreasing the UA feeding concentration or increasing the stream flow rate or ethanol content resulted in a reduction of particle size. Excellent reproducibility for nanosuspension production was demonstrated for the 100 and 300 nm UA preparations with a deviation of not more than 5% in particle size from the mean value of three independent batches. Fluorescence microscopy and flow cytometry revealed that these two different sized UA nanosuspensions, particularly the 300 nm sample, exhibited a higher anti-proliferation activity against the MCF-7 cells and afforded a larger population of these cells in both early and late apoptotic phases. In conclusion, MIVM is a robust and pragmatic tool for tailoring the particle size of the UA nanosuspension. Particle size appears to be a critical determinant of the anticancer activity of the UA nanoparticles.
Collapse
Affiliation(s)
- Yancai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Ju Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Beijing Aohe Pharmaceutical Research Institute Co. Ltd., Beijing 101113, China
| | - Shing Fung Chow
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
| | - Albert H L Chow
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
28
|
Lu Y, Chen Y, Gemeinhart RA, Wu W, Li T. Developing nanocrystals for cancer treatment. Nanomedicine (Lond) 2015; 10:2537-52. [PMID: 26293310 DOI: 10.2217/nnm.15.73] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanocrystals are carrier-free solid drug particles that are sized in the nanometer range and have crystalline characteristics. Due to high drug loading (as high as 100%) - free of organic solvents or solubilizing chemicals - nanocrystals have become attractive in the field of drug delivery for cancer treatment. Top-down and bottom-up approaches have been developed for preparing anticancer nanocrystals. In this review, preparation methods and in vivo performance of anticancer nanocrystals are discussed first, followed by an introduction of hybrid nanocrystals in cancer theranostics.
Collapse
Affiliation(s)
- Yi Lu
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yan Chen
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Department of Pharmaceutics, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Richard A Gemeinhart
- Departments of Biopharmaceutical Sciences, Bioengineering & Ophthalmology & Visual Sciences, The University of Illinois, Chicago, IL 60612, USA
| | - Wei Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tonglei Li
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
29
|
Zhou X, Chen Z. Preparation and performance evaluation of emulsomes as a drug delivery system for silybin. Arch Pharm Res 2015; 38:2193-200. [PMID: 26152876 DOI: 10.1007/s12272-015-0630-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/02/2015] [Indexed: 12/17/2022]
Abstract
We developed silybin (SIL) emulsomes and evaluated their physicochemical properties and the in vivo pharmacokinetics of SIL delivered by emulsomes in rats. SIL emulsomes were prepared using the thin film dispersion method. SIL emulsomes were evaluated for their entrapment efficiency, particle size, zeta potential, morphology, in vitro release, and in vivo drug delivery in rats. The entrapment efficiency was above 80 %. The average particle size and zeta potential were 364.1 ± 20 nm and -34 ± 8 mV, respectively. Morphological analysis revealed that the SIL emulsomes were spherical in shape. Compared to an SIL solution, emulsomes produced sustained release of SIL for up to 48 h after an initial burst release in vitro. The pharmacokinetics of SIL emulsomes in rats were evaluated after intravenous injection, and the results were compared with those obtained for the control SIL solution. Following SIL delivery by emulsomes, the area under the curve was 2.2-fold higher and the mean residence time was 2.5-fold higher than the corresponding values recorded using SIL solution. Hence, emulsomes might represent a promising system for improving the bioavailability of lipophilic drugs. Moreover, emulsomes produce sustained drug release, which is advantageous in the clinical setting.
Collapse
Affiliation(s)
- Xiaodan Zhou
- Department of Pharmacy, Gansu Provincial Hospital, 204 Donggang West Road, Lanzhou, 730000, China.
| | - Zhipeng Chen
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
30
|
Tang XJ, Han M, Yang B, Shen YQ, He ZG, Xu DH, Gao JQ. Nanocarrier improves the bioavailability, stability and antitumor activity of camptothecin. Int J Pharm 2014; 477:536-45. [PMID: 25445532 DOI: 10.1016/j.ijpharm.2014.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/26/2014] [Indexed: 12/12/2022]
Abstract
Camptothecin (CPT) nanosuspension was prepared by anti-solvent precipitation with TPGS as stabilizer to improve the solubility, stability and antitumor activity of CPT. And an increased solubility, stability and dissolution rate was achieved after nanosuspension being prepared. While, enhanced intracellular accumulation and cellular cytotoxicity was also observed for CPT nanosuspension than that of CPT solution.In addition, nanosuspension could increase bioavailability and intratumor accumulation of CPT in vivo after intravenous administration, and then produced a much higher antitumor effect and biocompatibility than that of CPT solution. Meanwhile, an enhanced cellular CPT uptake in hypoxic or acid conditions could also be observed for nanosuspension. As a result, nanosuspension represents a potentially feasible formation for insoluble drug in antitumor research.
Collapse
Affiliation(s)
- Xin-Jiang Tang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Min Han
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - You-Qing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zhong-Gui He
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Dong-Hang Xu
- The Second Affiliated Hospital of Zhejiang University, Hangzhou 310001, PR China
| | - Jian-Qing Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
31
|
Luan J, Yang X, Chu L, Xi Y, Zhai G. PEGylated long circulating nanostructured lipid carriers for Amoitone B: Preparation, cytotoxicity and intracellular uptake. J Colloid Interface Sci 2014; 428:49-56. [DOI: 10.1016/j.jcis.2014.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 11/27/2022]
|
32
|
Kim YS, Hwang JW, Kwon HJ, Lee WY, Song H, Jeong JH, Sung SH, Moon SH, Jeon BT, Park PJ. n-butanol fraction of Uncaria rhynchophylla induces apoptosis in human hepatoma cancer cells through activation of PARP. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0644-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Sun CC, Xu HM, Yuan Y, Gao ZH, Lou HX, Qu XJ. Riccardin D, a Macrocyclic Bisbibenzy, Inhibits Human Breast Cancer Growth through the Suppression of Telomerase Activity. Basic Clin Pharmacol Toxicol 2014; 115:488-98. [DOI: 10.1111/bcpt.12267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/02/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Cui-Cui Sun
- Department of Pharmacology; Key Laboratory of Chemical Biology; School of Pharmaceutical Sciences; Shandong University; Jinan China
| | - Hui-Min Xu
- Faculty of Radiologic Sciences; School of Medicine; Qingdao University; Qingdao China
| | - Yi Yuan
- Department of Pharmacology; Key Laboratory of Chemical Biology; School of Pharmaceutical Sciences; Shandong University; Jinan China
| | - Zu-Hua Gao
- Department of Pharmacology; School of Chemical Biology & Pharmaceutical Sciences; Capital Medical University; Beijing China
- Department of Pathology; McGill University; Montreal QC Canada
| | - Hong-Xiang Lou
- Department of Pharmacology; Key Laboratory of Chemical Biology; School of Pharmaceutical Sciences; Shandong University; Jinan China
| | - Xian-Jun Qu
- Department of Pharmacology; Key Laboratory of Chemical Biology; School of Pharmaceutical Sciences; Shandong University; Jinan China
- Department of Pharmacology; School of Chemical Biology & Pharmaceutical Sciences; Capital Medical University; Beijing China
| |
Collapse
|
34
|
Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release 2014; 183:51-66. [PMID: 24667572 DOI: 10.1016/j.jconrel.2014.03.030] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
Formulation of nanocrystals is a robust approach which can improve delivery of poorly water soluble drugs, a challenge pharmaceutical industry has been facing since long. Large scale production of nanocrystals is done by techniques like precipitation, media milling and, high pressure homogenization. Application of appropriate stabilizers along with drying accords long term stability and commercial viability to nanocrystals. These can be administered through oral, parenteral, pulmonary, dermal and ocular routes showing their high therapeutic applicability. They serve to target drug molecules in specific regions through size manipulation and surface modification. This review dwells upon the in-vivo fate and varying applications in addition to the facets of drug nanocrystals stated above.
Collapse
Affiliation(s)
- Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Siddharth Gupta
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
35
|
Hao L, Luan J, Zhang D, Li C, Guo H, Qi L, Liu X, Li T, Zhang Q. Research on the in vitro anticancer activity and in vivo tissue distribution of Amoitone B nanocrystals. Colloids Surf B Biointerfaces 2014; 117:258-66. [PMID: 24657612 DOI: 10.1016/j.colsurfb.2014.02.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 11/18/2022]
Abstract
Amoitone B, a natural agonist to Nur77, is a promising anticancer drug. However, its application is seriously restricted due to the water-insolubility and short biological half-life. Amoitone B nanocrystals (AmB-NC) were formulated by microfluidization method to overcome the above obstacles. This study aims to evaluate the cytotoxicity and tissue distribution of AmB-NC. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay revealed the improved in vitro antitumor activity of AmB-NC against stomach, colon, liver and lung cancer cells compared with Amoitone B solution. Meanwhile, observation of morphological changes, cell cycle and apoptosis examination using flow cytometry exhibited that AmB-NC could induce G1 cycle arrest and markedly enhance the apoptosis of human gastric cancer BGC-823 cell line. Tissue distribution study demonstrated that AmB-NC had a higher distribution in liver and lung, which was helpful for relevant cancer treatment. In conclusion, AmB-NC could be a potential delivery system for treatment of human cancer.
Collapse
Affiliation(s)
- Leilei Hao
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | - Jingjing Luan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | - Dianrui Zhang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China.
| | - Caiyun Li
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | - Hejian Guo
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | - Lisi Qi
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | - Xinquan Liu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | - Tingting Li
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100083, PR China
| |
Collapse
|
36
|
Song J, Wang Y, Song Y, Chan H, Bi C, Yang X, Yan R, Wang Y, Zheng Y. Development and characterisation of ursolic acid nanocrystals without stabiliser having improved dissolution rate and in vitro anticancer activity. AAPS PharmSciTech 2014; 15:11-19. [PMID: 24022345 PMCID: PMC3909170 DOI: 10.1208/s12249-013-0028-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/20/2013] [Indexed: 01/05/2023] Open
Abstract
Ursolic acid (UA), which is a natural pentacyclic triterpenoid, has the potential to be developed as an anticancer drug, whereas its poor aqueous solubility and dissolution rate limit its clinical application. The aim of the present study was to develop UA nanocrystals to enhance its aqueous dispersibility, dissolution rate and anticancer activity. Following the investigation on the effects of stabiliser, the ratio of organic phase to aqueous solution and drug concentration, the UA nanocrystals without stabiliser were successfully prepared by anti-solvent precipitation approach. The nanocrystals maintained similar crystallinity with particle size, polydispersion index and zeta potential values of 188.0 ± 4.4 nm, 0.154 ± 0.022, and -25.0 ± 5.9 mV, respectively. Compared with the raw material, the UA nanocrystals showed good aqueous dispensability and a higher dissolution rate, and they could be completely dissolved in 0.5% SDS solution within 120 min. Moreover, the suspension of UA nanocrystals was physically stable after storage at 4°C for 7 weeks. By inducing G2/M phase cell cycle arrest, the UA nanocrystals significantly induced stronger cell growth inhibition activity against MCF-7 cells compared with free drug in vitro, although the uptake of free UA was approximately twice higher than that of the UA nanocrystals. The UA nanocrystals may be used as a potential delivery formulation for intravenous injection with enhanced dissolution velocity and anticancer activity.
Collapse
Affiliation(s)
- Ju Song
- />State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 2/F, Room 204A, Block 3, Av. Padre Tomás Pereira, S.J. Taipa, Macao,, SAR China
| | - Yancai Wang
- />State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 2/F, Room 204A, Block 3, Av. Padre Tomás Pereira, S.J. Taipa, Macao,, SAR China
- />School of Chemistry and Pharmaceutical Engineering, Shandong Polytechnic University, Jinan, 250353 China
| | - Yuelin Song
- />State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 2/F, Room 204A, Block 3, Av. Padre Tomás Pereira, S.J. Taipa, Macao,, SAR China
| | - Hokman Chan
- />State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 2/F, Room 204A, Block 3, Av. Padre Tomás Pereira, S.J. Taipa, Macao,, SAR China
| | - Chao Bi
- />State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 2/F, Room 204A, Block 3, Av. Padre Tomás Pereira, S.J. Taipa, Macao,, SAR China
| | - Xiao Yang
- />State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 2/F, Room 204A, Block 3, Av. Padre Tomás Pereira, S.J. Taipa, Macao,, SAR China
| | - Ru Yan
- />State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 2/F, Room 204A, Block 3, Av. Padre Tomás Pereira, S.J. Taipa, Macao,, SAR China
| | - Yitao Wang
- />State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 2/F, Room 204A, Block 3, Av. Padre Tomás Pereira, S.J. Taipa, Macao,, SAR China
| | - Ying Zheng
- />State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 2/F, Room 204A, Block 3, Av. Padre Tomás Pereira, S.J. Taipa, Macao,, SAR China
| |
Collapse
|
37
|
Evaluation of pluronic nanosuspensions loading a novel insoluble anticancer drug both in vitro and in vivo. Int J Pharm 2013; 456:243-50. [DOI: 10.1016/j.ijpharm.2013.07.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/18/2013] [Accepted: 07/27/2013] [Indexed: 11/23/2022]
|
38
|
Stability of nanosuspensions in drug delivery. J Control Release 2013; 172:1126-41. [PMID: 23954372 DOI: 10.1016/j.jconrel.2013.08.006] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 01/28/2023]
Abstract
Nanosuspensions are nanosized colloidal dispersion systems that are stabilized by surfactants and/or polymers. Because nanosizing results in the creation of new interfaces and in a positive Gibbs free energy change, nanosuspensions are thermodynamically unstable systems with a tendency toward agglomeration or crystal growth. Despite extensive research on nanosuspension technology, stability remains a limitation for pharmaceutical or industrial applications of nanosuspensions. Furthermore, the empirical relationship between stabilizer efficacy and nanosuspension stability has not been well characterized. This review focuses on the issue of nanosuspension stability in drug delivery to present the state of the art of nanosuspensions. Therefore, this review will discuss unstable suspensions, methods and guidelines for selecting and optimizing stabilizers, approaches for enhancing stability, and other factors that influence nanosuspension stability. This review could serve as a reference for the educated selection of a stabilizer for a specific drug candidate and the optimization of the operational parameters for nanosuspension formulation, rather than the currently practiced trial-and-error approach.
Collapse
|
39
|
Talekar M, Ganta S, Amiji M, Jamieson S, Kendall J, Denny WA, Garg S. Development of PIK-75 nanosuspension formulation with enhanced delivery efficiency and cytotoxicity for targeted anti-cancer therapy. Int J Pharm 2013; 450:278-89. [PMID: 23632263 DOI: 10.1016/j.ijpharm.2013.04.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 02/07/2023]
Abstract
PIK-75 is a phosphatidylinositol 3-kinase (PI3K) inhibitor that shows selectivity toward p110-α over the other PI3K class Ia isoforms p110-β and p110-δ, but it lacks solubility, stability and other kinase selectivity. The purpose of this study was to develop folate-targeted PIK-75 nanosuspension for tumor targeted delivery and to improve therapeutic efficacy in human ovarian cancer model. High pressure homogenization was used to prepare the non-targeted and targeted PIK-75 nanosuspensions which were characterized for size, zeta potential, entrapment efficiency, morphology, saturation solubility and dissolution velocity. In vitro analysis of drug uptake, cell viability and cell survival was conducted in SKOV-3 cells. Drug pharmacokinetics and pAkt expression were determined in SKOV-3 tumor bearing mice. PIK-75 nanosuspensions showed an improvement in dissolution velocity and an 11-fold increase in saturation solubility over pre-milled PIK-75. In vitro studies in SKOV-3 cells indicated a 2-fold improvement in drug uptake and 0.4-fold decrease in IC50 value of PIK-75 following treatment with targeted nanosuspension compared to non-targeted nanosuspension. The improvement in cytotoxicity was attributed to an increase in caspase 3/7 and hROS activity. In vivo studies indicated a 5-10-fold increased PIK-75 accumulation in the tumor with both the nanosuspension formulations compared to PIK-75 suspension. The targeted nanosuspension showed an enhanced downregulation of pAkt compared to non-targeted formulation system. These results illustrate the opportunity to formulate PIK-75 as a targeted nanosuspension to enhance uptake and cytotoxicity of the drug in tumor.
Collapse
Affiliation(s)
- Meghna Talekar
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
40
|
Nanosuspensions: a new approach for organ and cellular targeting in infectious diseases. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0051-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Abstract
Nowadays, a very large proportion of new drug candidates emerging from drug discovery programmes are water insoluble and thus poorly bioavailable. To avoid this problem, nanotechnology for drug delivery has gained much interest as a way to improve the solubility problems. Nano refers to particles size range of 1–1000 nm. The reduction of drug particles into the submicron range leads to a significant increase in the dissolution rate and therefore enhances bioavailability. Nanosuspensions are part of nanotechnology. This interacts with the body at subcellular (i.e., molecular) scales with a high degree of specificity and can be potentially translated into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic efficacy with minimal side effects. Production of drugs as nanosuspensions can be developed for drug delivery systems as an oral formulation and nonoral administration. Here, this review describes the methods of pharmaceutical nanosuspension production including advantages and disadvantages, potential benefits, characterization tests, and pharmaceutical applications in drug delivery.
Collapse
|
42
|
Abstract
There is a need for developing improved therapeutic options for the management of prostate cancer, able to inhibit proliferation of precancerous and malignant lesions and/or to improve the effectiveness of conventional chemopreventive and chemotherapeutic agents. In this perspective, application of nanotechnology based strategies for the delivery of natural compounds for effective management of the disease is being actively researched. Here, after highlighting the most promising natural compounds for chemoprevention and chemotherapy of prostate cancer, the state of the art nanotherapeutics and the recent proof-of-concept of "nanochemoprevention", as well as the clinical development of promising targeted nanoprototypes for use in the prostate cancer treatment are being discussed.
Collapse
|
43
|
Begnini KR, Rizzi C, Campos VF, Borsuk S, Schultze E, Yurgel VC, Nedel F, Dellagostin OA, Collares T, Seixas FK. Auxotrophic recombinant Mycobacterium bovis BCG overexpressing Ag85B enhances cytotoxicity on superficial bladder cancer cells in vitro. Appl Microbiol Biotechnol 2012; 97:1543-52. [DOI: 10.1007/s00253-012-4416-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
|
44
|
Shen G, Wang Q, Zhang Q, Sun H, Zhao Y, Zhang Z, Du B. Tissue distribution of 2-methoxyestradiol nanosuspension in rats and its antitumor activity in C57BL/6 mice bearing lewis lung carcinoma. Drug Deliv 2012; 19:327-33. [DOI: 10.3109/10717544.2012.721142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Liu G, Zhang D, Jiao Y, Guo H, Zheng D, Jia L, Duan C, Liu Y, Tian X, Shen J, Li C, Zhang Q, Lou H. In vitro and in vivo evaluation of riccardin D nanosuspensions with different particle size. Colloids Surf B Biointerfaces 2012; 102:620-6. [PMID: 23107940 DOI: 10.1016/j.colsurfb.2012.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/09/2012] [Accepted: 09/04/2012] [Indexed: 11/16/2022]
Abstract
Riccardin D (RD) is a novel compound extracted from Chinese liverwort Marchantia polymorpha L. It exhibits various anticancer activities and can be used during lung cancer treatment. However, the compound's low solubility hinders its development. Recently nanosuspension has been developed as one of the most promising formulations for poorly water-soluble drugs. In order to understand the dissolution behavior of riccardin D in vitro and in vivo, two nanosuspensions of riccardin D with markedly different sizes were prepared. The particle size of nanosuspension A prepared by bottom-up method was 184.1±3.15 nm, while that of nanosuspension B prepared by top-down method was 815.4±9.65 nm. The main purpose of this study was to investigate the effects of particle size on pharmacokinetics and tissue distribution after intravenous administration. Riccardin D dissolving in organic solution was studied as control group. In pharmacokinetics study in Wistar rats, nanosuspension A showed properties similar to the control group, while nanosuspension B exhibited rather different properties. In tissue distribution research on Kunming strain mice, nanosuspension A had a multi-peak phenomenon because of reticulate endothelial system (RES) while nanosuspension B showed a high uptake in RES organs that passively target to the lungs. In conclusion, particle size of riccardin D nanosuspensions had obvious effects on pharmacokinetics and tissue distribution.
Collapse
Affiliation(s)
- Guangpu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nedel F, Campos VF, Alves D, McBride AJA, Dellagostin OA, Collares T, Savegnago L, Seixas FK. Substituted diaryl diselenides: cytotoxic and apoptotic effect in human colon adenocarcinoma cells. Life Sci 2012; 91:345-52. [PMID: 22884807 DOI: 10.1016/j.lfs.2012.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/12/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
AIMS To investigate the effects and study the underlying cell death mechanisms of diaryl diselenides, including: diphenyl diselenide (C(6)H(5)Se)(2); 4-chlorodiphenyl diselenide (4-ClC(6)H(4)Se)(2); 3-(trifluoromethyl)-diphenyl diselenide (3-CF(3)C(6)H(4)Se)(2) and 4-methoxydiphenyl diselenide (4-MeOC(6)H(4)Se)(2), on the human colon adenocarcinoma cell line HT-29. MAIN METHODS The viability of HT-29 cells after exposure to the diaryl diselenides and its substituted structures was based on the MTT assay. To verify if cell death was mediated throughout apoptosis mechanisms, flow cytometry and real-time PCR (qPCR) analyses were conducted. KEY FINDINGS The MTT assay and flow cytometry analyses showed that (3-CF(3)C(6)H(4)Se)(2) and (4-MeOC(6)H(4)Se)(2) induced cytotoxicity through apoptosis mechanisms in HT-29 cells. qPCR revealed there was an up-regulation of pro-apoptotic (Bax, casapase-9, caspase-8, apoptosis-inducing factor (AIF) and Endonuclease G (EndoG)) and cell-cycle arrest genes (p53 and p21) and down-regulation of anti-apoptotic (Bcl-2 and survivin) and Myc genes. SIGNIFICANCE These results demonstrate that (3-CF(3)C(6)H(4)Se)₂ and (4-MeOC(6)H(4)Se)(2) have the potential to induce apoptosis in HT-29 cells through the activation of caspase-dependent and independent pathways and through cell-cycle arrest.
Collapse
Affiliation(s)
- Fernanda Nedel
- Grupo de Oncologia Celular e Molecular, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico/Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS 96010-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Nanosuspension drug delivery has obtained great success in the preparation of insoluble drugs. The nanosuspension technology can confer a series of special characteristics to the drugs, such as the enhanced dissolution rate and saturation solubility. This mini review first described the differences between the nanocrystals and nanosuspensions. Next, the product techniques, the stable measures, the special features, and the routes of administration of the nanosuspensions were reviewed and compared. Finally, some existing shortcomings of the nanosuspensions were mentioned and the perspectives of the nanosuspensions were also made.
Collapse
Affiliation(s)
- Yue Liu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, PR China
| | | | | | | |
Collapse
|
48
|
Sun CC, Zhang YS, Xue X, Cheng YN, Liu HP, Zhao CR, Lou HX, Qu XJ. Inhibition of angiogenesis involves in anticancer activity of riccardin D, a macrocyclic bisbibenzyl, in human lung carcinoma. Eur J Pharmacol 2011; 667:136-43. [DOI: 10.1016/j.ejphar.2011.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/11/2011] [Accepted: 06/06/2011] [Indexed: 01/07/2023]
|