1
|
Kim JH, Ahn JS, Lee DS, Hong SH, Lee HJ. Anti-Cancer Effect of Neural Stem Cells Transfected with Carboxylesterase and sTRAIL Genes in Animals with Brain Lesions of Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1156. [PMID: 37631070 PMCID: PMC10458428 DOI: 10.3390/ph16081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
A metastatic brain tumor is the most common type of malignancy in the central nervous system, which is one of the leading causes of death in patients with lung cancer. The purpose of this study is to evaluate the efficacy of a novel treatment for metastatic brain tumors with lung cancer using neural stem cells (NSCs), which encode rabbit carboxylesterase (rCE) and the secretion form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). rCE and/or sTRAIL were transduced in immortalized human fetal NSCs, HB1.F3. The cytotoxic effects of the therapeutic cells on human lung cancer cells were evaluated in vitro with the ligands and decoy receptor expression for sTRAIL in the presence of CPT-11. Human NSCs encoding rCE (F3.CE and F3.CE.sTRAIL) significantly inhibited the growth of lung cancer cells in the presence of CPT-11 in vitro. Lung cancer cells were inoculated in immune-deficient mice, and therapeutic cells were transplanted systematically through intracardiac arterial injection and then treated with CPT-11. In resting state, DR4 expression in lung cancer cells and DcR1 in NSCs increased to 70% and 90% after CPT-11 addition, respectively. The volumes of the tumors in immune-deficient mice were reduced significantly in mice with F3.CE.sTRAIL transplantation and CPT-11 treatment. The survival was also significantly prolonged with treatment with F3.sTRAIL and F3.CE plus CPT-11 as well as F3.CE.sTRAIL plus CPT-11. NSCs transduced with rCE and sTRAIL genes showed a significant anti-cancer effect on brain metastatic lung cancer in vivo and in vitro, and the effect may be synergistic when rCE/CPT-11 and sTRAIL are combined. This stem-cell-based study using two therapeutic genes of different biological effects can be translatable to clinical application.
Collapse
Affiliation(s)
- Jung Hak Kim
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seok Ho Hong
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hong J. Lee
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
2
|
Brain Cancer Treatment; A Systematic Review. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: One of the most common aggressive and primary brain tumors is glioma. The majority of diagnoses are referred to high-grade malignant glioblastoma, which carries the worst prognosis. Still, treatment of brain tumors remains a big challenge for clinicians. This study was designed to investigate the efficacy of gene therapy in the treatment of brain cancer. Methods: Studies use genes as a therapeutic agent in brain cancer treatment even alone or in combination with other treatment methods. Full-text papers, which met the inclusion criteria, were independently assessed by two reviewers. Disagreements were resolved by consultation with a third reviewer. Results: Statistical analysis showed that 50% of the papers used a virus, 36% used polymers, and 14% used cells as carriers to transfect the genes as a therapeutic agent in brain tumor models. Data showed that the estimated size of the brain tumor was reduced by using co-treatment of the gene with one of the conventional therapies. Conclusions: According to the results, co-treatment of the gene with conventional therapies could be more effective than the monotherapy methods.
Collapse
|
3
|
Sadanandan N, Shear A, Brooks B, Saft M, Cabantan DAG, Kingsbury C, Zhang H, Anthony S, Wang ZJ, Salazar FE, Lezama Toledo AR, Rivera Monroy G, Vega Gonzales-Portillo J, Moscatello A, Lee JY, Borlongan CV. Treating Metastatic Brain Cancers With Stem Cells. Front Mol Neurosci 2021; 14:749716. [PMID: 34899179 PMCID: PMC8651876 DOI: 10.3389/fnmol.2021.749716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy may present an effective treatment for metastatic brain cancer and glioblastoma. Here we posit the critical role of a leaky blood-brain barrier (BBB) as a key element for the development of brain metastases, specifically melanoma. By reviewing the immunological and inflammatory responses associated with BBB damage secondary to tumoral activity, we identify the involvement of this pathological process in the growth and formation of metastatic brain cancers. Likewise, we evaluate the hypothesis of regenerating impaired endothelial cells of the BBB and alleviating the damaged neurovascular unit to attenuate brain metastasis, using the endothelial progenitor cell (EPC) phenotype of bone marrow-derived mesenchymal stem cells. Specifically, there is a need to evaluate the efficacy for stem cell therapy to repair disruptions in the BBB and reduce inflammation in the brain, thereby causing attenuation of metastatic brain cancers. To establish the viability of stem cell therapy for the prevention and treatment of metastatic brain tumors, it is crucial to demonstrate BBB repair through augmentation of vasculogenesis and angiogenesis. BBB disruption is strongly linked to metastatic melanoma, worsens neuroinflammation during metastasis, and negatively influences the prognosis of metastatic brain cancer. Using stem cell therapy to interrupt inflammation secondary to this leaky BBB represents a paradigm-shifting approach for brain cancer treatment. In this review article, we critically assess the advantages and disadvantages of using stem cell therapy for brain metastases and glioblastoma.
Collapse
Affiliation(s)
| | - Alex Shear
- University of Florida, Gainesville, FL, United States
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Madeline Saft
- University of Michigan, Ann Arbor, MI, United States
| | | | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Henry Zhang
- University of Florida, Gainesville, FL, United States
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | | | - Alexa Moscatello
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
4
|
Portnow J, Badie B, Suzette Blanchard M, Kilpatrick J, Tirughana R, Metz M, Mi S, Tran V, Ressler J, D'Apuzzo M, Aboody KS, Synold TW. Feasibility of intracerebrally administering multiple doses of genetically modified neural stem cells to locally produce chemotherapy in glioma patients. Cancer Gene Ther 2020; 28:294-306. [PMID: 32895489 PMCID: PMC8843788 DOI: 10.1038/s41417-020-00219-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) are tumor tropic and can be genetically modified to produce anti-cancer therapies locally in the brain. In a prior first-in-human study we demonstrated that a single dose of intracerebrally administered allogeneic NSCs, which were retrovirally transduced to express cytosine deaminase (CD), tracked to glioma sites and converted oral 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU). The next step in the clinical development of this NSC-based anti-cancer strategy was to assess the feasibility of administering multiple intracerebral doses of CD-expressing NSCs (CD-NSCs) in patients with recurrent high grade gliomas. CD-NSCs were given every 2 weeks using an indwelling brain catheter, followed each time by a 7-day course of oral 5-FC (and leucovorin in the final patient cohort). Fifteen evaluable patients received a median of 4 (range 2–10) intracerebral CD-NSC doses; doses were escalated from 50 x 106 to 150 x 106 CD-NSCs. Neuropharmacokinetic data confirmed that CD-NSCs continuously produced 5-FU in the brain during the course of 5-FC. There were no clinical signs of immunogenicity, and only three patients developed anti-NSC antibodies. Our results suggest intracerebral administration of serial doses of CD-NSCs is safe and feasible and identified a recommended dose for phase II testing of 150 x 106 CD-NSCs.
Collapse
Affiliation(s)
- Jana Portnow
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| | - Behnam Badie
- Department of Surgery, Division of Neurosurgery, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - M Suzette Blanchard
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Julie Kilpatrick
- Department of Clinical Research, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Revathiswari Tirughana
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.,Office of IND Development and Regulatory Affairs, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Marianne Metz
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Shu Mi
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Vivi Tran
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Julie Ressler
- Department of Diagnostic Radiology, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Karen S Aboody
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Timothy W Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| |
Collapse
|
5
|
Andreou T, Rippaus N, Wronski K, Williams J, Taggart D, Cherqui S, Sunderland A, Kartika YD, Egnuni T, Brownlie RJ, Mathew RK, Holmen SL, Fife C, Droop A, Lorger M. Hematopoietic Stem Cell Gene Therapy for Brain Metastases Using Myeloid Cell-Specific Gene Promoters. J Natl Cancer Inst 2020; 112:617-627. [PMID: 31501884 PMCID: PMC7301153 DOI: 10.1093/jnci/djz181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 07/16/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Brain metastases (BrM) develop in 20-40% of cancer patients and represent an unmet clinical need. Limited access of drugs into the brain because of the blood-brain barrier is at least partially responsible for therapeutic failure, necessitating improved drug delivery systems. METHODS Green fluorescent protein (GFP)-transduced murine and nontransduced human hematopoietic stem cells (HSCs) were administered into mice (n = 10 and 3). The HSC progeny in mouse BrM and in patient-derived BrM tissue (n = 6) was characterized by flow cytometry and immunofluorescence. Promoters driving gene expression, specifically within the BrM-infiltrating HSC progeny, were identified through differential gene-expression analysis and subsequent validation of a series of promoter-green fluorescent protein-reporter constructs in mice (n = 5). One of the promoters was used to deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to BrM in mice (n = 17/21 for TRAIL vs control group). RESULTS HSC progeny (consisting mostly of macrophages) efficiently homed to macrometastases (mean [SD] = 37.6% [7.2%] of all infiltrating cells for murine HSC progeny; 27.9% mean [SD] = 27.9% [4.9%] of infiltrating CD45+ hematopoietic cells for human HSC progeny) and micrometastases in mice (19.3-53.3% of all macrophages for murine HSCs). Macrophages were also abundant in patient-derived BrM tissue (mean [SD] = 8.8% [7.8%]). Collectively, this provided a rationale to optimize the delivery of gene therapy to BrM within myeloid cells. MMP14 promoter emerged as the strongest promoter construct capable of limiting gene expression to BrM-infiltrating myeloid cells in mice. TRAIL delivered under MMP14 promoter statistically significantly prolonged survival in mice (mean [SD] = 19.0 [3.4] vs mean [SD] = 15.0 [2.0] days for TRAIL vs control group; two-sided P = .006), demonstrating therapeutic and translational potential of our approach. CONCLUSIONS Our study establishes HSC gene therapy using a myeloid cell-specific promoter as a new strategy to target BrM. This approach, with strong translational value, has potential to overcome the blood-brain barrier, target micrometastases, and control multifocal lesions.
Collapse
Affiliation(s)
| | - Nora Rippaus
- School of Medicine, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | - Teklu Egnuni
- School of Medicine, University of Leeds, Leeds, UK
| | | | - Ryan K Mathew
- School of Medicine, University of Leeds, Leeds, UK
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | - Alastair Droop
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | | |
Collapse
|
6
|
Tuazon JP, Castelli V, Lee JY, Desideri GB, Stuppia L, Cimini AM, Borlongan CV. Neural Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:79-91. [PMID: 31898782 DOI: 10.1007/978-3-030-31206-0_4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neural stem cell (NSC) transplantation has provided the basis for the development of potentially powerful new therapeutic cell-based strategies for a broad spectrum of clinical diseases, including stroke, psychiatric illnesses such as fetal alcohol spectrum disorders, and cancer. Here, we discuss pertinent preclinical investigations involving NSCs, including how NSCs can ameliorate these diseases, the current barriers hindering NSC-based treatments, and future directions for NSC research. There are still many translational requirements to overcome before clinical therapeutic applications, such as establishing optimal dosing, route of delivery, and timing regimens and understanding the exact mechanism by which transplanted NSCs lead to enhanced recovery. Such critical lab-to-clinic investigations will be necessary in order to refine NSC-based therapies for debilitating human disorders.
Collapse
Affiliation(s)
- Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Vanessa Castelli
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | | | - Liborio Stuppia
- Department of Psychological, Humanistic and Territorial Sciences, University G. D'Annunzio, Chieti, Italy
| | - Anna Maria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA.
| |
Collapse
|
7
|
Mooney R, Hammad M, Batalla‐Covello J, Abdul Majid A, Aboody KS. Concise Review: Neural Stem Cell-Mediated Targeted Cancer Therapies. Stem Cells Transl Med 2018; 7:740-747. [PMID: 30133188 PMCID: PMC6186269 DOI: 10.1002/sctm.18-0003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/28/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide, with 1,688,780 new cancer cases and 600,920 cancer deaths projected to occur in 2017 in the U.S. alone. Conventional cancer treatments including surgical, chemo-, and radiation therapies can be effective, but are often limited by tumor invasion, off-target toxicities, and acquired resistance. To improve clinical outcomes and decrease toxic side effects, more targeted, tumor-specific therapies are being developed. Delivering anticancer payloads using tumor-tropic cells can greatly increase therapeutic distribution to tumor sites, while sparing non-tumor tissues therefore minimizing toxic side effects. Neural stem cells (NSCs) are tumor-tropic cells that can pass through normal organs quickly, localize to invasive and metastatic tumor foci throughout the body, and cross the blood-brain barrier to reach tumors in the brain. This review focuses on the potential use of NSCs as vehicles to deliver various anticancer payloads selectively to tumor sites. The use of NSCs in cancer treatment has been studied most extensively in the brain, but the findings are applicable to other metastatic solid tumors, which will be described in this review. Strategies include NSC-mediated enzyme/prodrug gene therapy, oncolytic virotherapy, and delivery of antibodies, nanoparticles, and extracellular vesicles containing oligonucleotides. Preclinical discovery and translational studies, as well as early clinical trials, will be discussed. Stem Cells Translational Medicine 2018;7:740-747.
Collapse
Affiliation(s)
- Rachael Mooney
- Department of Developmental and Stem Cell BiologyBeckman Research Institute City of Hope DuarteCaliforniaUSA
- Irell and Manella Graduate, School of Biological SciencesBeckman Research InstituteCity of Hope DuarteCaliforniaUSA
| | - Mohamed Hammad
- Department of Developmental and Stem Cell BiologyBeckman Research Institute City of Hope DuarteCaliforniaUSA
| | - Jennifer Batalla‐Covello
- Department of Developmental and Stem Cell BiologyBeckman Research Institute City of Hope DuarteCaliforniaUSA
- Irell and Manella Graduate, School of Biological SciencesBeckman Research InstituteCity of Hope DuarteCaliforniaUSA
| | - Asma Abdul Majid
- Department of Developmental and Stem Cell BiologyBeckman Research Institute City of Hope DuarteCaliforniaUSA
| | - Karen S. Aboody
- Department of Developmental and Stem Cell BiologyBeckman Research Institute City of Hope DuarteCaliforniaUSA
| |
Collapse
|
8
|
Choi SS, Yoon K, Choi SA, Yoon SB, Kim SU, Lee HJ. Tumor-specific gene therapy for pancreatic cancer using human neural stem cells encoding carboxylesterase. Oncotarget 2018; 7:75319-75327. [PMID: 27659534 PMCID: PMC5342743 DOI: 10.18632/oncotarget.12173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/13/2016] [Indexed: 01/14/2023] Open
Abstract
Advanced pancreatic cancer is one of the most lethal malignant human diseases lacking effective treatment. Its extremely low survival rate necessitates development of novel therapeutic approach. Human neural stem cells (NSCs) are known to have tumor-tropic effect. We genetically engineered them to express rabbit carboxyl esterase (F3.CE), which activates prodrug CPT-11(irinotecan) into potent metabolite SN-38. We found significant inhibition of the growth of BxPC3 human pancreatic cancer cell line in vitro by F3.CE in presence of CPT-11. Apoptosis was also markedly increased in BxPC3 cells treated with F3.CE and CPT-11. The ligand VEGF and receptor VEGF-1(Flt1) were identified to be the relevant tumor-tropic chemoattractant. We confirmed in vivo that in mice injected with BxPC3 on their skin, there was significant reduction of tumor size in those treated with both F3.CE and BxPC3 adjacent to the cancer mass. Administration of F3.CE in conjunction with CPT-11 could be a new possibility as an effective treatment regimen for patients suffering from advanced pancreatic cancer.
Collapse
Affiliation(s)
- Sung S Choi
- Biomedical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kichul Yoon
- Biomedical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea.,Seoul Adventist Hospital, Seoul, Korea.,Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Seon-A Choi
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Seung-Bin Yoon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Hong J Lee
- Biomedical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Crowley MG, Tajiri N. Exogenous stem cells pioneer a biobridge to the advantage of host brain cells following stroke: New insights for clinical applications. Brain Circ 2017; 3:130-134. [PMID: 30276314 PMCID: PMC6057688 DOI: 10.4103/bc.bc_17_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
Stroke continues to maintain its status as one of the top causes of mortality within the United States. Currently, the only Food and Drug Administration (FDA)-approved drug in place for stroke patients, tissue plasminogen activator (tPA), has a rigid therapeutic window, closing at approximately 4.5 h after stroke onset. Due to this short time frame and other restrictions, such as any condition that increases a patient's risk for hemorrhaging, it has been predicted that <5% of ischemic stroke patients benefit from tPA. Given that rehabilitation therapy remains the only other option for stroke victims, there is a clear unmet clinical need for treatment available for the remaining 95%. While still considered an experimental treatment, the utilization of stem cell therapies for stroke holds consistent promise. Copious preclinical studies report the capacity for transplanted stem cells to rescue the brain parenchyma surrounding the stroke-induced infarct core. At present, the exact mechanisms in which stem cells contribute a robust therapeutic benefit remains unclear. Following stem cell administration, researchers have observed cell replacement, an increase in growth factors, and a reduction in inflammation. With a deeper understanding of the precise mechanism of stem cells, these therapies can be optimized in the clinic to afford the greatest therapeutic benefit. Recent studies have depicted a unique method of endogenous stem cell activation as a result of stem cell therapy. In both traumatic brain injury and stroke models, transplanted mesenchymal stromal cells (MSCs) facilitated a pathway between the neurogenic niches of the brain and the damaged area through extracellular matrix remodeling. The biobridge pioneered by the MSCs was utilized by the endogenous stem cells, and these cells were able to travel to the damaged areas distal to the neurogenic niches, a feat unachievable without prior remodeling. These studies broaden our understanding of stem cell interactions within the injured brain and help to guide both researchers and clinicians in developing an effective stem cell treatment for stroke. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Marci G Crowley
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Naoki Tajiri
- Department of Psychology, Graduate School of Psychology, Kibi International University, 8 Iga-machi, Takahashi-City, Okayama 716-8508, Japan
| |
Collapse
|
10
|
Lee JY, Xu K, Nguyen H, Guedes VA, Borlongan CV, Acosta SA. Stem Cell-Induced Biobridges as Possible Tools to Aid Neuroreconstruction after CNS Injury. Front Cell Dev Biol 2017; 5:51. [PMID: 28540289 PMCID: PMC5424542 DOI: 10.3389/fcell.2017.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Notch-induced mesenchymal stromal cells (MSCs) mediate a distinct mechanism of repair after brain injury by forming a biobridge that facilitates biodistribution of host cells from a neurogenic niche to the area of injury. We have observed the biobridge in an area between the subventricular zone and the injured cortex using immunohistochemistry and laser capture. Cells in the biobridge express high levels of extracellular matrix metalloproteinases (MMPs), specifically MMP-9, which co-localized with a trail of MSCs graft. The transplanted stem cells then become almost undetectable, being replaced by newly recruited host cells. This stem cell-paved biobridge provides support for distal migration of host cells from the subventricular zone to the site of injury. Biobridge formation by transplanted stem cells seems to have a fundamental role in initiating endogenous repair processes. Two major stem cell-mediated repair mechanisms have been proposed thus far: direct cell replacement by transplanted grafts and bystander effects through the secretion of trophic factors including fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), stem cell factor (SCF), erythropoietin, and brain-derived neurotrophic factor (BDNF) among others. This groundbreaking observation of biobridge formation by transplanted stem cells represents a novel mechanism for stem cell mediated brain repair. Future studies on graft-host interaction will likely establish biobridge formation as a fundamental mechanism underlying therapeutic effects of stem cells and contribute to the scientific pursuit of developing safe and efficient therapies not only for traumatic brain injury but also for other neurological disorders. The aim of this review is to hypothetically extend concepts related to the formation of biobridges in other central nervous system disorders.
Collapse
Affiliation(s)
- Jea Y Lee
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Kaya Xu
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Hung Nguyen
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Vivian A Guedes
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| |
Collapse
|
11
|
Yi BR, Kim SU, Choi KC. Synergistic effect of therapeutic stem cells expressing cytosine deaminase and interferon-beta via apoptotic pathway in the metastatic mouse model of breast cancer. Oncotarget 2017; 7:5985-99. [PMID: 26716512 PMCID: PMC4868735 DOI: 10.18632/oncotarget.6719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
As an approach to improve treatment of breast cancer metastasis to the brain, we employed genetically engineered stem cells (GESTECs, HB1.F3 cells) consisting of neural stem cells (NSCs) expressing cytosine deaminase and the interferon-beta genes, HB1.F3.CD and HB1.F3.CD.IFN-β. In this model, MDA-MB-231/Luc breast cancer cells were implanted in the right hemisphere of the mouse brain, while pre-stained GESTECs with redfluorescence were implanted in the contralateral brain. Two days after stem cells injection, 5-fluorocytosine (5-FC) was administrated via intraperitoneal injection. Histological analysis of extracted brain confirmed the therapeutic efficacy of GESTECs in the presence of 5-FC based on reductions in density and aggressive tendency of breast cancer cells, as well as pyknosis, karyorrhexis, and karyolysis relative to a negative control. Additionally, expression of PCNA decreased in the stem cells treated group. Treatment of breast cancer cells with 5-fluorouracil (5-FU) increased the expression of pro-apoptotic and anti-proliferative factor, BAX and p21 protein through phosphorylation of p53 and p38. Moreover, analysis of stem cell migratory ability revealed that MDA-MB-231 cells endogenously secreted VEGF, and stem cells expressed their receptor (VEGFR2). To confirm the role of VEGF/VEGFR2 signaling in tumor tropism of stem cells, samples were treated with the VEGFR2 inhibitor, KRN633. The number of migrated stem cells decreased significantly in response to KRN633 due to Erk1/2 activation and PI3K/Akt inhibition. Taken together, these results indicate that treatment with GESTECs, particularly HB1.F3.CD.IFN-β co-expressing CD.IFN-β, may be a useful strategy for treating breast cancer metastasis to the brain in the presence of a prodrug.
Collapse
Affiliation(s)
- Bo-Rim Yi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seung U Kim
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.,TheraCell Bio and Science, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
12
|
Portnow J, Synold TW, Badie B, Tirughana R, Lacey SF, D'Apuzzo M, Metz MZ, Najbauer J, Bedell V, Vo T, Gutova M, Frankel P, Chen M, Aboody KS. Neural Stem Cell-Based Anticancer Gene Therapy: A First-in-Human Study in Recurrent High-Grade Glioma Patients. Clin Cancer Res 2016; 23:2951-2960. [PMID: 27979915 DOI: 10.1158/1078-0432.ccr-16-1518] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/08/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Human neural stem cells (NSC) are inherently tumor tropic, making them attractive drug delivery vehicles. Toward this goal, we retrovirally transduced an immortalized, clonal NSC line to stably express cytosine deaminase (HB1.F3.CD.C21; CD-NSCs), which converts the prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU).Experimental Design: Recurrent high-grade glioma patients underwent intracranial administration of CD-NSCs during tumor resection or biopsy. Four days later, patients began taking oral 5-FC every 6 hours for 7 days. Study treatment was given only once. A standard 3 + 3 dose escalation schema was used to increase doses of CD-NSCs from 1 × 107 to 5 × 107 and 5-FC from 75 to 150 mg/kg/day. Intracerebral microdialysis was performed to measure brain levels of 5-FC and 5-FU. Serial blood samples were obtained to assess systemic drug concentrations as well as to perform immunologic correlative studies.Results: Fifteen patients underwent study treatment. We saw no dose-limiting toxicity (DLT) due to the CD-NSCs. There was 1 DLT (grade 3 transaminitis) possibly related to 5-FC. We did not see development of anti-CD-NSC antibodies and did not detect CD-NSCs or replication-competent retrovirus in the systemic circulation. Intracerebral microdialysis revealed that CD-NSCs produced 5-FU locally in the brain in a 5-FC dose-dependent manner. Autopsy data indicate that CD-NSCs migrated to distant tumor sites and were nontumorigenic.Conclusions: Collectively, our results from this first-in-human study demonstrate initial safety and proof of concept regarding the ability of NSCs to target brain tumors and locally produce chemotherapy. Clin Cancer Res; 23(12); 2951-60. ©2016 AACR.
Collapse
Affiliation(s)
- Jana Portnow
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California.
| | | | - Behnam Badie
- Division of Neurosurgery, City of Hope, Duarte, California
| | | | - Simon F Lacey
- Clinical Immunobiology Correlative Studies Laboratory, City of Hope, Duarte, California
| | | | - Marianne Z Metz
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | - Joseph Najbauer
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | | | - Tien Vo
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | - Margarita Gutova
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | - Paul Frankel
- Division of Biostatistics, City of Hope, Duarte, California
| | - Mike Chen
- Division of Neurosurgery, City of Hope, Duarte, California
| | - Karen S Aboody
- Division of Neurosurgery, City of Hope, Duarte, California.,Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| |
Collapse
|
13
|
Chiotaki R, Polioudaki H, Theodoropoulos PA. Stem cell technology in breast cancer: current status and potential applications. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2016; 9:17-29. [PMID: 27217783 PMCID: PMC4853137 DOI: 10.2147/sccaa.s72836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer, the leading cause of cancer among females, is supported by the presence of a rare subset of undifferentiated cells within the tumor, identified as breast cancer stem cells (BCSCs). BCSCs underlie the mechanisms of tumor initiation and sustenance and are implicated in the dissemination of the primary tumor to metastatic sites, as they have been found circulating in the blood of breast cancer patients. The discovery of BCSCs has generated a great amount of interest among the scientific community toward their isolation, molecular characterization, and therapeutic targeting. In this review, after summarizing the literature on molecular characterization of BCSCs and methodologies used for their isolation, we will focus on recent data supporting their molecular and functional heterogeneity. Additionally, following a synopsis of the latest approaches for BCSC targeting, we will specifically emphasize on the therapeutic use of naïve or engineered normal stem cells in the treatment of breast cancer and present contradictory findings challenging their safety.
Collapse
Affiliation(s)
- Rena Chiotaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Hara Polioudaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | | |
Collapse
|
14
|
Choi SS, Chi BH, Chang IH, Kim KD, Lee SR, Kim SU, Lee HJ. Human Neural Stem Cells Overexpressing a Carboxylesterase Inhibit Bladder Tumor Growth. Mol Cancer Ther 2016; 15:1201-7. [PMID: 27009215 DOI: 10.1158/1535-7163.mct-15-0636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
Abstract
Bladder cancer is a significant clinical and economic problem. Despite intravesical chemotherapy and immunotherapy, up to 80% of patients with non-muscle-invasive bladder cancer develop recurrent tumors, of which 20% to 30% evolve into more aggressive, potentially lethal tumors. Recently, bladder cancer cells are considered to be mediators of resistance to current therapies and therefore represent strong candidates as biologic targets. No effective chemotherapy has yet been developed for advanced bladder cancer. It is desirable that a drug can be delivered directly and specifically to bladder cancer cells. Stem cells have selective migration ability toward cancer cells, and therapeutic genes can be easily transduced into stem cells. In suicide gene therapy for cancer, stem cells carry a gene encoding a carboxylesterase (CE) enzyme that transforms an inert CPT-11 prodrug into a toxic SN-38 product, a topoisomerase 1 inhibitor. In immunodeficient mice, systemically transplanted HB1.F3.CE stem cells migrated toward the tumor implanted by the TCCSUP bladder cancer cell line, and, in combination with CPT-11, the volume of tumors was significantly reduced. These findings may contribute to the development of a new selective chemotherapeutic strategy against bladder cancer. Mol Cancer Ther; 15(6); 1201-7. ©2016 AACR.
Collapse
Affiliation(s)
- Sung S Choi
- Biomedical Research Institute, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Byung Hoon Chi
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - In Ho Chang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kyung Do Kim
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk, Republic of Korea
| | - Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Hong J Lee
- Biomedical Research Institute, Chung-Ang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Yi BR, Kim SU, Choi KC. Additional effects of engineered stem cells expressing a therapeutic gene and interferon-β in a xenograft mouse model of endometrial cancer. Int J Oncol 2015; 47:171-8. [PMID: 25963746 DOI: 10.3892/ijo.2015.2999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/04/2015] [Indexed: 11/06/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in women worldwide. In the present study, we evaluated the effects of neural stem cell-directed enzyme/prodrug therapy (NDEPT) designed to more selectively target endometrial cancer. For this, we employed two different types of neural stem cells (NSCs), HB1.F3.CD and HB1.F3.CD.IFN-β cells. Cytosine deaminase (CD) can convert the non-toxic prodrug, 5-fluorocytosine (5-FC), into a toxic agent, 5-fluorouracil (5-FU), which inhibits DNA synthesis. IFN-β is a powerful cytotoxic cytokine that is released by activated immune cells or lymphocytes. In an animal model xenografted with endometrial Ishikawa cancer cells, the stem cells stained with CM-DiI were injected into nearby tumor masses and 5-FC was delivered by intraperitoneal injection. Co-expression of CD and IFN-β significantly inhibited the growth of cancer (~50-60%) in the presence of 5-FC. Among migration-induced factors, VEGF gene was highly expressed in endometrial cancer cells. Histological analysis showed that the aggressive nature of cancer was inhibited by 5-FC in the mice treated with the therapeutic stem cells. Furthermore, PCNA expression was more decreased in HB1.F3.CD.IFN-β treated mice rather than HB1.F3.CD treated mice. To confirm the in vitro combined effects of 5-FU and IFN-β, 5-FU was treated in Ishikawa cells. 5-FU increased the IFN-β/receptor 2 (IFNAR2) and BXA levels, indicating that 5-FU increased sensitivity of endometrial cancer cells to IFN-β, leading to apoptosis of cancer cells. Taken together, these results provide evidence for the efficacy of therapeutic stem cell-based immune therapy involving the targeted expression of CD and IFN-β genes at endometrial cancer sites.
Collapse
Affiliation(s)
- Bo-Rim Yi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seung U Kim
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
16
|
Bagci-Onder T, Du W, Figueiredo JL, Martinez-Quintanilla J, Shah K. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells. Brain 2015; 138:1710-21. [PMID: 25910782 DOI: 10.1093/brain/awv094] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/30/2015] [Indexed: 01/14/2023] Open
Abstract
Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications.
Collapse
Affiliation(s)
- Tugba Bagci-Onder
- 1 Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA 2 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Wanlu Du
- 1 Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA 2 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jose-Luiz Figueiredo
- 1 Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jordi Martinez-Quintanilla
- 1 Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Khalid Shah
- 1 Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA 2 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA 3 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA 4 Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Optimal treatment of leptomeningeal spread in glioblastoma: analysis of risk factors and outcome. Acta Neurochir (Wien) 2015; 157:569-76. [PMID: 25663100 DOI: 10.1007/s00701-015-2344-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/05/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and malignant brain tumor in adults. Despite therapeutic advances, almost all patients eventually experience tumor recurrence. Leptomeningeal spread (LMS) is not a rare condition of recurrence. However, the standard management protocol of LMS has not been established. The aim of this study is to report the risk of (LMS) and the prognosis between treatment modalities in GBM patients. METHODS A retrospective review was conducted of 321 patients who were diagnosed with GBM between January 2006 and December 2010. In 75 patients, LMS of tumor was detected by magnetic resonance image and/or cerebrospinal fluid cytology. Twelve patients underwent intrathecal methotrexate (IT-MTX) chemotherapy. Twenty-two patients underwent other salvage treatments. Forty-one patients underwent conservative management. We analyzed the possible clinical factors for LMS. Further, we examined overall survival and survival after diagnosis of LMS for several treatment modalities. RESULTS In patients without LMS, median overall survival was 479 days, whereas that in patients with LMS it was 401 days. Younger age and larger initial tumor size were related to more frequent LMS incidence. Proximity between tumor margin and ventricle did not affect LMS. However, median duration from initial diagnosis to LMS was significantly different according to the distance to the ventricle. IT-MTX group's overall survival was 583 days, which is statistically no longer than that of the other treatment group and the conservative management group. However, an additional survival benefit may exist compared to the conservative treatment. The median survival of the IT-MTX group was 181 days compared with 91 days for the conservative management group. CONCLUSIONS Treatment of LMS is mainly palliative. IT-MTX is generally the first-line treatment modality of LMS. Prediction and prevention of LMS is crucial because its treatment has been limited. Further approaches to improve the therapeutic effect should be established.
Collapse
|
18
|
Duncan K, Gonzales-Portillo GS, Acosta SA, Kaneko Y, Borlongan CV, Tajiri N. Stem cell-paved biobridges facilitate stem transplant and host brain cell interactions for stroke therapy. Brain Res 2015; 1623:160-5. [PMID: 25770817 DOI: 10.1016/j.brainres.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 01/01/2023]
Abstract
Distinguished by an infarct core encased within a penumbra, stroke remains a primary source of mortality within the United States. While our scientific knowledge regarding the pathology of stroke continues to improve, clinical treatment options for patients suffering from stroke are extremely limited. Tissue plasminogen activator (tPA) remains the sole FDA-approved drug proven to be helpful following stroke. However, due to the need to administer the drug within 4.5h of stroke onset its usefulness is constrained to less than 5% of all patients suffering from ischemic stroke. One experimental therapy for the treatment of stroke involves the utilization of stem cells. Stem cell transplantation has been linked to therapeutic benefit by means of cell replacement and release of growth factors; however the precise means by which this is accomplished has not yet been clearly delineated. Using a traumatic brain injury model, we recently demonstrated the ability of transplanted mesenchymal stromal cells (MSCs) to form a biobridge connecting the area of injury to the neurogenic niche within the brain. We hypothesize that MSCs may also have the capacity to create a similar biobridge following stroke; thereby forming a conduit between the neurogenic niche and the stroke core and peri-infarct area. We propose that this biobridge could assist and promote interaction of host brain cells with transplanted stem cells and offer more opportunities to enhance the effectiveness of stem cell therapy in stroke. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Kelsey Duncan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States
| | - Gabriel S Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States.
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, United States.
| |
Collapse
|
19
|
Analysis of glioblastoma tumor coverage by oncolytic virus-loaded neural stem cells using MRI-based tracking and histological reconstruction. Cancer Gene Ther 2014; 22:55-61. [PMID: 25525033 PMCID: PMC4293243 DOI: 10.1038/cgt.2014.72] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/22/2022]
Abstract
In preclinical studies, neural stem cell (NSC)-based delivery of oncolytic virus has shown great promise in the treatment of malignant glioma. Ensuring the success of this therapy will require critical evaluation of the spatial distribution of virus after NSC transplantation. In this study, the patient-derived GBM43 human glioma line was established in the brain of athymic nude mice, followed by the administration of NSCs loaded with conditionally replicating oncolytic adenovirus (NSC-CRAd-S-pk7). We determined the tumor coverage potential of oncolytic adenovirus by examining NSC distribution using magnetic resonance (MR) imaging and by three-dimensional reconstruction from ex vivo tissue specimens. We demonstrate that unmodified NSCs and NSC-CRAd-S-pk7 exhibit a similar distribution pattern with most prominent localization occurring at the tumor margins. We were further able to visualize the accumulation of these cells at tumor sites via T2-weighted MR imaging as well as the spread of viral particles using immunofluorescence. Our analyses reveal that a single administration of oncolytic virus-loaded NSCs allows for up to 31% coverage of intracranial tumors. Such results provide valuable insights into the therapeutic potential of this novel viral delivery platform.
Collapse
|
20
|
Kaneko Y, Tajiri N, Staples M, Reyes S, Lozano D, Sanberg PR, Freeman TB, van Loveren H, Kim SU, Borlongan CV. Bone marrow-derived stem cell therapy for metastatic brain cancers. Cell Transplant 2014; 24:625-30. [PMID: 25310691 DOI: 10.3727/096368914x685096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We propose that stem cell therapy may be a potent treatment for metastatic melanoma in the brain. Here we discuss the key role of a leaky blood-brain barrier (BBB) that accompanies the development of brain metastases. We review the need to characterize the immunological and inflammatory responses associated with tumor-derived BBB damage in order to reveal the contribution of this brain pathological alteration to the formation and growth of brain metastatic cancers. Next, we discuss the potential repair of the BBB and attenuation of brain metastasis through transplantation of bone marrow-derived mesenchymal stem cells with the endothelial progenitor cell phenotype. In particular, we review the need for evaluation of the efficacy of stem cell therapy in repairing a disrupted BBB in an effort to reduce neuroinflammation, eventually attenuating brain metastatic cancers. The demonstration of BBB repair through augmented angiogenesis and vasculogenesis will be critical to establishing the potential of stem cell therapy for the treatment/prevention of metastatic brain tumors. The overarching hypothesis we advanced here is that BBB breakdown is closely associated with brain metastatic cancers of melanoma, exacerbating the inflammatory response of the brain during metastasis, and ultimately worsening the outcome of metastatic brain cancers. Abrogating this leaky BBB-mediated inflammation via stem cell therapy represents a paradigm-shifting approach to treating brain cancer. This review article discusses the pros and cons of cell therapy for melanoma brain metastases.
Collapse
Affiliation(s)
- Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tajiri N, Duncan K, Antoine A, Pabon M, Acosta SA, de la Pena I, Hernadez-Ontiveros DG, Shinozuka K, Ishikawa H, Kaneko Y, Yankee E, McGrogan M, Case C, Borlongan CV. Stem cell-paved biobridge facilitates neural repair in traumatic brain injury. Front Syst Neurosci 2014; 8:116. [PMID: 25009475 PMCID: PMC4068001 DOI: 10.3389/fnsys.2014.00116] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/28/2014] [Indexed: 12/18/2022] Open
Abstract
Modified mesenchymal stromal cells (MSCs) display a unique mechanism of action during the repair phase of traumatic brain injury by exhibiting the ability to build a biobridge between the neurogenic niche and the site of injury. Immunohistochemistry and laser capture assay have visualized this biobridge in the area between the neurogenic subventricular zone and the injured cortex. This biobridge expresses high levels of extracellular matrix metalloproteinases (MMPs), which are initially co-localized with a stream of transplanted MSCs, but later this region contains only few to non-detectable grafts and becomes overgrown by newly recruited host cells. We have reported that long-distance migration of host cells from the neurogenic niche to the injured brain site can be attained via these transplanted stem cell-paved biobridges, which serve as a key regenerative process for the initiation of endogenous repair mechanisms. Thus, far the two major schools of discipline in stem cell repair mechanisms support the idea of "cell replacement" and the bystander effects of "trophic factor secretion." Our novel observation of stem cell-paved biobridges as pathways for directed migration of host cells from neurogenic niche toward the injured brain site adds another mode of action underlying stem cell therapy. More in-depth investigations on graft-host interaction will likely aid translational research focused on advancing this stem cell-paved biobridge from its current place, as an equally potent repair mechanism as cell replacement and trophic factor secretion, into a new treatment strategy for traumatic brain injury and other neurological disorders.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Kelsey Duncan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Alesia Antoine
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Mibel Pabon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Sandra A Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Ike de la Pena
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Diana G Hernadez-Ontiveros
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Kazutaka Shinozuka
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Hiroto Ishikawa
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | | | | | | | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| |
Collapse
|
22
|
Hong SH, Lee HJ, An J, Lim I, Borlongan C, Aboody KS, Kim SU. Human neural stem cells expressing carboxyl esterase target and inhibit tumor growth of lung cancer brain metastases. Cancer Gene Ther 2013; 20:678-82. [DOI: 10.1038/cgt.2013.69] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/17/2013] [Indexed: 01/09/2023]
|
23
|
Aboody KS, Najbauer J, Metz MZ, D'Apuzzo M, Gutova M, Annala AJ, Synold TW, Couture LA, Blanchard S, Moats RA, Garcia E, Aramburo S, Valenzuela VV, Frank RT, Barish ME, Brown CE, Kim SU, Badie B, Portnow J. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Transl Med 2013; 5:184ra59. [PMID: 23658244 DOI: 10.1126/scitranslmed.3005365] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-grade gliomas are extremely difficult to treat because they are invasive and therefore not curable by surgical resection; the toxicity of current chemo- and radiation therapies limits the doses that can be used. Neural stem cells (NSCs) have inherent tumor-tropic properties that enable their use as delivery vehicles to target enzyme/prodrug therapy selectively to tumors. We used a cytosine deaminase (CD)-expressing clonal human NSC line, HB1.F3.CD, to home to gliomas in mice and locally convert the prodrug 5-fluorocytosine to the active chemotherapeutic 5-fluorouracil. In vitro studies confirmed that the NSCs have normal karyotype, tumor tropism, and CD expression, and are genetically and functionally stable. In vivo biodistribution studies demonstrated NSC retention of tumor tropism, even in mice pretreated with radiation or dexamethasone to mimic clinically relevant adjuvant therapies. We evaluated safety and toxicity after intracerebral administration of the NSCs in non-tumor-bearing and orthotopic glioma-bearing immunocompetent and immunodeficient mice. We detected no difference in toxicity associated with conversion of 5-fluorocytosine to 5-fluorouracil, no NSCs outside the brain, and no histological evidence of pathology or tumorigenesis attributable to the NSCs. The average tumor volume in mice that received HB1.F3.CD NSCs and 5-fluorocytosine was about one-third that of the average volume in control mice. On the basis of these results, we conclude that combination therapy with HB1.F3.CD NSCs and 5-fluorocytosine is safe, nontoxic, and effective in mice. These data have led to approval of a first-in-human study of an allogeneic NSC-mediated enzyme/prodrug-targeted cancer therapy in patients with recurrent high-grade glioma.
Collapse
Affiliation(s)
- Karen S Aboody
- Department of Neurosciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Metz MZ, Gutova M, Lacey SF, Abramyants Y, Vo T, Gilchrist M, Tirughana R, Ghoda LY, Barish ME, Brown CE, Najbauer J, Potter PM, Portnow J, Synold TW, Aboody KS. Neural stem cell-mediated delivery of irinotecan-activating carboxylesterases to glioma: implications for clinical use. Stem Cells Transl Med 2013; 2:983-92. [PMID: 24167321 DOI: 10.5966/sctm.2012-0177] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CPT-11 (irinotecan) has been investigated as a treatment for malignant brain tumors. However, limitations of CPT-11 therapy include low levels of the drug entering brain tumor sites and systemic toxicities associated with higher doses. Neural stem cells (NSCs) offer a novel way to overcome these obstacles because of their inherent tumor tropism and ability to cross the blood-brain barrier, which enables them to selectively target brain tumor sites. Carboxylesterases (CEs) are enzymes that can convert the prodrug CPT-11 (irinotecan) to its active metabolite SN-38, a potent topoisomerase I inhibitor. We have adenovirally transduced an established clonal human NSC line (HB1.F3.CD) to express a rabbit carboxylesterase (rCE) or a modified human CE (hCE1m6), which are more effective at converting CPT-11 to SN-38 than endogenous human CE. We hypothesized that NSC-mediated CE/CPT-11 therapy would allow tumor-localized production of SN-38 and significantly increase the therapeutic efficacy of irinotecan. Here, we report that transduced NSCs transiently expressed high levels of active CE enzymes, retained their tumor-tropic properties, and mediated an increase in the cytotoxicity of CPT-11 toward glioma cells. CE-expressing NSCs (NSC.CEs), whether administered intracranially or intravenously, delivered CE to orthotopic human glioma xenografts in mice. NSC-delivered CE catalyzed conversion of CPT-11 to SN-38 locally at tumor sites. These studies demonstrate the feasibility of NSC-mediated delivery of CE to glioma and lay the foundation for translational studies of this therapeutic paradigm to improve clinical outcome and quality of life in patients with malignant brain tumors.
Collapse
|
25
|
Tajiri N, Kaneko Y, Shinozuka K, Ishikawa H, Yankee E, McGrogan M, Case C, Borlongan CV. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One 2013; 8:e74857. [PMID: 24023965 PMCID: PMC3762783 DOI: 10.1371/journal.pone.0074857] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/06/2013] [Indexed: 01/24/2023] Open
Abstract
Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved “biobridge”. Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of “cell replacement” and bystander effects of “trophic factor secretion”. The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Kazutaka Shinozuka
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Hiroto Ishikawa
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Ernest Yankee
- Sanbio Inc, Mountain View, California, United States of America
| | | | - Casey Case
- Sanbio Inc, Mountain View, California, United States of America
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kang W, Seol HJ, Seong DH, Kim J, Kim Y, Kim SU, Nam DH, Joo KM. Adenosine potentiates the therapeutic effects of neural stem cells expressing cytosine deaminase against metastatic brain tumors. Oncol Rep 2013; 30:1101-6. [PMID: 23828015 DOI: 10.3892/or.2013.2584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/07/2013] [Indexed: 11/06/2022] Open
Abstract
Tumor-tropic properties of neural stem cells (NSCs) provide a novel approach with which to deliver targeting therapeutic genes to brain tumors. Previously, we developed a therapeutic strategy against metastatic brain tumors using a human NSC line (F3) expressing cytosine deaminase (F3.CD). F3.CD converts systemically administered 5-fluorocytosine (5-FC), a blood-brain barrier permeable nontoxic prodrug, into the anticancer agent 5-fluorouracil (5-FU). In this study, we potentiated a therapeutic strategy of treatment with nucleosides in order to chemically facilitate the endogenous conversion of 5-FU to its toxic metabolite 5-FU ribonucleoside (5-FUR). In vitro, 5-FUR showed superior cytotoxic activity against MDA-MB-435 cancer cells when compared to 5-FU. Although adenosine had little cytotoxic activity, the addition of adenosine significantly potentiated the in vitro cytotoxicity of 5-FU. When MDA-MB‑435 cells were co-cultured with F3.CD cells, F3.CD cells and 5-FC inhibited the growth of MDA-MB-435 cells more significantly in the presence of adenosine. Facilitated 5-FUR production by F3.CD was confirmed by an HPLC analysis of the conditioned media derived from F3.CD cells treated with 5-FC and adenosine. In vivo systemic adenosine treatment also significantly potentiated the therapeutic effects of F3.CD cells and 5-FC in an MDA-MB-435 metastatic brain tumor model. Simple adenosine addition improved the antitumor activity of the NSCs carrying the therapeutic gene. Our results demonstrated an increased therapeutic potential, and thereby, clinical applicability of NSC-based gene therapy.
Collapse
Affiliation(s)
- Wonyoung Kang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Current status of gene therapy for brain tumors. Transl Res 2013; 161:339-54. [PMID: 23246627 PMCID: PMC3733107 DOI: 10.1016/j.trsl.2012.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma.
Collapse
|
28
|
Caffo M, Barresi V, Caruso G, Cutugno M, La Fata G, Venza M, Alafaci C, Tomasello F. Innovative therapeutic strategies in the treatment of brain metastases. Int J Mol Sci 2013; 14:2135-74. [PMID: 23340652 PMCID: PMC3565370 DOI: 10.3390/ijms14012135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/29/2022] Open
Abstract
Brain metastases (BM) are the most common intracranial tumors and their incidence is increasing. Untreated brain metastases are associated with a poor prognosis and a poor performance status. Metastasis development involves the migration of a cancer cell from the bulk tumor into the surrounding tissue, extravasation from the blood into tissue elsewhere in the body, and formation of a secondary tumor. In the recent past, important results have been obtained in the management of patients affected by BM, using surgery, radiation therapy, or both. Conventional chemotherapies have generally produced disappointing results, possibly due to their limited ability to penetrate the blood-brain barrier. The advent of new technologies has led to the discovery of novel molecules and pathways that have better depicted the metastatic process. Targeted therapies such as bevacizumab, erlotinib, gefitinib, sunitinib and sorafenib, are all licensed and have demonstrated improved survival in patients with metastatic disease. In this review, we will report current data on targeted therapies. A brief review about brain metastatic process will be also presented.
Collapse
Affiliation(s)
- Maria Caffo
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| | - Valeria Barresi
- Department of Human Pathology, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mail:
| | - Gerardo Caruso
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-090-2217167; Fax: +39-090-693714
| | - Mariano Cutugno
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| | - Giuseppe La Fata
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| | - Mario Venza
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| | - Concetta Alafaci
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| | - Francesco Tomasello
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| |
Collapse
|
29
|
Ali AS, Ahmad A, Ali S, Bao B, Philip PA, Sarkar FH. The role of cancer stem cells and miRNAs in defining the complexities of brain metastasis. J Cell Physiol 2012; 228:36-42. [PMID: 22689345 DOI: 10.1002/jcp.24127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Researchers and clinicians have been challenged with the development of therapies for the treatment of cancer patients whose tumors metastasized to the brain. Among the most lethal weapons known today, current management of brain metastases involves multiple therapeutic modalities that provide little, if any, for improving the quality of life and overall survival. Recently the role of cancer stem cells (CSCs) in the development of cancer has been studied extensively, and thus its role in the prognosis, diagnosis, and treatment is now being investigated even in the realm of brain metastasis (BM). Recognizing the molecular make-up of CSCs as well as understanding the role of these cells in resistance to treatment modalities is expected to benefit cancer patients. Additionally, past decade has witnessed an increase in awareness and understanding of the role of microRNAs (miRNAs) in various cancer types, and the deregulation miRNAs are critically important for the regulation of genes during the development and progression of human malignancies. The role miRNAs in BM is being investigated, and has also shown tremendous promise for future research. In this review, we discuss the problem and lethality of brain metastases and the current state of management, and further provide insight into novel avenues that are worth considering including the biological complexities of CSCs and miRNAs for designing novel therapies.
Collapse
Affiliation(s)
- Ashhar S Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
30
|
Newton IG, Plaisted WC, Messina-Graham S, Abrahamsson Schairer AE, Shih AY, Snyder EY, Jamieson CHM, Mattrey RF. Optical imaging of progenitor cell homing to patient-derived tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:525-36. [PMID: 22991319 DOI: 10.1002/cmmi.1485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Capitalizing on cellular homing to cancer is a promising strategy for targeting malignant cells for diagnostic, monitoring and therapeutic purposes. Murine C17.2 neural progenitor cells (NPC) demonstrate a tropism for cell line-derived tumors, but their affinity for patient-derived tumors is unknown. We tested the hypothesis that NPC accumulate in patient-derived tumors at levels detectable by optical imaging. Mice bearing solid tumors after transplantation with patient-derived leukemia cells and untransplanted controls received 10(6) fluorescent DiR-labeled NPC daily for 1-4 days, were imaged, then sacrificed. Tissues were analyzed by immunofluorescence and flow cytometry to detect tumor cell engraftment (CD45) and NPC (FITC-β galactosidase or DiR). Tumors consisted primarily of CD45-positive cells and demonstrated mild fluorescence, corresponding to frequent clusters of FITC-β gal-positive cells. Both transplanted and control mice demonstrated the highest fluorescent signal in the spleens and other tissues of the reticuloendothelial activating system. However, only rare FITC-β gal-positive cells were detected in the mildly engrafted transplanted spleens and none in the control spleens, suggesting that their high DiR signal reflects the sequestration of DiR-positive debris. The mildly engrafted transplanted kidneys demonstrated low fluorescent signal and rare FITC-β gal-positive cells whereas control kidneys were negative. Results indicate that NPC accumulate in tissues containing patient-derived tumor cells in a manner that is detectable by ex vivo optical imaging and proportional to the level of tumor engraftment, suggesting a capacity to home to micrometastatic disease. As such, NPC could have significant clinical applications for the targeted diagnosis and treatment of cancer.
Collapse
|
31
|
Recent preclinical evidence advancing cell therapy for Alzheimer's disease. Exp Neurol 2012; 237:142-6. [PMID: 22766481 DOI: 10.1016/j.expneurol.2012.06.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) causes brain degeneration, primarily depleting cholinergic cells, and leading to cognitive and learning dysfunction. Logically, to augment the cholinergic cell loss, a viable treatment for AD has been via drugs boosting brain acetylcholine production. However, this is not a curative measure. To this end, nerve growth factor (NGF) has been examined as a possible preventative treatment against cholinergic neuronal death while enhancing memory capabilities; however, NGF brain bioavailability is challenging as it does not cross the blood-brain barrier. Investigations into stem cell- and gene-based therapy have been explored in order to enhance NGF potency in the brain. Along this line of research, a genetically modified cell line, called HB1.F3 transfected with the cholinergic acetyltransferase or HB1.F3.ChAT cells, has shown safety and efficacy profiles in AD models. This stem cell transplant therapy for AD is an extension of the neural stem cells' use in other neurological treatments, such as Parkinson's disease and stroke, and recently extended to cancer. The HB1 parent cell and its associated cell lines have been used as a vehicle to deliver genes of interest in various neurological models, and are highly effective as they can differentiate into neurons and glial cells. A focus of this mini-review is the recent demonstration that the transplantation of HB1.F3.ChAT cells in an AD animal model increases cognitive function coinciding with upregulation of acetylcholine levels in the cerebrospinal fluid. In addition, there is a large dispersion throughout the brain of the transplanted stem cells which is important to repair the widespread cholinergic cell loss in AD. Some translational caveats that need to be satisfied prior to initiating clinical trials of HB1.F3.ChAT cells in AD include regulating the host immune response and the possible tumorigenesis arising from the transplantation of this genetically modified cell line. Further studies are warranted to test the safety and effectiveness of these cells in AD transgenic animal models. This review highlights the recent progress of stem cell therapy in AD, not only emphasizing the significant basic science strides made in this field, but also providing caution on remaining translational issues necessary to advance this novel treatment to the clinic.
Collapse
|
32
|
Zhao D, Najbauer J, Annala AJ, Garcia E, Metz MZ, Gutova M, Polewski MD, Gilchrist M, Glackin CA, Kim SU, Aboody KS. Human neural stem cell tropism to metastatic breast cancer. Stem Cells 2012; 30:314-25. [PMID: 22084033 DOI: 10.1002/stem.784] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastasis to multiple organs is the primary cause of mortality in breast cancer patients. The poor prognosis for patients with metastatic breast cancer and toxic side effects of currently available treatments necessitate the development of effective tumor-selective therapies. Neural stem cells (NSCs) possess inherent tumor tropic properties that enable them to overcome many obstacles of drug delivery that limit effective chemotherapy strategies for breast cancer. We report that increased NSC tropism to breast tumor cell lines is strongly correlated with the invasiveness of cancer cells. Interleukin 6 (IL-6) was identified as a major cytokine mediating NSC tropism to invasive breast cancer cells. We show for the first time in a preclinical mouse model of metastatic human breast cancer that NSCs preferentially target tumor metastases in multiple organs, including liver, lung, lymph nodes, and femur, versus the primary intramammary fat pad tumor. For proof-of-concept of stem cell-mediated breast cancer therapy, NSCs were genetically modified to secrete rabbit carboxylesterase (rCE), an enzyme that activates the CPT-11 prodrug to SN-38, a potent topoisomerase I inhibitor, to effect tumor-localized chemotherapy. In vitro data demonstrate that exposure of breast cancer cells to conditioned media from rCE-secreting NSCs (NSC.rCE) increased their sensitivity to CPT-11 by 200-fold. In vivo, treatment of tumor-bearing mice with NSC.rCE cells in combination with CPT-11 resulted in reduction of metastatic tumor burden in lung and lymph nodes. These data suggest that NSC-mediated enzyme/prodrug therapy may be more effective and less toxic than currently available chemotherapy strategies for breast cancer metastases.
Collapse
Affiliation(s)
- Donghong Zhao
- Department of Neurosciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010-3000, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|