1
|
Wang W, Cheng Y, Meng Q, Jia B, Yao D, Cheng Y. The additive interaction of healthy lifestyles and genetic susceptibility on colorectal cancer risk in prediabetes: a large population-based prospective cohort study. BMC Gastroenterol 2024; 24:462. [PMID: 39696080 DOI: 10.1186/s12876-024-03552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE We aimed to investigate the interrelationships among polygenic risk scores (PRS), healthy lifestyle factors (HLFs), and colorectal cancer (CRC) risk in individuals with prediabetes. To investigate whether adherence to HLFs influence CRC risk in those with elevated PRS within this specific population. METHODS Data from 22,408 prediabetes participants without CRC at baseline were analyzed from the UK Biobank. HLFs were graded using healthy lifestyle scores (HLSs) and classified as favorable, intermediate, or unfavorable, while the PRS for CRC was categorized as high, medium, or low. Cox proportional hazards models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI) for CRC risk. RESULTS High PRS (HR: 2.36; 95% CI: 1.86-3.00) and medium PRS (HR: 1.42; 95% CI: 1.09-1.83) prediabetes were associated with increased CRC risk compared to those with low PRS. HLFs were linked to lower CRC risk in a dose-response manner, with never smoking (HR: 0.69; 95% CI: 0.57-0.84) and maintaining a healthy BMI (HR: 0.64; 95% CI: 0.49-0.82) associated with reduced CRC risk. Adherence to favorable HLFs may reduce the CRC risk in those with medium (HR: 0.51; 95% CI: 0.27-0.95) and high PRS (HR: 0.62; 95% CI: 0.39-0.99) over 15 years of follow-up. In participants with high PRS and unfavorable HLFs, the excess risk due to the additive interaction between PRS and HLFs was 1.41% (p < 0.01), especially for women (1.07%). CONCLUSIONS There is an additive interaction of PRS and HLFs on CRC risk in individuals with prediabetes. Adopting favorable HLFs should be integrated into the management of prediabetes individuals to reduce the risk of CRC.
Collapse
Affiliation(s)
- Wenchen Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yikang Cheng
- The First Clinical Institute, Zunyi Medical University, Zunyi, 563000, China
| | - Qingyu Meng
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Baoqing Jia
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Dawei Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an, Jiaotong University Health Science Center, Xi'an, China.
| | - Yiping Cheng
- Department of Endocrinology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
2
|
Szabó RT, Kovács-Weber M, Balogh KM, Mézes M, Kovács B. Effect of aflatoxin B1 and sterigmatocystin on DNA repair genes in common carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107076. [PMID: 39277992 DOI: 10.1016/j.aquatox.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
The present study aimed to investigate the short-time (24 h) effect of aflatoxin B1 (AFB1) and sterigmatocystin (STC) on the expression of hsp70, p53, gadd45, and ogg1 genes in common carp hepatopancreas. Our results showed that aflatoxin B1 and sterigmatocystin can stimulate the expression of DNA repair genes, mainly by hour 24. This significant finding contributes to our understanding of the short-term effects of these mycotoxins on ogg1 genes in common carp hepatopancreas. One-year-old common carp juveniles were randomly distributed into five groups (Control, AFB1 0.4 mg kg-1 feed, STC1 1 mg kg-1 feed, STC2 2 mg kg-1 feed, and STC3 3 mg kg-1 feed). Hepatopancreas samples were collected three times (8, 16, and 24 h) in each group. No significant ogg1 and p53 expression changes were observed at 8 and 16 h after exposure. All measured genes were upregulated by the 24th hour in aflatoxin and STC3 groups. An increase in hsp70 gene expression was detected in all groups and all sampling. A significant decrease in gadd45aa gene expression was observed in the aflatoxin B1 group at hour 8. At hour 16, there was no significant change, while at hour 24, all treated groups were significantly different from the control. In summary, our results suggest that aflatoxin B1 and sterigmatocystin can stimulate the expression of DNA repair genes, mainly by hour 24. Further investigations are needed to get information about DNA damage parallel to the DNA repair mechanisms.
Collapse
Affiliation(s)
- Rubina Tünde Szabó
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Mária Kovács-Weber
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary.
| | - Krisztián Milán Balogh
- Department of Feed Safety, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | - Balázs Kovács
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| |
Collapse
|
3
|
Mohajeri Khorasani A, Raghibi A, Haj Mohammad Hassani B, Bolbolizadeh P, Amali A, Sadeghi M, Farshidi N, Dehghani A, Mousavi P. Decoding the Role of NEIL1 Gene in DNA Repair and Lifespan: A Literature Review with Bioinformatics Analysis. Adv Biol (Weinh) 2024; 8:e2300708. [PMID: 39164210 DOI: 10.1002/adbi.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/21/2024] [Indexed: 08/22/2024]
Abstract
Longevity, the length of an organism's lifespan, is impacted by environmental factors, metabolic processes, and genetic determinants. The base excision repair (BER) pathway is crucial for maintaining genomic integrity by repairing oxidatively modified base lesions. Nei-like DNA Glycosylase 1 (NEIL1), part of the BER pathway, is vital in repairing oxidative bases in G-rich DNA regions, such as telomeres and promoters. Hence, in this comprehensive review, it have undertaken a meticulous investigation of the intricate association between NEIL1 and longevity. The analysis delves into the multifaceted aspects of the NEIL1 gene, its various RNA transcripts, and the diverse protein isoforms. In addition, a combination of bioinformatic analysis is conducted to identify NEIL1 mutations, transcription factors, and epigenetic modifications, as well as its lncRNA/pseudogene/circRNA-miRNA-mRNA regulatory network. The findings suggest that the normal function of NEIL1 is a significant factor in human health and longevity, with defects in NEIL1 potentially leading to various cancers and related syndromes, Alzheimer's disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pedram Bolbolizadeh
- Student Research Committee, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Arian Amali
- School of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mahboubeh Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Narges Farshidi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- USERN Office, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Aghdas Dehghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| |
Collapse
|
4
|
Arat-Çelik HE, Eslami Abriz A, Coello K, Vinberg M, Ceylan D. Evaluating Oxidative Stress Markers in At-Risk Individuals for Bipolar Disorder: A Systematic Review and Meta-Analysis. Neuropsychobiology 2024; 83:121-134. [PMID: 39293410 DOI: 10.1159/000540999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Bipolar disorder (BD), a mood disorder with recurrent affective episodes and a strong genetic basis is frequently associated with significant comorbidities, both physical and psychiatric, yet its neurobiology remains unclear. Recent evidence underscores oxidative stress as a pivotal factor linking BD to its comorbidities, prompting an investigation into whether this is a sign of a genetic vulnerability or a consequence of the disease. In this study, we systematically reviewed oxidative stress studies conducted on individuals at risk for BD. We performed a meta-analysis on studies examining oxidative DNA damage in these individuals. METHODS The literature was searched across the databases PubMed, Web of Science, Scopus, Ovid MEDLINE, and Cochrane to locate studies of oxidative stress markers in relatives of patients with BD compared with healthy controls (from 1946 to March 2024). Studies were considered for inclusion based on the following criteria: (i) involvement of first- or second-degree relatives of individuals diagnosed with BD, (ii) presence of a healthy control group, (iii) reporting of oxidative stress parameters for relatives, including mean and standard deviation or median and interquartile range (25-75%) values, and (iv) publication in the English language. Studies comparing the levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) or its tautomer 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in individuals at risk for BD with healthy controls were evaluated using a meta-analysis with the random-effects method. The risk of bias was evaluated using the Risk of Bias in Non-Randomized Studies of Exposure (ROBINS-E) tool. RESULTS Eleven studies were included in the systematic review and four studies for the meta-analysis. The meta-analysis included 543 individuals (first-degree relatives of individuals with BD = 238, control = 305). 8-OH-dG levels were found to be increased in first-degree relatives of individuals with BD compared to healthy controls (random effects: Hedges's g = 0.53, 95% CI = 0.36-0.71, p < 0.001). Findings of oxidative stress markers other than oxidative DNA damage in relatives of individuals with BD are limited and scarce. CONCLUSION In this meta-analysis, which consists of a limited number of studies, oxidative DNA damage seems to be a trait marker for BD. This finding could be associated with increased comorbidity and a higher risk of premature aging in individuals at risk for BD. However, further studies with larger sample sizes and longitudinal designs are warranted to confirm findings. Clarifying the changes in these markers from individuals at risk for the disorder throughout the course of the illness would help bridge the gap in understanding the role of oxidative pathways in the risk of BD.
Collapse
Affiliation(s)
| | - Aysan Eslami Abriz
- Research Center for Translational Medicine (KUTTAM), Affective Disorders Laboratory, Koc University, Istanbul, Turkey
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
| | - Klara Coello
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
- The Early Multimodular Prevention and Intervention Research Institution (EMPIRI), Mental Health Centre, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Deniz Ceylan
- Research Center for Translational Medicine (KUTTAM), Affective Disorders Laboratory, Koc University, Istanbul, Turkey
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- Department of Psychiatry, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
5
|
Cao Y, Zhao W, Zhang J, Figueiredo DM, Zhao M, Ren S, Mu H, Li Y, Lu H, Shi H, Li X, Li J, Zhao F, Han J, Wang K. Effects of neonicotinoid residues on non-target soil animals: A case study of meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135022. [PMID: 38941834 DOI: 10.1016/j.jhazmat.2024.135022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Neonicotinoids (NEOs) are currently the fastest-growing and most widely used insecticide class worldwide. Increasing evidence suggests that long-term NEO residues in the environment have toxic effects on non-target soil animals. However, few studies have conducted surveys on the effects of NEOs on soil animals, and only few have focused on global systematic reviews or meta-analysis to quantify the effects of NEOs on soil animals. Here, we present a meta-analysis of 2940 observations from 113 field and laboratory studies that investigated the effects of NEOs (at concentrations of 0.001-78,600.000 mg/kg) on different soil animals across five indicators (i.e., survival, growth, behavior, reproduction, and biochemical biomarkers). Furthermore, we quantify the effects of NEOs on different species of soil animals. Results show that NEOs inhibit the survival, growth rate, behavior, and reproduction of soil animals, and alter biochemical biomarkers. Both the survival rate and longevity of individuals decreased by 100 % with NEO residues. The mean values of juvenile survival, cocoon number, and egg hatchability were reduced by 97 %, 100 %, and 84 %, respectively. Both individual and cocoon weights were reduced by 82 %, while the growth rate decreased by 88 % with NEO residues. Our meta-analysis confirms that NEOs pose significant negative impacts on soil animals.
Collapse
Affiliation(s)
- Yuxuan Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; Innovation Center of Pesticide Research, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wenting Zhao
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Jinrui Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Daniel M Figueiredo
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, the Netherlands
| | - Mingyu Zhao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Siyang Ren
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
| | - Hongyu Mu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| | - Yiyi Li
- Innovation Center of Pesticide Research, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huan Lu
- Innovation Center of Pesticide Research, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haoyuan Shi
- Xinzhou Center for Disease Control and Prevention, Xinzhou 034099, China
| | - Xin Li
- Xinzhou Center for Disease Control and Prevention, Xinzhou 034099, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taigu 030801, China
| | - Fanrong Zhao
- Innovation Center of Pesticide Research, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiajun Han
- Innovation Center of Pesticide Research, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
7
|
Wang G, Yu P, Wang J. Structures and dynamics of 8-oxo-7,8-dihydro-2'-deoxyguanosine in neutral and basic aqueous solutions by spectroscopy. J Chem Phys 2024; 161:024201. [PMID: 38973759 DOI: 10.1063/5.0209256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
8-oxo-7,8-dihydro-2'-dexyoguanine (8-oxo-dG) can be tautomerized to a 6-enolate,8-keto tautomer through nearby-NH deprotonation at elevated pH. In this work, the N3-protonated 8-oxo-dG tautomers in deuterated pH-buffer solutions were studied using steady-state UV/Vis, FTIR, and ultrafast two-dimensional IR spectroscopies. The presence of 6,8-diketo and C6-anionic tautomers at neutral to basic conditions (pD = 7.4-12.0) was revealed by UV/Vis and FTIR results and was further confirmed by 2D IR signals in both diagonal and off-diagonal regions. However, the C6-enol tautomer, which may be an intermediate during the transition from 6,8-diketo to C6-enolate,C8-keto, was not observed appreciably due to its extreme low population. Furthermore, the neutral-to-anionic tautomeric transition of N3H-8-oxo-dG studied in this work occurs under more basic conditions than the N1H-8-oxo-dG reported previously, showing a higher pKa value for N3H than N1H. Finally, vibrational relaxation of the carbonyl stretching mode was found to be both molecular site dependent and pD dependent for 8oxo-dG. Taken together, this work shows that the ultrafast infrared spectroscopic method is effective for examining tautomers and their dynamics in nucleic acids.
Collapse
Affiliation(s)
- Guixiu Wang
- Department of Marine Technology, Rizhao Polytechnic, Yantai North Road, 16, Rizhao, Shandong Province 276800, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Kong W, Zhao Y, Dai X, You C. Methodologies for the detection and sequencing of the epigenetic-like oxidative DNA modification, 8-oxo-7,8-dihydroguanine. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108516. [PMID: 39486616 DOI: 10.1016/j.mrrev.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The human genome is constantly threatened by endogenous and environmental DNA damaging agents that can induce a variety of chemically modified DNA lesions including 8-oxo-7,8-dihydroguanine (OG). Increasing evidence has indicated that OG is not only a biomarker for oxidative DNA damage but also a novel epigenetic-like modification involved in regulation of gene expression in mammalian cells. Here we summarize the recent progress in OG research focusing on the following points: (i) the mechanism of OG production in organisms and its biological consequences in cells, (ii) the accurate identification of OG in low-abundance genomes and complex biological backgrounds, (iii) the development of OG sequencing methods. These studies will be helpful for further understanding of the molecular mechanisms of OG-induced mutagenesis and its potential roles in human development and diseases such as cancer.
Collapse
Affiliation(s)
- Weiheng Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yingqi Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Changjun You
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
9
|
da Silva Siqueira L, Rodrigues FVF, Zanatta Â, Gonçalves JIB, Ghilardi IM, Alcará AM, Becker NB, Pinzetta G, Zanirati G, Becker BMA, Erwig HS, da Costa JC, Marinowic DR. Evaluation of the effects of the Zika Virus-Immunoglobulin G + complex on murine microglial cells. J Neurovirol 2024:10.1007/s13365-024-01218-7. [PMID: 38935226 DOI: 10.1007/s13365-024-01218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
After the Zika virus (ZIKV) epidemic in Brazil, ZIKV infections were linked to damage to the central nervous system (CNS) and congenital anomalies. Due to the virus's ability to cross the placenta and reach brain tissue, its effects become severe, leading to Congenital Zika Syndrome (CZS) and resulting in neuroinflammation, microglial activation, and secretion of neurotoxic factors. The presence of ZIKV triggers an inadequate fetal immune response, as the fetus only has the protection of maternal antibodies of the Immunoglobulin G (IgG) class, which are the only antibodies capable of crossing the placenta. Because of limited understanding regarding the long term consequences of ZIKV infection and the involvement of maternal antibodies, this study sought to assess the impact of the ZIKV + IgG⁺complex on murine microglial cells. The cells were exposed to ZIKV, IgG antibodies, and the ZIKV + IgG⁺complex for 24 and 72 h. Treatment-induced cytotoxic effects were evaluated using the cell viability assay, oxidative stress, and mitochondrial membrane potential. The findings indicated that IgG antibodies exhibit cytotoxic effects on microglia, whether alone or in the presence of ZIKV, leading to compromised cell viability, disrupted mitochondrial membrane potential, and heightened oxidative damage. Our conclusion is that IgG antibodies exert detrimental effects on microglia, triggering their activation and potentially disrupting the creation of a neurotoxic environment. Moreover, the presence of antibodies may correlate with an elevated risk of ZIKV-induced neuroinflammation, contributing to long-term CNS damage.
Collapse
Affiliation(s)
- Laura da Silva Siqueira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Felipe Valle Fortes Rodrigues
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Ângela Zanatta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Nicole Bernd Becker
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Giulia Pinzetta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Bruno Maestri Abrianos Becker
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Helena Scartassini Erwig
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil.
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil.
| |
Collapse
|
10
|
Song J, Huang F, Ma K, Ding R, Tan K, Lv D, Soyano K, Zhao K. Bifenthrin induces changes in clinical poisoning symptoms, oxidative stress, DNA damage, histological characteristics, and transcriptome in Chinese giant salamander (Andrias davidianus) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172041. [PMID: 38554955 DOI: 10.1016/j.scitotenv.2024.172041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Bifenthrin (BF) is a broad-spectrum insecticide that has gained widespread use due to its high effectiveness. However, there is limited research on the potential toxic effects of bifenthrin pollution on amphibians. This study aimed to investigate the 50 % lethal concentration (LC50) and safety concentration of Chinese giant salamanders (CGS) exposed to BF (at 0, 6.25,12.5,25 and 50 μg/L BF) for 96 h. Subsequently, CGS were exposed to BF (at 0, 0.04, and 4 μg/L BF) for one week to investigate its toxic effects. Clinical poisoning symptoms, liver pathology, oxidative stress factors, DNA damage, and transcriptome differences were observed and analyzed. The results indicate that exposure to BF at 4 μg/L significantly decreased the adenosine-triphosphate (ATP), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) contents in the brain, liver, and kidney of CGS. Additionally, the study found that the malondialdehyde (MDA), reactive oxygen species (ROS), and 8-hydroxydeoxyguanosine (8-OHdG) contents were increased. The liver tissue exhibited significant inflammatory reactions and structural malformations. RNA-seq analysis of the liver showed that BF caused abnormal antioxidant indices of CGS. This affected molecular function genes such as catalytic activity, ATP-dependent activity, metabolic processes, signaling and immune system processes, behavior, and detoxification, which were significantly upregulated, resulting in the differential genes significantly enriched in the calcium signaling pathway, PPARα signaling pathway and NF-kB signaling pathway. The results suggest that BF induces the abnormal production of free radicals, which overwhelms the body's self-defense system, leading to varying degrees of oxidative stress. This can result in oxidative damage, DNA damage, abnormal lipid metabolism, autoimmune diseases, clinical poisoning symptoms, and tissue inflammation. This work provides a theoretical basis for the rational application of bifenthrin and environmental risk assessment, as well as scientific guidance for the conservation of amphibian populations.
Collapse
Affiliation(s)
- Jing Song
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China; Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki 851-2213, Japan
| | - Fengyun Huang
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Kun Ma
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Rui Ding
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Kai Tan
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Dan Lv
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China
| | - Kiyoshi Soyano
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki 851-2213, Japan
| | - Kai Zhao
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| |
Collapse
|
11
|
Arat Çelik HE, Yılmaz S, Akşahin İC, Kök Kendirlioğlu B, Çörekli E, Dal Bekar NE, Çelik ÖF, Yorguner N, Targıtay Öztürk B, İşlekel H, Özerdem A, Akan P, Ceylan D, Tuna G. Oxidatively-induced DNA base damage and base excision repair abnormalities in siblings of individuals with bipolar disorder DNA damage and repair in bipolar disorder. Transl Psychiatry 2024; 14:207. [PMID: 38789433 PMCID: PMC11126633 DOI: 10.1038/s41398-024-02901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/26/2024] Open
Abstract
Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLβ). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLβ expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.
Collapse
Affiliation(s)
| | - Selda Yılmaz
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - İzel Cemre Akşahin
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul, Turkey
| | | | - Esma Çörekli
- Department of Psychiatry, School of Medicine, Maltepe University, Istanbul, Turkey
| | - Nazlı Ecem Dal Bekar
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ömer Faruk Çelik
- Department of Medical Biochemistry, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Neşe Yorguner
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul, Turkey
| | | | - Hüray İşlekel
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- Department of Medical Biochemistry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşegül Özerdem
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Pınar Akan
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- BioIzmir - Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Ceylan
- Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koc University, Istanbul, Turkey.
| | - Gamze Tuna
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- BioIzmir - Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
12
|
Lukina MV, Zhdanova PV, Koval VV. Structural and Dynamic Features of the Recognition of 8-oxoguanosine Paired with an 8-oxoG-clamp by Human 8-oxoguanine-DNA Glycosylase. Curr Issues Mol Biol 2024; 46:4119-4132. [PMID: 38785521 PMCID: PMC11120029 DOI: 10.3390/cimb46050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in human cells. OGG1 is a bifunctional DNA glycosylase with N-glycosylase and AP lyase activities. Aspects of the detailed mechanism underlying the recognition of 8-oxoguanine among numerous intact bases and its subsequent interaction with the enzyme's active site amino acid residues are still debated. The main objective of our work was to determine the effect (structural and thermodynamic) of introducing an oxoG-clamp in model DNA substrates on the process of 8-oxoG excision by OGG1. Towards that end, we used DNA duplexes modeling OGG1-specific lesions: 8-oxoguanine or an apurinic/apyrimidinic site with either cytidine or the oxoG-clamp in the complementary strand opposite to the lesion. It was revealed that there was neither hydrolysis of the N-glycosidic bond at oxoG nor cleavage of the sugar-phosphate backbone during the reaction between OGG1 and oxoG-clamp-containing duplexes. Possible structural reasons for the absence of OGG1 enzymatic activity were studied via the stopped-flow kinetic approach and molecular dynamics simulations. The base opposite the damage was found to have a critical effect on the formation of the enzyme-substrate complex and the initiation of DNA cleavage. The oxoG-clamp residue prevented the eversion of the oxoG base into the OGG1 active site pocket and impeded the correct convergence of the apurinic/apyrimidinic site of DNA and the attacking nucleophilic group of the enzyme. An obtained three-dimensional model of the OGG1 complex with DNA containing the oxoG-clamp, together with kinetic data, allowed us to clarify the role of the contact of amino acid residues with DNA in the formation of (and rearrangements in) the enzyme-substrate complex.
Collapse
Affiliation(s)
- Maria V. Lukina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Peng J, Pan Y, Zhou Y, Lei X, Guo Y, Lei Y, Kong Q, Cheng S, Yang X. Mechanistic Aspects of Photodegradation of Deoxynucleosides Induced by Triplet State of Effluent Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4751-4760. [PMID: 38324714 DOI: 10.1021/acs.est.3c08782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Excited triplet states of wastewater effluent organic matter (3EfOM*) are known as important photo-oxidants in the degradation of extracellular antibiotic resistance genes (eArGs) in sunlit waters. In this work, we further found that 3EfOM* showed highly selective reactivity toward 2'-deoxyguanosine (dG) sites within eArGs in irradiated EfOM solutions at pH 7.0, while it showed no photosensitizing capacity toward 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxycytidine (the basic structures of eArGs). The 3EfOM* contributed to the photooxidation of dG primarily via one-electron transfer mechanism, with second-order reaction rate constants of (1.58-1.74) × 108 M-1 s-1, forming the oxidation intermediates of dG (dG(-H)•). The formed dG(-H)• could play a significant role in hole hopping and damage throughout eArGs. Using the four deoxynucleosides as probes, the upper limit for the reduction potential of 3EfOM* is estimated to be between 1.47 and 1.94 VNHE. Compared to EfOM, the role of the triplet state of terrestrially natural organic matter (3NOM*) in dG photooxidation was minor (∼15%) mainly due to the rapid reverse reactions of dG(-H)• by the antioxidant moieties of NOM. This study advances our understanding of the difference in the photosensitizing capacity and electron donating capacity between NOM and EfOM and the photodegradation mechanism of eArGs induced by 3EfOM*.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Lei
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, P. R. China
| | - Yifan Guo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
14
|
Wang YZ, An XL, Fan XT, Pu Q, Li H, Liu WZ, Chen Z, Su JQ. Visible light-activated photosensitizer inhibits the plasmid-mediated horizontal gene transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132564. [PMID: 37734313 DOI: 10.1016/j.jhazmat.2023.132564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Inhibition of plasmid transfer, including transformation and conjugation, is essential to prevent the spread of plasmid-encoded antimicrobial resistance. Photosensitizers have been successfully used in the treatment of serious infectious diseases, however, the effects of photosensitizers on the plasmid transfer are still elusive. In this study, we determined the transformation and conjugation efficiency of plasmid pUC19 and pRP4, respectively, when exposed to a photosensitizer (Visible Light-activated Rose Bengal, VLRB). The results showed that the activation of VLRB resulted in up to a 580-fold decrease in the transformation frequency of pUC19 and a 10-fold decrease in the conjugation frequency of pRP4 compared with the non-VLRB control. The inhibition of pUC19 transformation by VLRB exhibited a dose-dependent manner and was attributed to the changes in the plasmid conformation. The inhibition of pRP4 conjugation was associated with the generation of extracellular free radicals, induced oxidative stress, suppression of the mating pair formation gene (trbBp) and DNA transfer and replication gene (trfAp), and enhanced expression of the global regulatory genes (korA, korB, and trbA). These findings highlight the potential of visible light-activated photosensitizer for mitigating the dissemination of plasmid-encoded antibiotic resistance genes.
Collapse
Affiliation(s)
- Yan-Zi Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ting Fan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wen-Zhen Liu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhuo Chen
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
15
|
Wang L, Zhou JC, Li ZH, Zhang X, Leung KMY, Yuan L, Sheng GP. Facet-Specific Photocatalytic Degradation of Extracellular Antibiotic Resistance Genes by Hematite Nanoparticles in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21835-21845. [PMID: 38085064 DOI: 10.1021/acs.est.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persistence of extracellular antibiotic resistance genes (ARGs) in aquatic environments has attracted increasing attention due to their potential threat to public health and the environment. However, the fate of extracellular ARGs in receiving water remains largely unknown. This study investigated the influence of hematite nanoparticles, a widespread natural mineral, on the photodegradation of extracellular ARGs in river water. Results showed that under exposure to visible light, hematite nanoparticles, at environmental concentrations, resulted in a 3-5 orders of magnitude reduction in extracellular ARGs. This photodegradation of extracellular ARGs is shown to be facet-dependent; the (001) facet of hematite demonstrates a higher removal rate than that of the (100) facet, which is ascribed to its enhanced adsorption capability and higher hydroxyl radical (•OH) production. Density functional theory (DFT) calculations corroborate this finding, indicating elevated iron density, larger adsorption energy, and lower energy barrier of •OH formation on the (001) facet, providing more active sites and •OH generation for extracellular ARG interaction. Gel electrophoresis and atomic force microscopy analyses further confirm that the (001) facet causes more substantial damage to extracellular ARGs than the (100) facet. These findings pave the way for predicting the photodegradation efficiency of hematite nanoparticles with varied facets, thereby shedding light on the inherent self-purification capacity for extracellular ARGs in both natural and engineered aquatic environments.
Collapse
Affiliation(s)
- Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jing-Chen Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Chung WH. Signification and Application of Mutator and Antimutator Phenotype-Induced Genetic Variations in Evolutionary Adaptation and Cancer Therapeutics. J Microbiol 2023; 61:1013-1024. [PMID: 38100001 DOI: 10.1007/s12275-023-00091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/11/2024]
Abstract
Mutations present a dichotomy in their implications for cellular processes. They primarily arise from DNA replication errors or damage repair processes induced by environmental challenges. Cumulative mutations underlie genetic variations and drive evolution, yet also contribute to degenerative diseases such as cancer and aging. The mutator phenotype elucidates the heightened mutation rates observed in malignant tumors. Evolutionary adaptation, analogous to bacterial and eukaryotic systems, manifests through mutator phenotypes during changing environmental conditions, highlighting the delicate balance between advantageous mutations and their potentially detrimental consequences. Leveraging the genetic tractability of Saccharomyces cerevisiae offers unique insights into mutator phenotypes and genome instability akin to human cancers. Innovative reporter assays in yeast model organisms enable the detection of diverse genome alterations, aiding a comprehensive analysis of mutator phenotypes. Despite significant advancements, our understanding of the intricate mechanisms governing spontaneous mutation rates and preserving genetic integrity remains incomplete. This review outlines various cellular pathways affecting mutation rates and explores the role of mutator genes and mutation-derived phenotypes, particularly prevalent in malignant tumor cells. An in-depth comprehension of mutator and antimutator activities in yeast and higher eukaryotes holds promise for effective cancer control strategies.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Republic of Korea.
- Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea.
| |
Collapse
|
17
|
Zhang S, Zhao Y, Wang X, Qi C, Tian J, Zou Z. Synergistic lethality between auranofin-induced oxidative DNA damage and ATR inhibition in cancer cells. Life Sci 2023; 332:122131. [PMID: 37778414 DOI: 10.1016/j.lfs.2023.122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
AIMS Studies in the past have shown that inhibition of the ataxia telangiectasia and Rad3-related (ATR) kinase sensitizes cancer cells to genotoxic anticancer treatments, however, clinical use of ATR inhibitors in combination with DNA damaging chemotherapy is limited due to toxicity in healthy tissues. In this study, we investigated the synergistic anticancer effect between ATR inhibition and oxidative DNA damage induced by the thioredoxin reductase inhibitor auranofin. MAIN METHODS Cytotoxicity was evaluated by cell viability assays. Western blot, comet assay, immunostaining and flow cytometry were performed to dissect the underlying mechanisms. In vivo efficacy was examined against tumor xenografts. KEY FINDINGS Nontoxic doses of auranofin alone increased the levels of reactive oxygen species (ROS) in cancer but not noncancerous cells, resulting in oxidative DNA damage and activation of the ATR DNA damage response pathway selectively in cancer cells. Inhibition of ATR in auranofin-treated cancer cells resulted in unscheduled firing of dormant DNA replication origins, abrogation of the S phase cell cycle checkpoint and extensive DNA breakage, leading to replication catastrophe and potent synergistic lethality. Both the antioxidant NAC and the DNA polymerase inhibitor aphidicolin reduced replication stress and synergistic cytotoxicity, implicating replication stress-driven catastrophic cell death resulted from collision between oxidative DNA damage and dysregulated DNA replication. In vivo, auranofin and VE822 coadministration enabled marked regressions of tumor xenografts, while each drug alone had no effect. SIGNIFICANCE As increased generation of ROS is a universal feature of tumors, our findings may open new routes to broaden the therapeutic potential of ATR inhibitors.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yue Zhao
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xueqi Wang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ce Qi
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jialiang Tian
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Zhihua Zou
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
18
|
Ni X, Hou X, Ma D, Li Q, Li L, Gao B, Wang Y. Simultaneous removal of antibiotics and antibiotic resistant genes using a CeO 2@CNT electrochemical membrane-NaClO system. CHEMOSPHERE 2023; 338:139457. [PMID: 37429382 DOI: 10.1016/j.chemosphere.2023.139457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
The simultaneous removal of antibiotic and antibiotic resistance genes (ARGs) are important to inhibit the spread of antibiotic resistance. In this study, a coupled treatment system was developed using a CeO2 modified carbon nanotube electrochemical membrane and NaClO (denoted as CeO2@CNT-NaClO) to treat simulated water samples containing antibiotics and antibiotic-resistant bacteria (ARB). As the mass ratio of CeO2 to CNT was 5:7 and the current density was 2.0 mA/cm2, the CeO2@CNT-NaClO system removed 99% of sulfamethoxazole, 4.6 log sul1 genes, and 4.7 log intI1 genes from the sulfonamide-resistance water samples, and removed 98% of tetracycline, 2.0 log tetA genes, and 2.6 log intI1 genes of the tetracycline-resistance water samples. The outstanding performance of the CeO2@CNT-NaClO system for simultaneously removing antibiotic and ARGs was mainly ascribed to the generation of multiple reactive species, including •OH, •ClO, •O2- and 1O2. Antibiotics can undergo efficient degradation by •OH. However, the reaction between •OH and antibiotics reduces the availability of •OH to permeate into the cells and react with DNA. Nevertheless, the presence of •OH enhancd the effects of •ClO, •O2-, and 1O on ARG degradation. Through the coupled action of •OH, •ClO, •O2-, and 1O2, the cell membranes of ARB experience severe damage, resulting in an increase in intracellular reactive oxygen species (ROS) and a decrease in superoxide dismutase (SOD) activity. Consequently, this coordinated mechanism leads to superior removal of ARGs.
Collapse
Affiliation(s)
- Xiaoyu Ni
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Xuan Hou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Defang Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Ling Li
- State Key Lab of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, PR China; The Key Lab of Eco-restoration of Regional Contaminated Environment, Shenyang University, Shenyang, PR China.
| |
Collapse
|
19
|
Dobney W, Mols L, Mistry D, Tabury K, Baselet B, Baatout S. Evaluation of deep space exploration risks and mitigations against radiation and microgravity. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1225034. [PMID: 39355042 PMCID: PMC11440958 DOI: 10.3389/fnume.2023.1225034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2024]
Abstract
Ionizing radiation and microgravity are two considerable health risks encountered during deep space exploration. Both have deleterious effects on the human body. On one hand, weightlessness is known to induce a weakening of the immune system, delayed wound healing and musculoskeletal, cardiovascular, and sensorimotor deconditioning. On the other hand, radiation exposure can lead to long-term health effects such as cancer and cataracts as well as have an adverse effect on the central nervous and cardiovascular systems. Ionizing radiation originates from three main sources in space: galactic cosmic radiation, solar particle events and solar winds. Furthermore, inside the spacecraft and inside certain space habitats on Lunar and Martian surfaces, the crew is exposed to intravehicular radiation, which arises from nuclear reactions between space radiation and matter. Besides the approaches already in use, such as radiation shielding materials (such as aluminium, water or polyethylene), alternative shielding materials (including boron nanotubes, complex hybrids, composite hybrid materials, and regolith) and active shielding (using fields to deflect radiation particles) are being investigated for their abilities to mitigate the effects of ionizing radiation. From a biological point of view, it can be predicted that exposure to ionizing radiation during missions beyond Low Earth Orbit (LEO) will affect the human body in undesirable ways, e.g., increasing the risks of cataracts, cardiovascular and central nervous system diseases, carcinogenesis, as well as accelerated ageing. Therefore, it is necessary to assess the risks related to deep space exploration and to develop mitigation strategies to reduce these risks to a tolerable level. By using biomarkers for radiation sensitivity, space agencies are developing extensive personalised medical examination programmes to determine an astronaut's vulnerability to radiation. Moreover, researchers are developing pharmacological solutions (e.g., radioprotectors and radiomitigators) to proactively or reactively protect astronauts during deep space exploration. Finally, research is necessary to develop more effective countermeasures for use in future human space missions, which can also lead to improvements to medical care on Earth. This review will discuss the risks space travel beyond LEO poses to astronauts, methods to monitor astronauts' health, and possible approaches to mitigate these risks.
Collapse
Affiliation(s)
- William Dobney
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, United Kingdom
| | - Louise Mols
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Dhruti Mistry
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
- Department of Molecular Biotechnology, UGhent, Gent, Belgium
- Department of Human Structure & Repair, UGhent, Gent, Belgium
| |
Collapse
|
20
|
Cancemi G, Cicero N, Allegra A, Gangemi S. Effect of Diet and Oxidative Stress in the Pathogenesis of Lymphoproliferative Disorders. Antioxidants (Basel) 2023; 12:1674. [PMID: 37759977 PMCID: PMC10525385 DOI: 10.3390/antiox12091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Lymphomas are a heterogeneous group of pathologies that result from clonal proliferation of lymphocytes. They are classified into Hodgkin lymphoma and non-Hodgkin lymphoma; the latter develops as a result of B, T, or NK cells undergoing malignant transformation. It is believed that diet can modulate cellular redox state and that oxidative stress is implicated in lymphomagenesis by acting on several biological mechanisms; in fact, oxidative stress can generate a state of chronic inflammation through the activation of various transcription factors, thereby increasing the production of proinflammatory cytokines and causing overstimulation of B lymphocytes in the production of antibodies and possible alterations in cellular DNA. The purpose of our work is to investigate the results of in vitro and in vivo studies on the possible interaction between lymphomas, oxidative stress, and diet. A variety of dietary regimens and substances introduced with the diet that may have antioxidant and antiproliferative effects were assessed. The possibility of using nutraceuticals as novel anticancer agents is discussed; although the use of natural substances in lymphoma therapy is an interesting field of study, further studies are needed to define the efficacy of different nutraceuticals before introducing them into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
21
|
Yin W, Yang L, Zhou X, Liu T, Zhang L, Xu Y, Li N, Chen J, Zhang Y. Peracetic acid disinfection induces antibiotic-resistant E. coli into VBNC state but ineffectively eliminates the transmission potential of ARGs. WATER RESEARCH 2023; 242:120260. [PMID: 37392507 DOI: 10.1016/j.watres.2023.120260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The occurrence of a viable but nonculturable (VBNC) state in antibiotic-resistant E. coli (AR E. coli) and inefficient degradation of their antibiotic resistance genes (ARGs) may cause potential health risks during disinfection. Peracetic acid (PAA) is an alternative disinfectant for replacing chlorine-based oxidants in wastewater treatment, and the potential of PAA to induce a VBNC state in AR E. coli and to remove the transformation functionality of ARGs were investigated for the first time. Results show that PAA exhibits excellent performance in inactivating AR E. coli (over 7.0-logs) and persistently inhibiting its regeneration. After PAA disinfection, insignificant changes in the ratio of living to dead cells (∼4%) and the level of cell metabolism, indicating that AR E. coli were induced into VBNC states. Unexpectedly, PAA was found to induce AR E. coli into VBNC state by destroying the proteins containing reactive amino acids at thiol, thioether and imidazole groups, rather than the result of membrane damage, oxidative stress, lipid destruction and DNA disruption in the conventional disinfection processes. Moreover, the result of poor reactivity between PAA and plasmid strands and bases confirmed that PAA hardly reduced the abundance of ARGs and damaged the plasmid's integrity. Transformation assays and real environment validation indicated that PAA-treated AR E. coli could release large abundance of naked ARGs with high-efficiency transformation functionality (∼5.4 × 10-4 - ∼8.3 × 10-6) into the environment. This study has significant environmental implications for assessing the transmission of antimicrobial resistance during PAA disinfection.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
Tuna G, Bekar NED, İşlekel S, İşlekel GH. Urinary 8-hydroxy-2'-deoxyguanosine levels are elevated in patients with IDH1-wildtype glioblastoma and are associated with tumor recurrence in gliomas. DNA Repair (Amst) 2023; 124:103463. [PMID: 36841018 DOI: 10.1016/j.dnarep.2023.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
2021 World Health Organization (WHO) Central Nervous System (CNS) Tumor Classification includes molecular diagnostic parameters such as isocitrate dehydrogenase (IDH) mutation or 1p19q codeletion status, in addition to the classical histological classification. Several studies have revealed that patients with IDH1 mutation have a longer survival rate compared to wildtype individuals. In glioma cells, increased oxidative stress has been identified. However, till now, the relation between oxidative stress levels and IDH1 mutation status in those patients was not examined. Therefore, the aim of this study was to investigate the urinary levels of oxidatively induced DNA damage products, 8-hydroxy-2'- deoxyguanosine (8-OH-dG), (5'R) and (5'S)-8,5'-cyclo-2'-deoxyadenosines (R-cdA and S-cdA) as reliable oxidative stress markers in patients with IDH1-wildtype (n = 20) and IDH1-mutant (n = 22) glioma. Absolute quantification of 8-OH-dG, R-cdA and S-cdA was achieved by liquid chromatography-tandem mass spectrometry with isotope dilution. The levels of 8-OH-dG were significantly greater in IDH1-wildtype glioma patients than those in IDH1-mutant ones (p = 0.017). No statistically significant difference was observed for R-cdA and S-cdA levels. 8-OH-dG levels were positively correlated with patients' tumor recurrence in all patients (r = 0.382, p = 0.014). The mutation status of glioma is well correlated with oxidative stress. Examination of noninvasively measured oxidative DNA damage products along with IDH1 mutation status in glioma patients, might be particularly important in terms of evaluating and monitoring the effectiveness of treatment.
Collapse
Affiliation(s)
- Gamze Tuna
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| | - Nazlı Ecem Dal Bekar
- Department of Medical Biochemistry, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Sertaç İşlekel
- Department of Neurosurgery, Medicana Hospital, Izmir, Turkey
| | - Gül Hüray İşlekel
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
23
|
Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Bioact Mater 2023; 22:141-167. [PMID: 36203963 PMCID: PMC9526023 DOI: 10.1016/j.bioactmat.2022.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, there are no clinical drugs available to treat acute kidney injury (AKI). Given the high prevalence and high mortality rate of AKI, the development of drugs to effectively treat AKI is a huge unmet medical need and a research hotspot. Although existing evidence fully demonstrates that reactive oxygen and nitrogen species (RONS) burst at the AKI site is a major contributor to AKI progression, the heterogeneity, complexity, and unique physiological structure of the kidney make most antioxidant and anti-inflammatory small molecule drugs ineffective because of the lack of kidney targeting and side effects. Recently, nanodrugs with intrinsic kidney targeting through the control of size, shape, and surface properties have opened exciting prospects for the treatment of AKI. Many antioxidant nanodrugs have emerged to address the limitations of current AKI treatments. In this review, we systematically summarized for the first time about the emerging nanodrugs that exploit the pathological and physiological features of the kidney to overcome the limitations of traditional small-molecule drugs to achieve high AKI efficacy. First, we analyzed the pathological structural characteristics of AKI and the main pathological mechanism of AKI: hypoxia, harmful substance accumulation-induced RONS burst at the renal site despite the multifactorial initiation and heterogeneity of AKI. Subsequently, we introduced the strategies used to improve renal targeting and reviewed advances of nanodrugs for AKI: nano-RONS-sacrificial agents, antioxidant nanozymes, and nanocarriers for antioxidants and anti-inflammatory drugs. These nanodrugs have demonstrated excellent therapeutic effects, such as greatly reducing oxidative stress damage, restoring renal function, and low side effects. Finally, we discussed the challenges and future directions for translating nanodrugs into clinical AKI treatment. AKI is a common clinical acute syndrome with high morbidity and mortality but without effective clinical drug available. Hypoxia and accumulation of toxic substances are key pathological features of various heterogeneous AKI. Excessive RONS is the core of the pathological mechanism of AKI. The development of nanodrugs is expected to achieve successful treatment in AKI.
Collapse
|
24
|
Çeli K HEA, Tuna G, Ceylan D, Küçükgöncü S. A comparative meta-analysis of peripheral 8-hydroxy-2'-deoxyguanosine (8-OHdG) or 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) levels across mood episodes in bipolar disorder. Psychoneuroendocrinology 2023; 151:106078. [PMID: 36931055 DOI: 10.1016/j.psyneuen.2023.106078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/28/2023] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVE Oxidative DNA damage has been associated with the pathophysiology of bipolar disorder (BD) as one of the common pathways between increased medical comorbidity and premature aging in BD. Previous evidence shows increased levels of oxidatively induced DNA damage markers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) or its tautomer 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), in patients with BD in comparison to healthy individuals. With the current research, we aim to analyze data on peripheral (blood or urine) 8-OHdG/8-oxo-dG levels across mood states of BD using a meta-analytical approach. METHOD A literature search was conducted using the databases PubMed, Scopus, and Web of Science to identify eligible studies (January 1989 to July 2022). Relevant studies were systematically reviewed; a random-effects meta-analysis and a meta-regression analysis were conducted. RESULTS The current meta-analysis included 12 studies consisting of 808 BD patients (390 in euthymia, 156 in mania, 137 in depression, 16 in mixed episode, 109 not specified) and 563 healthy controls. BD patients that were currently depressed had significantly higher levels of 8-OHdG/8-oxo-dG than healthy controls, while euthymic or manic patients did not differ from healthy controls. A meta-regression analysis showed sex distribution (being female) and older age to be significantly related to increased 8-OHdG/8-oxo-dG levels. CONCLUSION Our findings suggest that 8-OHdG/8-oxo-dG may be a state-related marker of depression in BD and may be affected by older age and female gender.
Collapse
Affiliation(s)
- Hidayet Ece Arat Çeli K
- Maltepe University, Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey; Dokuz Eylül University, Institute of Health Sciences, Department of Neuroscience, İzmir, Turkey
| | - Gamze Tuna
- Dokuz Eylül University, Institute of Health Sciences, Department of Molecular Medicine, İzmir, Turkey
| | - Deniz Ceylan
- Koç University, Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey; Koç University, Research Center for Translational Medicine, İstanbul, Turkey.
| | - Suat Küçükgöncü
- Maltepe University, Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey
| |
Collapse
|
25
|
Xiao L, Liang Y, Liu G, Lin F, Wen X. Identification of antioxidant peptides after digestion and absorption of isinglass by serum peptidomics and cellular antioxidant activity analysis. Food Funct 2023; 14:2249-2259. [PMID: 36762544 DOI: 10.1039/d2fo03847a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Isinglass, a dried product of the swim bladder, has been widely used in traditional Chinese medicine. This study attempts to identify natural antioxidant peptides after digestion and absorption of isinglass in vivo. The antioxidant effects of dietary isinglass were demonstrated by evaluating the activities of SOD, CAT and MDA contents in the mouse liver. Four novel antioxidant-related peptides (RLLWENGNLL, GSKAENPTNPGP, SPVPDLVPGSF and VPDLVPGSF) were screened based on serum peptidomics and amino acid composition. Furthermore, pretreating with four peptides significantly increased the cell viability, and SOD and CAT activities of AML12 cells with H2O2-mediated oxidative damage, meanwhile, significantly reduced the ROS level, MDA content and apoptosis rate and attenuated DNA damage. Therefore, it was concluded that pretreatment of the identified peptides had a protective effect on oxidatively damaged cells. This result can aid in the recognition of active peptides from isinglass consumption for potential application in nutraceuticals or functional ingredients in food.
Collapse
Affiliation(s)
- Lanfei Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Yongjun Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| | - Geng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Fan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Beneficial in vitro effect of N-acetylcysteine and coenzyme Q10 on DNA damage in neurodegenerative Niemann-Pick type C 1 disease: preliminary results. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02423-7. [PMID: 36795166 DOI: 10.1007/s00210-023-02423-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Niemann-Pick type C1 (NP-C1) is a lysosomal storage disease (LSD) caused by mutations in NPC1 gene that lead to defective synthesis of the respective lysosomal transporter protein and cholesterol accumulation in late endosomes/lysosomes (LE/L) compartments, as well as glycosphingolipids GM2 and GM3 in the central nervous system (CNS). Clinical presentation varies according to the age of onset and includes visceral and neurological symptoms, such as hepatosplenomegaly and psychiatric disorders. Studies have been associating the pathophysiology of NP-C1 with oxidative damage to lipids and proteins, as well as evaluating the benefits of adjuvant therapy with antioxidants for this disease. In this work, we evaluated the DNA damage in fibroblasts culture from patients with NP-C1 treated with miglustat, as well as the in vitro effect of the antioxidant compounds N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10), using the alkaline comet assay. Our preliminary results demonstrate that NP-C1 patients have increased DNA damage compared to healthy individuals and that the treatments with antioxidants can mitigate it. DNA damage may be due to an increase in reactive species since it has been described that NP-C1 patients have increased peripheral markers of damage to other biomolecules. Our study suggests that NP-C1 patients could benefit from the use of adjuvant therapy with NAC and CoQ10, which should be better evaluated in a future clinical trial.
Collapse
|
27
|
Hammerschmidt TG, Donida B, Raabe M, Faverzani JL, de Fátima Lopes F, Machado AZ, Kessler RG, Reinhardt LS, Poletto F, Moura DJ, Vargas CR. Evidence of redox imbalance and mitochondrial dysfunction in Niemann-Pick type C 1 patients: the in vitro effect of combined therapy with antioxidants and β-cyclodextrin nanoparticles. Metab Brain Dis 2023; 38:507-518. [PMID: 36447062 DOI: 10.1007/s11011-022-01128-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of β-cyclodextrin (β-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of β-CD to reduce cholesterol in fibroblasts from NPC1 patients. β-CD was used in its free and nanoparticulate form. We also evaluated the β-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing β-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells ́. In addition, treatments combining β-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free β-CD. The results obtained are promising regarding the combined use of β-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.
Collapse
Affiliation(s)
| | - Bruna Donida
- Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | - Marco Raabe
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciele de Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Andryele Z Machado
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Rejane G Kessler
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Luiza S Reinhardt
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Fernanda Poletto
- Programa de Pós-Graduação em Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dinara J Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Carmen R Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
28
|
Zhao L, Jiang Y, Lei X, Yang X. Amazing roles of extrachromosomal DNA in cancer progression. Biochim Biophys Acta Rev Cancer 2023; 1878:188843. [PMID: 36464200 DOI: 10.1016/j.bbcan.2022.188843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
In cancers, extrachromosomal DNA (ecDNA) has gained renewed interest since its first discovery, presenting its roles in tumorigenesis. Because of the unique structure and genetic characteristics, extrachromosomal DNA shed new light on development, early diagnosis, treatment and prognosis of cancers. Occurs in cancer cells, extrachromosomal DNA, one dissociative circular extrachromosomal element, drives the amplification of oncogenes, promotes the transcription and lifts tumor heterogeneity to participate in tumorigenesis. Given its role act as messenger, extrachromosomal DNA is connected with drug resistance, tumor microenvironment, germline and aging. The diversity of space and time gives extrachromosomal DNA a crucial role in cancer progression that has been ignored for decades. Thus, in this review, we will focus on some unique information of extrachromosomal DNA and the regulation of oncogenes as well as its roles and possible mechanisms in tumorigenesis, which are of great significance for us to understand extrachromosomal DNA comprehensively in carcinogenic mechanism.
Collapse
Affiliation(s)
- Leilei Zhao
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Yicun Jiang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
29
|
Wang LJ, Pan LP, Zou X, Qiu JG, Zhang CY. Activatable Self-Dissociation of Watson-Crick Structures with Fluorescent Nucleotides for Sensing Multiple Human Glycosylases at Single-Cell Level. Anal Chem 2022; 94:17700-17708. [PMID: 36475642 DOI: 10.1021/acs.analchem.2c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleobase oxidation and alkylation can destroy Watson-Crick base-pairing to challenge the genomic integrity. Human 8-oxoguanine glycosylase 1 (hOGG1) and alkyladenine glycosylase (hAAG) are evolved to counter these two cytotoxic lesions through base-excision repair, and their deregulations are implicated with multifactorial diseases and cancers. Herein, we demonstrate activatable self-dissociation of Watson-Crick structures with fluorescent nucleotides for sensing multiple human glycosylases at single-cell level. The presence of hOGG1 and hAAG catalyzes 8-oxoG and deoxyinosine removal in functional probe 1 to release two trigger probes (1 and 2). Then, trigger probes hybridize with functional probe 2 to activate the autocatalytic degradation of functional probes 2 (Cycle I) and 3 (Cycle II), replicating abundant trigger probes (1-4) and releasing two fluorophores (2-aminopurine (2-AP) and pyrrolo-dC (P-dC)). New trigger probes (1, 2) and (3, 4), in turn, hybridize with free functional probes 2 and 3, repeating Cycles I and II turnovers. Through multicycle self-dissociation of Watson-Crick structures, 2-AP and P-dC are exponentially accumulated for the simultaneous quantification of hOGG1 and hAAG. This nanodevice exhibits high sensitivity with a detection limit of 2.9 × 10-3 U/mL for hOOG1 and 1.5 × 10-3 U/mL for hAAG, and it can measure enzymatic kinetics, identify potential inhibitors, discriminate glycosylases between cancer and normal cell lines, and even quantify glycosylase activities in a single HeLa cell. Moreover, this assay may be rapidly and isothermally performed in one tube with only one tool enzyme in a quencher-free manner, promising a simple and powerful platform for multiple human glycosylase detection.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Li-Ping Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou450000, Henan, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| |
Collapse
|
30
|
Zhang T, Cheng F, Yang H, Zhu B, Li C, Zhang YN, Qu J, Peijnenburg WJGM. Photochemical degradation pathways of cell-free antibiotic resistance genes in water under simulated sunlight irradiation: Experimental and quantum chemical studies. CHEMOSPHERE 2022; 302:134879. [PMID: 35551936 DOI: 10.1016/j.chemosphere.2022.134879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The presence of antibiotic resistance genes (ARGs) in the environment poses a threat to human health and therefore their environmental behavior needs to be studied urgently. A systematic study was conducted on the photodegradation pathways of the cell-free tetracycline resistance gene (Tc-ARG) under simulated sunlight irradiation. The results showed that Tc-ARG can undergo direct photodegradation, which significantly reduces its horizontal transfer efficiency. Suwannee River fulvic acid (SRFA) promoted the photodegradation of Tc-ARG and further inhibited its horizontal transfer by generating reactive intermediates. The photodegradation of Tc-ARG was attributed to degradation of the four bases (G, C, A, T) and the deoxyribose group. Quantum chemical calculations showed that the four bases could be oxidized by the hydroxyl radical (HO) through addition and H-abstraction reactions. The main oxidative product 8-oxo-dG was detected. This product was generated through the addition reaction of G-C with HO, subsequent to dissolved oxygen initiated H-abstraction and H2O catalyzed H-transfer reactions. The predicted maximum photodegradation rates of Tc-ARG in the Yellow River estuary were 0.524, 0.937, and 0.336 h-1 in fresh water, estuary water, and seawater, respectively. This study furthermore revealed the microscopic photodegradation pathways and obtained essential degradation parameters of Tc-ARG in sunlit surface water.
Collapse
Affiliation(s)
- Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Hao Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Boyi Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
31
|
Wu J, Zhang M, Song L, Tan Y, Taniguchi Y, Hipolito CJ, Zhang Y, Yin Y. Implications of N7-hydrogen and C8-keto on the base pairing, mutagenic potential and repair of 8-oxo-2'-deoxy-adenosine: Investigation by nucleotide analogues. Bioorg Chem 2022; 127:106029. [PMID: 35858520 DOI: 10.1016/j.bioorg.2022.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Oxidative lesions, such as 8-oxo-dG and 8-oxo-dA, are continuously generated from exposure to reactive oxygen species. While 8-oxo-dG has been extensively studied, 8-oxo-dA has not received as much attention until recently. Herein, we report the synthesis of duplex DNAs incorporating dA, 8-oxo-dA, 7-deaza-dA, 8-Br-dA, and 8-Br-7-deaza-dA, which have different substitutions at 7- and 8-position, for the investigation into the implications of N7-hydrogen and C8-keto on the base pairing preference, mutagenic potential and repair of 8-oxo-dA. Base pairing study suggested that the polar N7-hydrogen and C8-keto of 8-oxo-dA, rather than the syn-preference, might be essential for 8-oxo-dA to form a stable base pair with dG. Insertion and extension studies using KF-exo- and human DNA polymerase β indicated that the efficient dGTP insertion opposite 8-oxo-dA and extension past 8-oxo-dA:dG are contingent upon not only the stable base pair with dG, but also the flexibility of the active site in polymerase. The N7-hydrogen in 8-oxo-dA or C7-hydrogen in 7-deaza-dA and 8-Br-7-deaza-dA was suggested to be important for the recognition by hOGG1, although the excision efficiencies of 7-deaza-dA and 8-Br-7-deaza-dA were much lower than 8-oxo-dA. This study provides an insight into the structure-function relationship of 8-oxo-dA by nucleotide analogues.
Collapse
Affiliation(s)
- Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Mengmeng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lulu Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
32
|
Fang H, Liu Y, Qiu P, Song HL, Liu T, Guo J, Zhang S. Simultaneous removal of antibiotic resistant bacteria and antibiotic resistance genes by molybdenum carbide assisted electrochemical disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128733. [PMID: 35334270 DOI: 10.1016/j.jhazmat.2022.128733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Considering conventional disinfection methods are not effective in simultaneously removing ARB and ARGs, a novel electrochemical disinfection (ED) process assisted by molybdenum carbide (Mo2C) electrodes was developed in this study. The established ED process was proved to effectively inactivate multi-resistant ARB (i.e. Escherichia coli K-12 LE392 with resistance to kanamycin, ampicillin, and tetracycline) and to degrade ARGs (including tetA and blaTEM in the form of both intracellular (iARGs) and extracellular ARGs (eARGs)). Specifically, within 15 min treatment by the Mo2C-assisted ED under 2.0 V, a 5-log ARB removal was realized, without any ARB regrowth observed, indicating a permanent inactivation of ARB by the process. Moreover, degradation of the iARGs (0.4-log reduction of the blaTEM and 3.1-log reduction of the tetA) and the eARGs (4.2-log reduction of the blaTEM and 1.1-log reduction of the tetA) were achieved within 60 min, further underpinning the viability of the Mo2C-based ED. While e-, H2O2, and •O2- played leading roles in the entire process of ED, H+ and •OH contributed to bacterial inactivation in the early and late stages of ED, respectively. The reactive species induced by electrolysis posed pressure to the ARB strains, which enhanced oxidative stress response, triggered higher reactive oxygen species generation, induced membrane damage and changed cellular structure. Collectively, the Mo2C-assisted ED demonstrated in the present study represents an attractive alternative to the traditional disinfection methods in combating the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yinghan Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
33
|
Tang L, Li C, Chen W, Zeng Y, Yang H, Hu Y, Song H, Zeng X, Li Q, Fu P. Causal Association between Chronic Kidney Disease and Risk of 19 Site-Specific Cancers: A Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev 2022; 31:1233-1242. [PMID: 35333923 DOI: 10.1158/1055-9965.epi-21-1318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Results of previous observational studies examining the risk of cancer among patients with chronic kidney disease (CKD) are conflicting. We here explore the causal relationship between estimated glomerular filtration rate (eGFR) and albuminuria, two principal measurements of CKD, and 19 site-specific cancers using Mendelian randomization (MR) analysis. METHODS Single-nucleotide polymorphisms reported to be strongly correlated with eGFR and albuminuria in recent large genome-wide association studies were used as instrumental variables to investigate the causal relationship with cancer using summary-level statistics from several cancer-specific consortia, as well as data of 347,408 participants in the UK Biobank and 260,405 participants in the FinnGen. RESULTS Our data showed that impaired kidney function was associated with higher odds of leukemia [OR = 1.23; 95% confidence interval (CI), 1.06-1.43; P = 0.007], cervical cancer (OR = 1.22; 95% CI, 1.04-1.43; P = 0.017), and female renal cell carcinoma (OR = 1.4; 95% CI, 1.12-1.77; P = 0.004), per 10% decrease in eGFR. The ORs were 1.21 (95% CI, 1.07-1.36; P = 0.002) for colorectal cancer and 0.76 (95% CI, 0.62-0.92; P = 0.006) for non-Hodgkin lymphoma, per doubling odds of albuminuria. In multivariable MR, effect sizes of eGFR-cervical cancer remained strong after adjusting for confounders. CONCLUSIONS The current study indicates that progression of CKD contributes to carcinogenesis of renal cell carcinoma, leukemia, cervical, and colorectal cancer. IMPACT The potential association of kidney function and albuminuria with certain cancers warrants further investigation in order to provide appropriate recommendations regarding cancer screening among patients with CKD.
Collapse
Affiliation(s)
- Lei Tang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichiuan, China
| | - Chunyang Li
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Chen
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yu Zeng
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huazhen Yang
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yao Hu
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Xiaoxi Zeng
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichiuan, China.,West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospitalof Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichiuan, China.,West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Oxidative Stress and Deregulated DNA Damage Response Network in Lung Cancer Patients. Biomedicines 2022; 10:biomedicines10061248. [PMID: 35740268 PMCID: PMC9219789 DOI: 10.3390/biomedicines10061248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The deregulated DNA damage response (DDR) network is associated with the onset and progression of cancer. Herein, we searched for DDR defects in peripheral blood mononuclear cells (PBMCs) from lung cancer patients, and we evaluated factors leading to the augmented formation of DNA damage and/or its delayed/decreased removal. In PBMCs from 20 lung cancer patients at diagnosis and 20 healthy controls (HC), we analyzed oxidative stress and DDR-related parameters, including critical DNA repair mechanisms and apoptosis rates. Cancer patients showed higher levels of endogenous DNA damage than HC (p < 0.001), indicating accumulation of DNA damage in the absence of known exogenous genotoxic insults. Higher levels of oxidative stress and apurinic/apyrimidinic sites were observed in patients rather than HC (all p < 0.001), suggesting that increased endogenous DNA damage may emerge, at least in part, from these intracellular factors. Lower nucleotide excision repair and double-strand break repair capacities were found in patients rather than HC (all p < 0.001), suggesting that the accumulation of DNA damage can also be mediated by defective DNA repair mechanisms. Interestingly, reduced apoptosis rates were obtained in cancer patients compared with HC (p < 0.001). Consequently, the expression of critical DDR-associated genes was found deregulated in cancer patients. Together, oxidative stress and DDR-related aberrations contribute to the accumulation of endogenous DNA damage in PBMCs from lung cancer patients and can potentially be exploited as novel therapeutic targets and non-invasive biomarkers.
Collapse
|
35
|
Alper Erdo M, Bayar C, Ozkaya E, Metin A, Birim D, Armagan G, Demir S, Elgin Cebe G. Neuroprotective Effects of Different Lavandula stoechas L. Extracts Against Hydrogen Peroxide Toxicity in vitro. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.883.896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Lu H, Cai J, Fang Y, Ren M, Tan X, Jia F, Wang D, Zhang K. Exploring the Structural Diversity of DNA Bottlebrush Polymers Using an Oligonucleotide Macromonomer Approach. Macromolecules 2022; 55:2235-2242. [PMID: 36187461 PMCID: PMC9521811 DOI: 10.1021/acs.macromol.1c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we demonstrate that macromonomers consisting of organics-soluble, chemically protected oligonucleotides (protDNA) and poly(ethylene glycol) (PEG) chains can be converted into bottlebrush polymers of distinct architectures via ring-opening metathesis polymerization (ROMP). Using a custom norbornene-containing phosphoramidite, two types of macromonomers were obtained: a linear norbornene-protDNA-PEG structure and a Y-shaped structure where the polymerizable norbornene group is situated at the junction where protDNA and PEG meet. With this strategy, the PEG chains can be placed either near the backbone of the bottlebrush or on its periphery, and in principle anywhere between these two extremes by adjusting the norbornene location, which makes this strategy attractive for constructing architecturally sophisticated oligonucleotide-containing copolymers.
Collapse
Affiliation(s)
- Hao Lu
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jiansong Cai
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yang Fang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mengqi Ren
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuyu Tan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fei Jia
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dali Wang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ke Zhang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Corresponding Author:
| |
Collapse
|
37
|
Wang SD, Eriksson LA, Zhang RB. Dynamics of 5R-Tg Base Flipping in DNA Duplexes Based on Simulations─Agreement with Experiments and Beyond. J Chem Inf Model 2022; 62:386-398. [PMID: 34994562 PMCID: PMC8790752 DOI: 10.1021/acs.jcim.1c01169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Damaged or mismatched
DNA bases are normally thought to be able
to flip out of the helical stack, providing enzymes with access to
the faulty genetic information otherwise hidden inside the helix.
Thymine glycol (Tg) is one of the most common products of nucleic
acid damage. However, the static and dynamic structures of DNA duplexes
affected by 5R-Tg epimers are still not clearly understood, including
the ability of these to undergo spontaneous base flipping. Structural
effects of the 5R-Tg epimers on the duplex DNA are herein studied
using molecular dynamics together with reliable DFT based calculations.
In comparison with the corresponding intact DNA, the cis-5R,6S-Tg epimer base causes little perturbation to the duplex DNA,
and a barrier of 4.9 kcal mol–1 is obtained by meta-eABF
for cis-5R,6S-Tg base flipping out of the duplex
DNA, comparable to the 5.4 kcal mol–1 obtained for
the corresponding thymine flipping in intact DNA. For the trans-5R,6R-Tg epimer, three stable local structures were
identified, of which the most stable disrupts the Watson–Crick
hydrogen-bonded G5/C20 base pair, leading to conformational distortion
of the duplex. Interestingly, the relative barrier height of the 5R-Tg
flipping is only 1.0 kcal mol–1 for one of these trans-5R,6R-Tg epimers. Water bridge interactions were identified
to be essential for 5R-Tg flipping. The study clearly demonstrates
the occurrence of partial trans-5R,6R-Tg epimer flipping
in solution.
Collapse
Affiliation(s)
- Shu Dong Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street no 5, Zhongguancun, Haidian District, 100081 Beijing, China
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9c, 405 30 Göteborg, Sweden
| | - Ru Bo Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street no 5, Zhongguancun, Haidian District, 100081 Beijing, China
| |
Collapse
|
38
|
Sengul A, Yengin C, Egrilmez S, Kilinc E. OUP accepted manuscript. J Chromatogr Sci 2022; 61:375-392. [PMID: 35441225 DOI: 10.1093/chromsci/bmac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/13/2022]
Abstract
HPLC-PDA, LC-MS/MS methods were developed for simultaneous determination of a group of oxidative stress biomarkers (OSBs); 2dA, 2dC, 2dU, 3NLT, 5HMU and 8OHdG in 10 simulated artificial body fluids. O-phosphoric acid and methanol composed mobile phases A and B for gradient elution in HPLC-PDA using ODS-2 column. Linearity obtained for 1.0×10-6-1.0×10-4M range. LODs were 1.73×10-6, 1.19×10-6, 2.59×10-6, 1.40×10-6, 2.21×10-6 and 4.07×10-6M for 2dU, 8OHdG, 2dA, 2dC, 5HMU and 3NLT, respectively. LOQs were 5.29×10-6, 4.02×10-6, 6.82×10-6, 4.02×10-6, 6.82×10-6 and 9.92×10-6M. About 10 mM aqueous ammonium acetate solution and methanol containing 0.1% (v/v) formic acid composed mobile phases A and B for gradient elution in LC-MS/MS. Linearity obtained for 1.0×10-8-1.0×10-6M range. LODs were 2.88×10-10, 1.01×10-8, 3.38×10-9, 1.36×10-7, 1.81×10-7 and 1.40×10-8M for 2dU, 8OHdG, 2dA, 2dC, 5HMU and 3NLT, respectively. LOQs were 9.37×10-10, 3.22×10-8, 1.91×10-8, 4.53×10-7, 5.90×10-7 and 2.18×10-8M. Both methods were validated using ICH Q2(R1) guideline. Specificity, linearity, range, accuracy, precision, reproducibility, LOD, LOQ and recovery were achieved. Chemometric analysis was performed on raw PDA and MS data to check their significance for discrimination of OSBs. Sets of single and triple quadrupole fragmentations were evaluated for principle component analysis. Chosen number of PCs successfully distinguished OSBs of interest.
Collapse
Affiliation(s)
- Ayse Sengul
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, , Bornova, TR-35100, Izmir, Türkiye
| | - Cigdem Yengin
- Department of Pharmaceutical Chemistry, Bornova, TR-35100, Izmir, Türkiye
| | - Sait Egrilmez
- Faculty of Medicine, Department of Ophthalmology, Bornova, TR-35100, Izmir, Türkiye
| | - Emrah Kilinc
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, , Bornova, TR-35100, Izmir, Türkiye
| |
Collapse
|
39
|
Changes of DNA Damage Effect of T-2 or Deoxynivalenol Toxins during Three Weeks Exposure in Common Carp ( Cyprinus carpio L.) Revealed by LORD-Q PCR. Toxins (Basel) 2021; 13:toxins13080576. [PMID: 34437447 PMCID: PMC8402481 DOI: 10.3390/toxins13080576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022] Open
Abstract
The present study aimed to adapt a Long-run Real-time DNA Damage Quantification (LORD-Q) qPCR-based method for the analysis of the mitochondrial genome of Common carp (Cyprinus carpio L.) and detect the DNA damaging effect of T-2 (4.11 mg kg−1) and deoxynivalenol (5.96 mg kg−1) mycotoxins in a 3-week feeding period. One-year-old Common carp were treated in groups (control, T-2 and DON). The mycotoxins were sprayed over the complete pelleted feed, and samples were taken weekly. Following the adaptation of LORD-Q PCR method for the Common carp species, the number of lesions were calculated to determine the amount of DNA damage. In the first and second weeks, the T-2 and the DON treated groups differed significantly from each other; however these differences disappeared in the third week. There was a significant difference in the DNA lesion values between weeks 1 and 3 in the deoxynivalenol-contaminated groups. While in the T-2 treated groups, the DNA lesion values were significantly reduced on weeks 2 and 3 compared to week 1. The results suggested that the trichothecene mycotoxins have a relevant DNA damaging effect.
Collapse
|
40
|
Abstract
Oxidative stress is caused by the imbalance between the generation of free radicals/reactive oxygen species (ROS) and the antioxidant defense systems, which can activate various transcription factors and affect their transcriptional pathways. Oxidative stress plays an important role in the occurrence and development of leukemia and is closely related to the treatment and prognosis of leukemia. The standard chemotherapy strategies for the pre-treatment of leukemia have many drawbacks. Hence, the usage of antioxidants and oxidants in the treatment of leukemia is being explored and has been preliminarily applied. This article reviews the research progress of oxidative stress and leukemia. In addition, the application of antioxidants treatment in leukemia has been summarized.
Collapse
|
41
|
Lu X, Hou J, Yang K, Zhu L, Xing B, Lin D. Binding Force and Site-Determined Desorption and Fragmentation of Antibiotic Resistance Genes from Metallic Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9305-9316. [PMID: 34138538 DOI: 10.1021/acs.est.1c02047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interfacial interactions between antibiotic resistance genes (ARGs) and metallic nanomaterials (NMs) lead to adsorption and fragmentation of ARGs, which can provide new avenues for selecting NMs to control ARGs. This study compared the adsorptive interactions of ARGs (tetM-carrying plasmids) with two metallic NMs (ca. 20 nm), i.e., titanium dioxide (nTiO2) and zero-valent iron (nZVI). nZVI had a higher adsorption rate (0.06 min-1) and capacity (4.29 mg/g) for ARGs than nTiO2 (0.05 min-1 and 2.15 mg/g, respectively). No desorption of ARGs from either NMs was observed in the adsorptive background solution, isopropanol or urea solutions, but nZVI- and nTiO2-adsorbed ARGs were effectively desorbed in NaOH and NaH2PO4 solutions, respectively. Molecular dynamics simulation revealed that nTiO2 mainly bound with ARGs through electrostatic attraction, while nZVI bound with PO43- of the ARG phosphate backbones through Fe-O-P coordination. The ARGs desorbed from nTiO2 remained intact, while the desorbed ARGs from nZVI were splintered into small fragments irrelevant to DNA base composition or sequence location. The ARG removal by nZVI remained effective in the presence of PO43-, natural organic matter, or protein at environmentally relevant concentrations and in surface water samples. These findings indicate that nZVI can be a promising nanomaterial to treat ARG pollution.
Collapse
Affiliation(s)
- Xinye Lu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
- The Institute of Zhejiang Ecological Civilization, Anji 313300, China
| |
Collapse
|
42
|
DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus. DNA Repair (Amst) 2021; 105:103160. [PMID: 34192601 DOI: 10.1016/j.dnarep.2021.103160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
GO system is part of base excision DNA repair and is required for the correct repair of 8-oxoguanine (8-oxoG), one of the most abundant oxidative lesions. Due to the ability of 8-oxoG to mispair with A, this base is highly mutagenic, and its repair requires two enzymes: Fpg that removes 8-oxoG from 8-oxoG:C pairs, and MutY that excises the normal A from 8-oxoG:A mispairs. Here we characterize the properties of putative GO system DNA glycosylases from Staphylococcus aureus, an important human opportunistic pathogen that causes hospital infections and presents a serious health concern due to quick spread of antibiotic-resistant strains. In addition to Fpg and MutY from the reference NCTC 8325 strain (SauFpg1 and SauMutY), we have also studied an Fpg homolog from a multidrug-resistant C0673 isolate (SauFpg2), which is different from SauFpg1 in its sequence. Both SauFpg enzymes showed the highest activity at pH 7.0-9.0 and NaCl concentrations 25-75 mM (SauFpg1) or 50-100 mM (SauFpg2), whereas SauMutY was active at a broad pH range and had a salt optimum at ∼75 mM NaCl. Both SauFpg1 and SauFpg2 bound and cleaved duplexes containing 8-oxoG, 5-hydroxyuracil, 5,6-dihydrouracil or apurinic/apyrimidinic site paired with C, T, or G, but not with A. For SauFpg1 and SauFpg2, 8-oxoG was the best substrate tested, and 5,6-dihydrouracil was the worst one. SauMutY efficiently excised adenine from duplex substrates containing A:8-oxoG or A:G pairs. SauFpg enzymes were readily trapped on DNA by NaBH4 treatment, indicating formation of a Schiff base reaction intermediate. Surprisingly, SauMutY was also trapped significantly better than its E. coli homolog. All three S. aureus GO glycosylases drastically reduced spontaneous mutagenesis when expressed in an fpg mutY E. coli double mutant. Overall, we conclude that S. aureus possesses an active GO system, which could possibly be targeted for sensitization of this pathogen to oxidative stress.
Collapse
|
43
|
The Two Faces of the Guanyl Radical: Molecular Context and Behavior. Molecules 2021; 26:molecules26123511. [PMID: 34207639 PMCID: PMC8227002 DOI: 10.3390/molecules26123511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
The guanyl radical or neutral guanine radical G(-H)• results from the loss of a hydrogen atom (H•) or an electron/proton (e–/H+) couple from the guanine structures (G). The guanyl radical exists in two tautomeric forms. As the modes of formation of the two tautomers, their relationship and reactivity at the nucleoside level are subjects of intense research and are discussed in a holistic manner, including time-resolved spectroscopies, product studies, and relevant theoretical calculations. Particular attention is given to the one-electron oxidation of the GC pair and the complex mechanism of the deprotonation vs. hydration step of GC•+ pair. The role of the two G(-H)• tautomers in single- and double-stranded oligonucleotides and the G-quadruplex, the supramolecular arrangement that attracts interest for its biological consequences, are considered. The importance of biomarkers of guanine DNA damage is also addressed.
Collapse
|
44
|
Erbağcı MO, Tuna G, Köse S, Dal-Bekar NE, Akış M, Kant M, Altunyurt S, İşlekel GH. Association between early oxidative DNA damage and iron status in women with gestational diabetes mellitus. Reprod Toxicol 2021; 103:171-180. [PMID: 34051274 DOI: 10.1016/j.reprotox.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
This study aims to assess the relationship between oxidative DNA damage and iron status in women with gestational diabetes mellitus (GDM) compared to those with normal glucose tolerance in the first and the second trimesters of pregnancy. Maternal serum and urine samples were collected in the 11th-14th weeks and the 24th-28th weeks of gestation. In addition to oral glucose tolerance test in the second trimester, fasting blood glucose, HbA1c, ferritin and hemoglobin levels were measured in blood samples. Urinary levels of oxidative DNA damage products 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and 8,5'-cyclo-2'-deoxyadenosines (S-cdA, R-cdA) were determined using liquid chromatography-tandem mass spectrometry with isotope-dilution. In the first trimester, urinary 8-OH-dG levels were found higher in the GDM group (n = 33) than in the control group (n = 84) (p = 0.006). R-cdA and S-cdA levels were not significantly different between the two groups (p = 0.794 and p = 0.792 respectively). When the cases were stratified according to their first trimester ferritin levels, women with ≥50th centile (≥130 ng/mL) demonstrated higher levels of 8-OH-dG and R-cdA than those under <50th centile (p = 0.034, p = 0.009). In the GDM group, there was a positive correlation between the second trimester 8-OH-dG and ferritin and 1st-hour glucose levels (p = 0.014, p = 0.020). This is the first study where oxidative DNA damage is evaluated in both early and late periods of pregnancy. Our findings reveal an association between GDM and iron status and oxidative DNA damage.
Collapse
Affiliation(s)
- Mehmet Oğuz Erbağcı
- Department of Medical Biochemistry, Sanliurfa Suruc State Hospital, Sanliurfa, Turkey
| | - Gamze Tuna
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| | - Semir Köse
- Division of Perinatology, Department of Obstetrics and Gynecology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Nazlı Ecem Dal-Bekar
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Merve Akış
- Department of Medical Biochemistry, Faculty of Medicine, Balikesir University, Balikesir, Turkey
| | - Melis Kant
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sabahattin Altunyurt
- Division of Perinatology, Department of Obstetrics and Gynecology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Gül Hüray İşlekel
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
45
|
|
46
|
Lu H, Cai J, Zhang K. Synthetic Approaches for Copolymers Containing Nucleic Acids and Analogues: Challenges and Opportunities. Polym Chem 2021; 12:2193-2204. [PMID: 34394751 PMCID: PMC8356553 DOI: 10.1039/d0py01707h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A deep integration of nucleic acids with other classes of materials have become the basis of many useful technologies. Among these biohybrids, nucleic acid-containing copolymers has seen rapid development in both chemistry and application. This review focuses on the various synthetic approaches to access nucleic acid-polymer biohybrids spanning post-polymerization conjugation, nucleic acids in polymerization, solid-phase synthesis, and nucleoside/nucleobase-functionalized polymers. We highlight the challenges associated with working with nucleic acids with each approach and the ingenuity of the solutions, with the hope of lowering the entry barrier and inpsiring further investigations in this exciting area.
Collapse
Affiliation(s)
- Hao Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jiansong Cai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
47
|
Suprun EV. Direct electrochemistry of proteins and nucleic acids: The focus on 3D structure. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
48
|
Tomasova K, Kroupa M, Forsti A, Vodicka P, Vodickova L. Telomere maintenance in interplay with DNA repair in pathogenesis and treatment of colorectal cancer. Mutagenesis 2021; 35:261-271. [PMID: 32083302 DOI: 10.1093/mutage/geaa005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) continues to be one of the leading malignancies and causes of tumour-related deaths worldwide. Both impaired DNA repair mechanisms and disrupted telomere length homeostasis represent key culprits in CRC initiation, progression and prognosis. Mechanistically, altered DNA repair results in the accumulation of mutations in the genome and, ultimately, in genomic instability. DNA repair also determines the response to chemotherapeutics in CRC treatment, suggesting its utilisation in the prediction of therapy response and individual approach to patients. Telomere attrition resulting in replicative senescence, simultaneously by-passing cell cycle checkpoints, is a hallmark of malignant transformation of the cell. Telomerase is almost ubiquitous in advanced solid cancers, including CRC, and its expression is fundamental to cell immortalisation. Therefore, there is a persistent effort to develop therapeutics, which are telomerase-specific and gentle to non-malignant tissues. However, in practice, we are still at the level of clinical trials. The current state of knowledge and the route, which the research takes, gives us a positive perspective that the problem of molecular models of telomerase activation and telomere length stabilisation will finally be solved. We summarise the current literature herein, by pointing out the crosstalk between proteins involved in DNA repair and telomere length homeostasis in relation to CRC.
Collapse
Affiliation(s)
- Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic
| | - Asta Forsti
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld, Heidelberg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Praha, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Praha, Czech Republic
| |
Collapse
|
49
|
Ur Rehman F, Mazhar K, Malik A, Naz SS, Shah KU, Khan A, Khan S, Ahmed R, Qaisar S. Surface modified multifaceted nanocarriers for oral non-conventional cancer therapy; synthesis and evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111940. [PMID: 33812575 DOI: 10.1016/j.msec.2021.111940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory cells orchestrate tumor niche for the proliferating neoplastic cells, leading to neoangiogenesis, lymphangiogenesis, tumor growth and metastasis. Emergence of severe side effects, multiple drug resistance and associated high cost has rendered conventional chemotherapy less effectual. The aim was to develop a multipurpose, less toxic, more potent and cheaper, oral non-conventional anticancer therapeutic. Cyclooxygenase associated with tumor niche inflammation and proliferative neoplastic cells were targeted synergistically, through anti-inflammatory and anti-proliferative effects of model drug, diclofenac sodium and fluorescent silver nanoparticles (AgNPs), respectively. Drug entrapped AgNPs were surface modified with PVA (for controlling particle size, preferred cellular uptake, evading opsonization and improved dispersion). XRD, FTIR, DSC, TGA, LIBS, particle size and surface plasmon resonance analysis confirmed the efficient drug encapsulation and PVA coating with 62% loading efficiency. In-vitro, the formulation exhibited 1st order release kinetics with sustained and maximal release at slightly acidic conditions (pH 4.5) enabling the potential for passive tumor targeting. Also, nanoparticles showed efficient protein denaturation inhibition potential, hemo-compatibility (<0.8%) and potent anti-cancer activity (P < 0.05) against breast cancer cell line (MCF-7). In-vivo, developed nanoparticles improved pharmacokinetics (2.8 fold increased AUC, 6.9 h t1/2, Cmax = 1.6 ± 0.03 μg/ml, Kel = 0.1) and pharmacodynamics manifested by potent anti-inflammatory, analgesic and anti-pyretic effects (P < 0.05) at 20 fold lower doses. LD50 determination revealed a wide therapeutic window. The study showed promise of synthesized nanomaterials as cheaper, less toxic, hemo-compatible, oral and more potent anti-inflammatory and non-conventional fluorescent anti-cancer agents, vanquishing tumor niche inflammation and repressing proliferation of malignant cells.
Collapse
Affiliation(s)
- Fiza Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan; Nanosciences and Technology Department, National Centre for Physics, Islamabad, Pakistan
| | - Kehkashan Mazhar
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Annum Malik
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan; Nanosciences and Technology Department, National Centre for Physics, Islamabad, Pakistan
| | - Syeda Sohaila Naz
- Nanosciences and Technology Department, National Centre for Physics, Islamabad, Pakistan.
| | | | - Adnan Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rizwan Ahmed
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, 45320, Pakistan
| | - Sara Qaisar
- Nanosciences and Technology Department, National Centre for Physics, Islamabad, Pakistan
| |
Collapse
|
50
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|