1
|
Zhu Z, Ding X, Rang J, Xia L. Application and research progress of ARTP mutagenesis in actinomycetes breeding. Gene 2024; 929:148837. [PMID: 39127415 DOI: 10.1016/j.gene.2024.148837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Atmospheric and room temperature plasma (ARTP) is an emerging artificial mutagenesis breeding technology. In comparison to traditional physical and chemical methods, ARTP technology can induce DNA damage more effectively and obtain mutation strains with stable heredity more easily after screening. It possesses advantages such as simplicity, safety, non-toxicity, and cost-effectiveness, showing high application value in microbial breeding. This article focuses on ARTP mutagenesis breeding of actinomycetes, specifically highlighting the application of ARTP mutagenesis technology in improving the performance of strains and enhancing the biosynthetic capabilities of actinomycetes. We analyzed the advantages and challenges of ARTP technology in actinomycetes breeding and summarized the common features, specific mutation sites and metabolic pathways of ARTP mutagenic strains, which could give guidance for genetic modification. It suggested that the future research work should focus on the establishment of high throughput rapid screening methods and integrate transcriptomics, proteomics, metabonomics and other omics to delve into the genetic regulations and synthetic mechanisms of the bioactive substances in ARTP mutated actinomycetes. This article aims to provide new perspectives for actinomycetes breeding through the establishment and application of ARTP mutagenesis technology, thereby promoting source innovation and the sustainable industrial development of actinomycetes.
Collapse
Affiliation(s)
- Zirong Zhu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jie Rang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
2
|
Carrothers E, Appleby M, Lai V, Kozbenko T, Alomar D, Smith BJ, Hamada N, Hinton P, Ainsbury EA, Hocking R, Yauk C, Wilkins RC, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to cataracts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:31-56. [PMID: 38644659 DOI: 10.1002/em.22594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Cataracts are one of the leading causes of blindness, with an estimated 95 million people affected worldwide. A hallmark of cataract development is lens opacification, typically associated not only with aging but also radiation exposure as encountered by interventional radiologists and astronauts during the long-term space mission. To better understand radiation-induced cataracts, the adverse outcome pathway (AOP) framework was used to structure and evaluate knowledge across biological levels of organization (e.g., macromolecular, cell, tissue, organ, organism and population). AOPs identify a sequence of key events (KEs) causally connected by key event relationships (KERs) beginning with a molecular initiating event to an adverse outcome (AO) of relevance to regulatory decision-making. To construct the cataract AO and retrieve evidence to support it, a scoping review methodology was used to filter, screen, and review studies based on the modified Bradford Hill criteria. Eight KEs were identified that were moderately supported by empirical evidence (e.g., dose-, time-, incidence-concordance) across the adjacent (directly linked) relationships using well-established endpoints. Over half of the evidence to justify the KER linkages was derived from the evidence stream of biological plausibility. Early KEs of oxidative stress and protein modifications had strong linkages to downstream KEs and could be the focus of countermeasure development. Several identified knowledge gaps and inconsistencies related to the quantitative understanding of KERs which could be the basis of future research, most notably directed to experiments in the range of low or moderate doses and dose-rates, relevant to radiation workers and other occupational exposures.
Collapse
Affiliation(s)
- Emma Carrothers
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Meghan Appleby
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vita Lai
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Patricia Hinton
- Defense Research & Development Canada, Canadian Forces Environmental Medicine Establishment, Toronto, Ontario, Canada
| | - Elizabeth A Ainsbury
- Radiation, Chemical and Environmental Hazards Division, UK Health Security Agency, Birmingham, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Nikjoo H, Rahmanian S, Taleei R. Modelling DNA damage-repair and beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:1-18. [PMID: 38754703 DOI: 10.1016/j.pbiomolbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesize DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.
Collapse
Affiliation(s)
- Hooshang Nikjoo
- Department of Physiology, Anatomy and Genetics (DPAG), Oxford University, Oxford, OX1 3PT, UK.
| | | | - Reza Taleei
- Medical Physics Division, Department of Radiation Oncology Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
4
|
Zeng X, Cai Y, Wu M, Chen H, Sun M, Yang H. An overview of current advances in perinatal alcohol exposure and pathogenesis of fetal alcohol spectrum disorders. J Neurodev Disord 2024; 16:20. [PMID: 38643092 PMCID: PMC11031898 DOI: 10.1186/s11689-024-09537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The adverse use of alcohol is a serious global public health problem. Maternal alcohol consumption during pregnancy usually causes prenatal alcohol exposure (PAE) in the developing fetus, leading to a spectrum of disorders known as fetal alcohol spectrum disorders (FASD) and even fetal alcohol syndrome (FAS) throughout the lifelong sufferers. The prevalence of FASD is approximately 7.7 per 1,000 worldwide, and is even higher in developed regions. Generally, Ethanol in alcoholic beverages can impair embryonic neurological development through multiple pathways leading to FASD. Among them, the leading mechanism of FASDs is attributed to ethanol-induced neuroinflammatory damage to the central nervous system (CNS). Although the underlying molecular mechanisms remain unclear, the remaining multiple pathological mechanisms is likely due to the neurotoxic damage of ethanol and the resultant neuronal loss. Regardless of the molecular pathway, the ultimate outcome of the developing CNS exposed to ethanol is almost always the destruction and apoptosis of neurons, which leads to the reduction of neurons and further the development of FASD. In this review, we systematically summarize the current research progress on the pathogenesis of FASD, which hopefully provides new insights into differential early diagnosis, treatment and prevention for patents with FASD.
Collapse
Affiliation(s)
- Xingdong Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Mengyan Wu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Haonan Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
5
|
Rezaee M, Adhikary A. The Effects of Particle LET and Fluence on the Complexity and Frequency of Clustered DNA Damage. DNA 2024; 4:34-51. [PMID: 38282954 PMCID: PMC10810015 DOI: 10.3390/dna4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Motivation Clustered DNA-lesions are predominantly induced by ionizing radiation, particularly by high-LET particles, and considered as lethal damage. Quantification of this specific type of damage as a function of radiation parameters such as LET, dose rate, dose, and particle type can be informative for the prediction of biological outcome in radiobiological studies. This study investigated the induction and complexity of clustered DNA damage for three different types of particles at an LET range of 0.5-250 keV/μm. Methods Nanometric volumes (36.0 nm3) of 15 base-pair DNA with its hydration shell was modeled. Electron, proton, and alpha particles at various energies were simulated to irradiate the nanometric volumes. The number of ionization events, low-energy electron spectra, and chemical yields for the formation of °OH, H°, e aq - , and H2O2 were calculated for each particle as a function of LET. Single- and double-strand breaks (SSB and DSB), base release, and clustered DNA-lesions were computed from the Monte-Carlo based quantification of the reactive species and measured yields of the species responsible for the DNA lesion formation. Results The total amount of DNA damage depends on particle type and LET. The number of ionization events underestimates the quantity of DNA damage at LETs higher than 10 keV/μm. Minimum LETs of 9.4 and 11.5 keV/μm are required to induce clustered damage by a single track of proton and alpha particles, respectively. For a given radiation dose, an increase in LET reduces the number of particle tracks, leading to more complex clustered DNA damage, but a smaller number of separated clustered damage sites. Conclusions The dependency of the number and the complexity of clustered DNA damage on LET and fluence suggests that the quantification of this damage can be a useful method for the estimation of the biological effectiveness of radiation. These results also suggest that medium-LET particles are more appropriate for the treatment of bulk targets, whereas high-LET particles can be more effective for small targets.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, 1550 Orleans St., Baltimore, MD 21231, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309, USA
| |
Collapse
|
6
|
Kruchinin AA, Kamzeeva PN, Zharkov DO, Aralov AV, Makarova AV. 8-Oxoadenine: A «New» Player of the Oxidative Stress in Mammals? Int J Mol Sci 2024; 25:1342. [PMID: 38279342 PMCID: PMC10816367 DOI: 10.3390/ijms25021342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Numerous studies have shown that oxidative modifications of guanine (7,8-dihydro-8-oxoguanine, 8-oxoG) can affect cellular functions. 7,8-Dihydro-8-oxoadenine (8-oxoA) is another abundant paradigmatic ambiguous nucleobase but findings reported on the mutagenicity of 8-oxoA in bacterial and eukaryotic cells are incomplete and contradictory. Although several genotoxic studies have demonstrated the mutagenic potential of 8-oxoA in eukaryotic cells, very little biochemical and bioinformatics data about the mechanism of 8-oxoA-induced mutagenesis are available. In this review, we discuss dual coding properties of 8-oxoA, summarize historical and recent genotoxicity and biochemical studies, and address the main protective cellular mechanisms of response to 8-oxoA. We also discuss the available structural data for 8-oxoA bypass by different DNA polymerases as well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.
Collapse
Affiliation(s)
- Alexander A. Kruchinin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| | - Polina N. Kamzeeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Alena V. Makarova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| |
Collapse
|
7
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
8
|
Khalid S, Arshad M, Raza K, Mahmood S, Siddique F, Aziz N, Khan S, Khalid W, AL‐Farga A, Aqlan F. Assessment of hepatoprotective, nephroprotective efficacy, and antioxidative potential of Moringa oleifera leaf powder and ethanolic extract against PCOS-induced female albino mice ( Mus Musculus). Food Sci Nutr 2023; 11:7206-7217. [PMID: 37970416 PMCID: PMC10630814 DOI: 10.1002/fsn3.3646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 11/17/2023] Open
Abstract
Moringa oleifera is a medicinal plant that has anti-inflammatory, antihypertensive, antidiabetic, tissue-protective, and antioxidant activities. Here, we evaluated the protective effect of M. oleifera leaf powder (MoLP) and 70% ethanol M. oleifera leaf extract (MoLE) on mitigating polycystic ovary syndrome (PCOS)-induced liver and kidney dysfunction via regulating oxidative stress in female albino mice (Mus musculus). The efficacy of M. oleifera was compared with metformin (standard medicine used to treat infertility in women). PCOS was induced by intramuscular injection of testosterone enanthate at 1.0 mg/100 g BW for 35 days. PCOS-induced mice were treated with MoLP (250 and 500 mg/Kg), MoLE (250 and 500 mg/kg), and metformin (250 mg/kg) orally for 14 days. Renal function test (RFT), liver function test (LFT), and oxidative stress biomarker malondialdehyde (MDA) were quantified in serum at 0, 7, and 14 days of intervention. Mice treated with M. oleifera and metformin showed a significant decrease (p < .001) in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphate (ALP), total bilirubin, urea, creatinine, and a significant increase (p < .001) in total protein, albumin, globulin, and albumin/globulin (A/G) ratio. Oxidative stress decreased significantly (p = .00) with respect to treatments, exposure days, and their interaction in metformin and all M. oleifera-treated groups. M. oleifera leaf powder and extract reduce oxidative stress and enhance nephron-hepatic activity in PCOS-induced female albino mice.
Collapse
Affiliation(s)
| | | | - Komal Raza
- Liver CenterDistrict Headquarter HospitalFaisalabadPakistan
| | - Shahid Mahmood
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Farzana Siddique
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Nida Aziz
- Department of ZoologyUniversity of SargodhaSargodhaPakistan
| | - Sarfraz Khan
- Department of ChemistryAir Base CollegeSargodhaPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| |
Collapse
|
9
|
Tandra G, Yoone A, Mathew R, Wang M, Hales CM, Mitchell CS. Literature-Based Discovery Predicts Antihistamines Are a Promising Repurposed Adjuvant Therapy for Parkinson's Disease. Int J Mol Sci 2023; 24:12339. [PMID: 37569714 PMCID: PMC10418861 DOI: 10.3390/ijms241512339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Parkinson's disease (PD) is a movement disorder caused by a dopamine deficit in the brain. Current therapies primarily focus on dopamine modulators or replacements, such as levodopa. Although dopamine replacement can help alleviate PD symptoms, therapies targeting the underlying neurodegenerative process are limited. The study objective was to use artificial intelligence to rank the most promising repurposed drug candidates for PD. Natural language processing (NLP) techniques were used to extract text relationships from 33+ million biomedical journal articles from PubMed and map relationships between genes, proteins, drugs, diseases, etc., into a knowledge graph. Cross-domain text mining, hub network analysis, and unsupervised learning rank aggregation were performed in SemNet 2.0 to predict the most relevant drug candidates to levodopa and PD using relevance-based HeteSim scores. The top predicted adjuvant PD therapies included ebastine, an antihistamine for perennial allergic rhinitis; levocetirizine, another antihistamine; vancomycin, a powerful antibiotic; captopril, an angiotensin-converting enzyme (ACE) inhibitor; and neramexane, an N-methyl-D-aspartate (NMDA) receptor agonist. Cross-domain text mining predicted that antihistamines exhibit the capacity to synergistically alleviate Parkinsonian symptoms when used with dopamine modulators like levodopa or levodopa-carbidopa. The relationship patterns among the identified adjuvant candidates suggest that the likely therapeutic mechanism(s) of action of antihistamines for combatting the multi-factorial PD pathology include counteracting oxidative stress, amending the balance of neurotransmitters, and decreasing the proliferation of inflammatory mediators. Finally, cross-domain text mining interestingly predicted a strong relationship between PD and liver disease.
Collapse
Affiliation(s)
- Gabriella Tandra
- Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Neural Engineering Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amy Yoone
- Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Rhea Mathew
- Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Minzhi Wang
- Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Neural Engineering Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chadwick M. Hales
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Neural Engineering Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
- Machine Learning Center at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
11
|
Souris JS, Leoni L, Zhang HJ, Pan A, Tanios E, Tsai HM, Balyasnikova IV, Bissonnette M, Chen CT. X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:673. [PMID: 36839041 PMCID: PMC9962876 DOI: 10.3390/nano13040673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles. These nanoplatforms, when irradiated with diagnostic doses and energies of X-rays, produce large quantities of ROS and permit, for the first time, non-invasive deep tissue PDT of tumors with few of the therapeutic limitations or side effects of conventional PDT. In this review we examine the underlying principles and evolution of PDT: from its initial and still dominant use of light-activated, small molecule photosensitizers that passively accumulate in tumors, to its latest development of X-ray-activated, scintillator-photosensitizer hybrid nanoplatforms that actively target cancer biomarkers. Challenges and potential remedies for the clinical translation of these hybrid nanoplatforms and X-ray PDT are also presented.
Collapse
Affiliation(s)
- Jeffrey S. Souris
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah J. Zhang
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Ariel Pan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Eve Tanios
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Maloisel L, Ma E, Phipps J, Deshayes A, Mattarocci S, Marcand S, Dubrana K, Coïc E. Rad51 filaments assembled in the absence of the complex formed by the Rad51 paralogs Rad55 and Rad57 are outcompeted by translesion DNA polymerases on UV-induced ssDNA gaps. PLoS Genet 2023; 19:e1010639. [PMID: 36749784 PMCID: PMC9937489 DOI: 10.1371/journal.pgen.1010639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 02/17/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
The bypass of DNA lesions that block replicative polymerases during DNA replication relies on DNA damage tolerance pathways. The error-prone translesion synthesis (TLS) pathway depends on specialized DNA polymerases that incorporate nucleotides in front of base lesions, potentially inducing mutagenesis. Two error-free pathways can bypass the lesions: the template switching pathway, which uses the sister chromatid as a template, and the homologous recombination pathway (HR), which also can use the homologous chromosome as template. The balance between error-prone and error-free pathways controls the mutagenesis level. Therefore, it is crucial to precisely characterize factors that influence the pathway choice to better understand genetic stability at replication forks. In yeast, the complex formed by the Rad51 paralogs Rad55 and Rad57 promotes HR and template-switching at stalled replication forks. At DNA double-strand breaks (DSBs), this complex promotes Rad51 filament formation and stability, notably by counteracting the Srs2 anti-recombinase. To explore the role of the Rad55-Rad57 complex in error-free pathways, we monitored the genetic interactions between Rad55-Rad57, the translesion polymerases Polζ or Polη, and Srs2 following UV radiation that induces mostly single-strand DNA gaps. We found that the Rad55-Rad57 complex was involved in three ways. First, it protects Rad51 filaments from Srs2, as it does at DSBs. Second, it promotes Rad51 filament stability independently of Srs2. Finally, we observed that UV-induced HR is almost abolished in Rad55-Rad57 deficient cells, and is partially restored upon Polζ or Polη depletion. Hence, we propose that the Rad55-Rad57 complex is essential to promote Rad51 filament stability on single-strand DNA gaps, notably to counteract the error-prone TLS polymerases and mutagenesis.
Collapse
Affiliation(s)
- Laurent Maloisel
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
- * E-mail: (LM); (EC)
| | - Emilie Ma
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Jamie Phipps
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Alice Deshayes
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Stefano Mattarocci
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Stéphane Marcand
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Karine Dubrana
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Eric Coïc
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
- * E-mail: (LM); (EC)
| |
Collapse
|
13
|
Lee SY, Jang DH, Kim H, Yun M. Removal and isolation of radioactive cobalt using DNA aptamers. RADIOCHIM ACTA 2023. [DOI: 10.1515/ract-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Electricity generation using nuclear power has various advantages, such as carbon reduction, but the treatment of nuclear waste is emerging as a big issue in many countries. The development of technology that can selectively remove radionuclides from liquid radioactive waste is one of the ways to reduce nuclear waste. Here, we assessed a new way of removing radioactive cobalt from a liquid using an aptamer. Aptamers specifically binding cobalt ions were selected through systematic evolution of ligands by exponential enrichment (SELEX). Their binding strength and stability of their complexes with cobalt were analyzed through surface plasmon resonance assay and 2D program Mfold, respectively. The optimal aptamer/bead conjugate conditions for binding cobalt were established using an FA-C1 aptamer with the strongest binding to cobalt. Under these conditions, more than 80% of radioactive cobalt was removed, and more than 99.95% of removed cobalt was recovered. These results proved that radioactive cobalt removal using this aptamer can effectively reduce liquid radioactive waste. This means that the aptamer/bead complex can be utilized to remove various radioactive metal ions.
Collapse
Affiliation(s)
- Sun Young Lee
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Resource Upcycling and Discovery Research Institute, Sejong University , Seoul , South Korea
| | - Dae Hyuk Jang
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Resource Upcycling and Discovery Research Institute, Sejong University , Seoul , South Korea
| | - Hyuncheol Kim
- Environmental Radioactivity Assessment Team , Korea Atomic Energy Research Institute , Daejeon , South Korea
| | - Miyong Yun
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Environmental Radioactivity Assessment Team , Korea Atomic Energy Research Institute , Daejeon , South Korea
| |
Collapse
|
14
|
Wang Y, Niu J, Liu J, Sun Y. Digital Counting of Breaks Labeling In Situ: A Fast and Absolute Quantification Method for Measurement of DNA Double-Strand Breaks Based on Digital Polymerase Chain Reaction. Anal Chem 2022; 94:16871-16876. [DOI: 10.1021/acs.analchem.2c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yao Wang
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing100871, China
- State Key Laboratory of Membrane Biology & Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing100871, China
- School of Life Sciences, Peking University, Beijing100871, China
| | - Jiahao Niu
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing100871, China
- State Key Laboratory of Membrane Biology & Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing100871, China
- School of Life Sciences, Peking University, Beijing100871, China
| | - Jingyan Liu
- School of Life Sciences, Peking University, Beijing100871, China
| | - Yujie Sun
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing100871, China
- State Key Laboratory of Membrane Biology & Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing100871, China
- School of Life Sciences, Peking University, Beijing100871, China
| |
Collapse
|
15
|
Clove bud (Syzygium aromaticum L.) polyphenol helps to mitigate metabolic syndrome by establishing intracellular redox homeostasis and glucose metabolism: A randomized, double-blinded, active-controlled comparative study. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Mladenova V, Mladenov E, Chaudhary S, Stuschke M, Iliakis G. The high toxicity of DSB-clusters modelling high-LET-DNA damage derives from inhibition of c-NHEJ and promotion of alt-EJ and SSA despite increases in HR. Front Cell Dev Biol 2022; 10:1016951. [PMID: 36263011 PMCID: PMC9574094 DOI: 10.3389/fcell.2022.1016951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Heavy-ion radiotherapy utilizing high linear energy transfer (high-LET) ionizing radiation (IR) is a promising cancer treatment modality owing to advantageous physical properties of energy deposition and associated toxicity over X-rays. Therapies utilizing high-LET radiation will benefit from a better understanding of the molecular mechanisms underpinning their increased biological efficacy. Towards this goal, we investigate here the biological consequences of well-defined clusters of DNA double-strand breaks (DSBs), a form of DNA damage, which on theoretical counts, has often been considered central to the enhanced toxicity of high-LET IR. We test clonal cell lines harboring in their genomes constructs with appropriately engineered I-SceI recognition sites that convert upon I-SceI expression to individual DSBs, or DSB-clusters comprising known numbers of DSBs with defined DNA-ends. We find that, similarly to high-LET IR, DSB-clusters of increasing complexity, i.e. increasing numbers of DSBs, with compatible or incompatible ends, compromise classical non-homologous end-joining, favor DNA end-resection and promote resection-dependent DSB-processing. Analysis of RAD51 foci shows increased engagement of error-free homologous recombination on DSB-clusters. Multicolor fluorescence in situ hybridization analysis shows that complex DSB-clusters markedly increase the incidence of structural chromosomal abnormalities (SCAs). Since RAD51-knockdown further increases SCAs-incidence, we conclude that homologous recombination suppresses SCAs-formation. Strikingly, CtIP-depletion inhibits SCAs-formation, suggesting that it relies on alternative end-joining or single-strand annealing. Indeed, ablation of RAD52 causes a marked reduction in SCAs, as does also inhibition of PARP1. We conclude that increased DSB-cluster formation that accompanies LET-increases, enhances IR-effectiveness by promoting DNA end-resection, which suppresses c-NHEJ and enhances utilization of alt-EJ or SSA. Although increased resection also favors HR, on balance, error-prone processing dominates, causing the generally observed increased toxicity of high-LET radiation. These findings offer new mechanistic insights into high-LET IR-toxicity and have translational potential in the clinical setting that may be harnessed by combining high-LET IR with inhibitors of PARP1 or RAD52.
Collapse
Affiliation(s)
- Veronika Mladenova
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Emil Mladenov
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shipra Chaudhary
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Advanced Biosciences, Inserm U 1209 / CNRS UMR 5309 Joint Research Center, Grenoble Alpes University, Grenoble, France
| | - Martin Stuschke
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - George Iliakis
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: George Iliakis,
| |
Collapse
|
17
|
Angelov D, Boopathi R, Lone IN, Menoni H, Dimitrov S, Cadet J. Capturing Protein-Nucleic Acid Interactions by High-Intensity Laser-Induced Covalent Crosslinking. Photochem Photobiol 2022; 99:296-312. [PMID: 35997098 DOI: 10.1111/php.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Interactions of DNA with structural proteins such as histones, regulatory proteins, and enzymes play a crucial role in major cellular processes such as transcription, replication and repair. The in vivo mapping and characterization of the binding sites of the involved biomolecules are of primary importance for a better understanding of genomic deployment that is implicated in tissue and developmental stage-specific gene expression regulation. The most powerful and commonly used approach to date is immunoprecipitation of chemically cross-linked chromatin (XChIP) coupled with sequencing analysis (ChIP-seq). While the resolution and the sensitivity of the high-throughput sequencing techniques have been constantly improved little progress has been achieved in the crosslinking step. Because of its low efficiency the use of the conventional UVC lamps remains very limited while the formaldehyde method was established as the "gold standard" crosslinking agent. Efficient biphotonic crosslinking of directly interacting nucleic acid-protein complexes by a single short UV laser pulse has been introduced as an innovative technique for overcoming limitations of conventionally used chemical and photochemical approaches. In this survey, the main available methods including the laser approach are critically reviewed for their ability to generate DNA-protein crosslinks in vitro model systems and cells.
Collapse
Affiliation(s)
- Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239, 46 Allée d'Italie, 69007, Lyon, France.,Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, Izmir 35330, Turkey
| | - Ramachandran Boopathi
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239, 46 Allée d'Italie, 69007, Lyon, France.,Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, Izmir 35330, Turkey
| | - Hervé Menoni
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| |
Collapse
|
18
|
Danforth JM, Provencher L, Goodarzi AA. Chromatin and the Cellular Response to Particle Radiation-Induced Oxidative and Clustered DNA Damage. Front Cell Dev Biol 2022; 10:910440. [PMID: 35912116 PMCID: PMC9326100 DOI: 10.3389/fcell.2022.910440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles via the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1–2 helical turns of one another. These multiply-damaged sites are difficult for eukaryotic cells to resolve either quickly or accurately, resulting in the persistence of DNA damage and/or the accumulation of mutations at a greater rate per absorbed dose, relative to lower LET radiation types. The proximity of the same and different types of DNA lesions to one another is challenging for DNA repair processes, with diverse pathways often confounding or interplaying with one another in complex ways. In this context, understanding the state of the higher order chromatin compaction and arrangements is essential, as it influences the density of damage produced by high-LET radiation and regulates the recruitment and activity of DNA repair factors. This review will summarize the latest research exploring the processes by which clustered DNA damage sites are induced, detected, and repaired in the context of chromatin.
Collapse
|
19
|
The Usefulness of Autoradiography for DNA Repair Proteins Activity Detection in the Cytoplasm towards Radiolabeled Oligonucleotides Containing 5′,8-Cyclo-2′-deoxyAdenosine. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Autoradiography of 32P-radiolabeled oligonucleotides is one of the most precise detection methods of DNA repair processes. In this study, autoradiography allowed assessing the activity of proteins in the cytoplasm involved in DNA repair. The cytoplasm is the site of protein biosynthesis but is also a target cellular compartment of synthetic therapeutic oligonucleotide (STO) delivery. The DNA-based drugs may be impaired by radiation-induced lesions, such as clustered DNA lesions (CDL) and/or 5′,8-cyclo-2′-deoxypurines (cdPu). CDL and cdPu may appear in the sequence of STO after irradiation and subsequently impair DNA repair, as shown in previous studies. Hence, the interesting questions are (1) is it safe to combine STO treatment with radiotherapy; (2) are repair proteins active in the cytoplasm; and (3) is their activity different in the cytoplasm than in the nucleus? This unique study examined whether the proteins involved in the DNA repair are affected by the CDL while they are still present in the cytoplasm of xrs5, BJ, and XPC cells. Double-stranded oligonucleotides with bi-stranded CDL were used (containing AP site in one strand and a (5′S) or (5′R) 5′,8-cyclo-2′-deoxyadenosine (cdA) in the other strand located 1 or 4 bp in both directions). The results have shown that the proteins involved in the repair were active in the cytoplasm, but less than in the nucleus. The general trends aligned for cytoplasm and nucleus—lesions located in the 5′-end direction inhibited the course of DNA repair. The combination of STO with radiotherapy should be applied carefully, as unrepaired lesions within STO may impair their therapeutic efficiency.
Collapse
|
20
|
Formation of clustered DNA damage in vivo upon irradiation with ionizing radiation: Visualization and analysis with atomic force microscopy. Proc Natl Acad Sci U S A 2022; 119:e2119132119. [PMID: 35324325 PMCID: PMC9060515 DOI: 10.1073/pnas.2119132119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA damage causes loss of or alterations in genetic information, resulting in cell death or mutations. Ionizing radiations produce local, multiple DNA damage sites called clustered DNA damage. In this study, a complete protocol was established to analyze the damage complexity of clustered DNA damage, wherein damage-containing genomic DNA fragments were selectively concentrated via pulldown, and clustered DNA damage was visualized by atomic force microscopy. It was found that X-rays and Fe ion beams caused clustered DNA damage. Fe ion beams also produced clustered DNA damage with high complexity. Fe ion beam–induced complex DNA double-strand breaks (DSBs) containing one or more base lesion(s) near the DSB end were refractory to repair, implying their lethal effects. Clustered DNA damage is related to the biological effects of ionizing radiation. However, its precise yield and complexity (i.e., number of lesions per damaged site) in vivo remain unknown. To better understand the consequences of clustered DNA damage, a method was established to evaluate its yield and complexity in irradiated cells by atomic force microscopy. This was achieved by isolating and concentrating damaged DNA fragments from purified genomic DNA. It was found that X-rays and Fe ion beams caused clustered DNA damage in human TK6 cells, whereas Fenton's reagents did it less efficiently, highlighting clustered DNA damage as a signature of ionizing radiation. Moreover, Fe ion beams produced clustered DNA damage with high complexity. Remarkably, Fe ion beam–induced complex DNA double-strand breaks (DSBs) containing one or more base lesion(s) near the DSB end were refractory to repair, implying the lethal effect of complex DSBs.
Collapse
|
21
|
Luo J, Chen J, Zhou J, Han K, Li S, Duan J, Cao C, Lin J, Xie D, Wang F. TBX20 inhibits colorectal cancer tumorigenesis by impairing NHEJ‐mediated DNA repair. Cancer Sci 2022; 113:2008-2021. [PMID: 35348274 PMCID: PMC9207377 DOI: 10.1111/cas.15348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
DNA high methylation is one of driving force for colorectal carcinoma (CRC) pathogenesis. Transcription factors (TFs) can determine cell fate and play fundamental roles in multistep process of tumorigenesis. Dysregulation of DNA methylation of TFs should be vital for the progression of CRC. Here, we demonstrated that TBX20, a T‐box TF family protein, was downregulated with hypermethylation of promoter in early‐stage CRC tissues and correlated with a poor prognosis for CRC patients. Moreover, we identified PDZRN3 as the E3 ubiquitin ligase of TBX20 protein, which mediated the ubiquitination and degradation of TBX20. Furthermore, we revealed that TBX20 suppressed cell proliferation and tumor growth through impairing non‐homologous DNA end joining (NHEJ)‐mediated double‐stranded break repair by binding the middle domain of both Ku70 and Ku80 and therefore inhibiting their recruitment on chromatin in CRC cells. Altogether, our results reveal the tumor‐suppressive role of TBX20 by inhibiting NHEJ‐mediated DNA repair in CRC cells, and provide a potential biomarker for predicting the prognosis of patients with early‐stage CRC and a therapeutic target for combination therapy.
Collapse
Affiliation(s)
- Jie Luo
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jie‐Wei Chen
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Jie Zhou
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Kai Han
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Colorectal Surgery Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Si Li
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jin‐Ling Duan
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Chen‐Hui Cao
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jin‐Long Lin
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Dan Xie
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Feng‐Wei Wang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| |
Collapse
|
22
|
Favaudon V, Labarbe R, Limoli CL. Model studies of the role of oxygen in the FLASH effect. Med Phys 2022; 49:2068-2081. [PMID: 34407219 PMCID: PMC8854455 DOI: 10.1002/mp.15129] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Current radiotherapy facilities are standardized to deliver dose rates around 0.1-0.4 Gy/s in 2 Gy daily fractions, designed to deliver total accumulated doses to reach the tolerance limit of normal tissues undergoing irradiation. FLASH radiotherapy (FLASH-RT), on the other hand, relies on facilities capable of delivering ultrahigh dose rates in large doses in a single microsecond pulse, or in a few pulses given over a very short time sequence. For example, most studies to date have implemented 4-6 MeV electrons with intra-pulse dose rates in the range 106 -107 Gy/s. The proposed dependence of the FLASH effect on oxygen tension has stimulated several theoretical models based on three different hypotheses: (i) Radiation-induced transient oxygen depletion; (ii) cell-specific differences in the ability to detoxify and/or recover from injury caused by reactive oxygen species; (iii) self-annihilation of radicals by bimolecular recombination. This article focuses on the observations supporting or refuting these models in the frame of the chemical-biological bases of the impact of oxygen on the radiation response of cell free, in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Vincent Favaudon
- Institut Curie, Inserm U 1021- CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, 91405 Orsay Cedex, France
- Corresponding author:
| | - Rudi Labarbe
- Ion Beam Applications S.A. (IBA), Louvain-la-Neuve, Belgium
| | - Charles L. Limoli
- Dept. of Radiation Oncology, Medical Sciences I, B146B, Irvine, California 92697-2695, USA
| |
Collapse
|
23
|
Angelov D, Lone IN, Menoni H, Cadet J. Interstrand Crosslinking Involving Guanine: A New Major UVC Laser-Induced Biphotonic Oxidatively Generated DNA Damage. Photochem Photobiol 2021; 98:662-670. [PMID: 34958483 DOI: 10.1111/php.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Several classes of oxidatively generated DNA damage including oxidized purine and pyrimidine bases, interstrand base crosslinks and DNA-protein crosslinks have been previously shown to be generated in both isolated DNA and cellular DNA upon exposure to either 266 nm laser irradiation or one-electron oxidants. In this study, we provide evidence that biphotonic ionization of guanine bases by UVC laser irradiation of double-stranded deoxyoligonucleotides in aerated aqueous solutions induces the formation of interstrand cross-links (ICLs). This is supported by various experiments including sequencing gel analyses of formed photoproducts and effects of UVC laser intensity on their formation. This constitutes a novel example of the diversity of reactions of guanine radical cation that can be generated by various one-electron oxidants including UVC laser biphotonic ionization, direct effect of ionization radiation and type I photosensitizers. However, the exact structure of the interstrand base adducts that is a challenging analytical issue remains to be further established. Examples of relevant biochemical/structural applications of biphotonic induction of ICLs in DNA samples by high-intensity UVC laser pulses are provided.
Collapse
Affiliation(s)
- Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007, Lyon, France.,Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University Health Campus, Balçova, Izmir, 35330, Turkey
| | - Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University Health Campus, Balçova, Izmir, 35330, Turkey
| | - Hervé Menoni
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences IAB, Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| |
Collapse
|
24
|
Wang M, Chen S, Ao D. Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm (Beijing) 2021; 2:654-691. [PMID: 34977872 PMCID: PMC8706759 DOI: 10.1002/mco2.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Over the last decades, the growing understanding on DNA damage response (DDR) pathways has broadened the therapeutic landscape in oncology. It is becoming increasingly clear that the genomic instability of cells resulted from deficient DNA damage response contributes to the occurrence of cancer. One the other hand, these defects could also be exploited as a therapeutic opportunity, which is preferentially more deleterious in tumor cells than in normal cells. An expanding repertoire of DDR-targeting agents has rapidly expanded to inhibitors of multiple members involved in DDR pathways, including PARP, ATM, ATR, CHK1, WEE1, and DNA-PK. In this review, we sought to summarize the complex network of DNA repair machinery in cancer cells and discuss the underlying mechanism for the application of DDR inhibitors in cancer. With the past preclinical evidence and ongoing clinical trials, we also provide an overview of the history and current landscape of DDR inhibitors in cancer treatment, with special focus on the combination of DDR-targeted therapies with other cancer treatment strategies.
Collapse
Affiliation(s)
- Manni Wang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Siyuan Chen
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Danyi Ao
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
25
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
26
|
Jiang T, Monari A, Dumont E, Bignon E. Molecular Mechanisms Associated with Clustered Lesion-Induced Impairment of 8-oxoG Recognition by the Human Glycosylase OGG1. Molecules 2021; 26:molecules26216465. [PMID: 34770874 PMCID: PMC8587150 DOI: 10.3390/molecules26216465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
The 8-oxo-7,8-dihydroguanine, referred to as 8-oxoG, is a highly mutagenic DNA lesion that can provoke the appearance of mismatches if it escapes the DNA Damage Response. The specific recognition of its structural signature by the hOGG1 glycosylase is the first step along the Base Excision Repair pathway, which ensures the integrity of the genome by preventing the emergence of mutations. 8-oxoG formation, structural features, and repair have been matters of extensive research; more recently, this active field of research expended to the more complicated case of 8-oxoG within clustered lesions. Indeed, the presence of a second lesion within 1 or 2 helix turns can dramatically impact the repair yields of 8-oxoG by glycosylases. In this work, we use μs-range molecular dynamics simulations and machine-learning-based postanalysis to explore the molecular mechanisms associated with the recognition of 8-oxoG by hOGG1 when embedded in a multiple-lesion site with a mismatch in 5′ or 3′. We delineate the stiffening of the DNA–protein interactions upon the presence of the mismatches, and rationalize the much lower repair yields reported with a 5′ mismatch by describing the perturbation of 8-oxoG structural features upon addition of an adjacent lesion.
Collapse
Affiliation(s)
- Tao Jiang
- Laboratoire de Chimie—UMR CNRS 5182, ENS de Lyon, Université de Lyon, 46 Allée d’Italie, F-69000 Lyon, France; (T.J.); (E.D.)
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques—UMR CNRS 7019, Faculté des Sciences et Technologies, Université de Lorraine, Boulevard des Aiguillettes, F-54506 Vandoeuvre-les-Nancy, France;
- Université de Paris and CNRS, ITODYS, F-75006 Paris, France
| | - Elise Dumont
- Laboratoire de Chimie—UMR CNRS 5182, ENS de Lyon, Université de Lyon, 46 Allée d’Italie, F-69000 Lyon, France; (T.J.); (E.D.)
- Institut Universitaire de France, 5 rue Descartes, F-75005 Paris, France
| | - Emmanuelle Bignon
- Laboratoire de Physique et Chimie Théoriques—UMR CNRS 7019, Faculté des Sciences et Technologies, Université de Lorraine, Boulevard des Aiguillettes, F-54506 Vandoeuvre-les-Nancy, France;
- Correspondence:
| |
Collapse
|
27
|
Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients 2021; 13:nu13103483. [PMID: 34684484 PMCID: PMC8540093 DOI: 10.3390/nu13103483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) are strongly reactive chemical entities that include oxygen regulated by enzymatic and non-enzymatic antioxidant defense mechanisms. ROS contribute significantly to cell homeostasis in the heart by regulating cell proliferation, differentiation, and excitation-contraction coupling. When ROS generation surpasses the ability of the antioxidant defense mechanisms to buffer them, oxidative stress develops, resulting in cellular and molecular disorders and eventually in heart failure. Oxidative stress is a critical factor in developing hypoxia- and ischemia-reperfusion-related cardiovascular disorders. This article aimed to discuss the role of oxidative stress in the pathophysiology of cardiac diseases such as hypertension and endothelial dysfunction. This review focuses on the various clinical events and oxidative stress associated with cardiovascular pathophysiology, highlighting the benefits of new experimental treatments such as creatine supplementation, omega-3 fatty acids, microRNAs, and antioxidant supplements in addition to physical exercise
Collapse
|
28
|
Micheli C, Parma A, Tani C, Di Bello D, Falaschi A, Chiaramonte A, Testi S, Mosca M, Scarpato R. UCTD and SLE patients show increased levels of oxidative and DNA damage together with an altered kinetics of DSB repair. Mutagenesis 2021; 36:429-436. [PMID: 34559237 DOI: 10.1093/mutage/geab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/23/2021] [Indexed: 01/13/2023] Open
Abstract
Immunological tolerance is a critical feature of the immune system; its loss might lead to an abnormal response of lymphocytes causing autoimmune diseases. One of the most important groups belonging to autoimmune disorders is the connective tissue diseases (CTD). CTD are classified among systemic rheumatic diseases and include pathologies such as systemic lupus erythematosus (SLE), and undifferentiated CTD (UCTD). In this study, we evaluated oxidative and genome damage in peripheral blood lymphocytes from patients with SLE and UCTD, further classified on the basis of disease activity and the presence/absence of a serological profile. Oxidative damage was evaluated in cell membrane using the fluorescent fatty acid analogue BODIPY 581/591 C11. The percentage of oxidised lymphocytes in both SLE and UCTD patients was higher than in the control group, and the oxidative stress correlated positively with both disease activity and autoantibody profile. The γH2AX focus assay was used to quantify the presence of spontaneous double strand breaks (DSBs), and to assess the abilities of DSBs repair system after T cells were treated with mitomycin C (MMC). Subjects with these autoimmune disorders showed a higher number of γH2AX foci than healthy controls, but no correlation with diseases activity and presence of serological profile was observed. In addition, patients displayed an altered response to MMC-induced DSBs, which led their peripheral cells to greatly increase apoptosis. Taken together our results confirmed an interplay among oxidative stress, DNA damage and impaired DNA repair, which are directly correlated to the aggressiveness and clinical progression of the diseases. We propose the evaluation of these molecular markers to better characterize SLE and UCTD, aiming to improve the treatment plan and the quality of the patients' life.
Collapse
Affiliation(s)
- Consuelo Micheli
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Alice Parma
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Chiara Tani
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Domenica Di Bello
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Aurora Falaschi
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Anna Chiaramonte
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Serena Testi
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Marta Mosca
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Roberto Scarpato
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| |
Collapse
|
29
|
When UDG and hAPE1 Meet Cyclopurines. How (5' R) and (5' S) 5',8-Cyclo-2'-deoxyadenosine and 5',8-Cyclo-2'-deoxyguanosine Affect UDG and hAPE1 Activity? Molecules 2021; 26:molecules26175177. [PMID: 34500606 PMCID: PMC8434022 DOI: 10.3390/molecules26175177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Ionizing radiation is a factor that seriously damages cellular mechanisms/macromolecules, e.g., by inducing damage in the human genome, such as 5′,8-cyclo-2′-deoxypurines (cdPus). CdPus may become a component of clustered DNA lesions (CDL), which are notably unfavorable for the base excision repair system (BER). In this study, the influence of 5′S and 5′R diastereomers of 5′,8-cyclo-2′-deoxyadenosine (cdA) and 5′,8-cyclo-2′-deoxyguanosine (cdG) on the uracil-DNA glycosylase (UDG) and human AP site endonuclease 1 (hAPE1) activity has been taken under consideration. Synthetic oligonucleotides containing 2′-deoxyuridine (dU) and cdPu were used as a model of single-stranded CDL. The activity of the UDG and hAPE1 enzymes decreased in the presence of RcdG compared to ScdG. Contrary to the above, ScdA reduced enzyme activity more than RcdA. The presented results show the influence of cdPus lesions located within CDL on the activity of the initial stages of BER dependently on their position toward dU. Numerous studies have shown the biological importance of cdPus (e.g., as a risk of carcinogenesis). Due to that, it is important to understand how to recognize and eliminate this type of DNA damage from the genome.
Collapse
|
30
|
Shokoohian B, Negahdari B, Aboulkheyr Es H, Abedi-Valugerdi M, Baghaei K, Agarwal T, Maiti TK, Hassan M, Najimi M, Vosough M. Advanced therapeutic modalities in hepatocellular carcinoma: Novel insights. J Cell Mol Med 2021; 25:8602-8614. [PMID: 34423899 PMCID: PMC8435417 DOI: 10.1111/jcmm.16875] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is usually a latent and asymptomatic malignancy caused by different aetiologies, which is a result of various aberrant molecular heterogeneity and often diagnosed at advanced stages. The incidence and prevalence have significantly increased because of sedentary lifestyle, diabetes, chronic infection with hepatotropic viruses and exposure to aflatoxins. Due to advanced intra‐ or extrahepatic metastasis, recurrence is very common even after radical resection. In this paper, we highlighted novel therapeutic modalities, such as molecular‐targeted therapies, targeted radionuclide therapies and epigenetic modification‐based therapies. These topics are trending headlines and their combination with cell‐based immunotherapies, and gene therapy has provided promising prospects for the future of HCC treatment. Moreover, a comprehensive overview of current and advanced therapeutic approaches is discussed and the advantages and limitations of each strategy are described. Finally, very recent and approved novel combined therapies and their promising results in HCC treatment have been introduced.
Collapse
Affiliation(s)
- Bahare Shokoohian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Manuchehr Abedi-Valugerdi
- Laboratory Medicine, Karolinska Institutet, Experimental Cancer Medicine, Clinical Research Center (KFC), Novum, Karolinska University Hospital-Huddinge and Biomolecular and Cellular Medicine (BCM, Stockholm, Sweden
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Moustapha Hassan
- Laboratory Medicine, Karolinska Institutet, Experimental Cancer Medicine, Clinical Research Center (KFC), Novum, Karolinska University Hospital-Huddinge and Biomolecular and Cellular Medicine (BCM, Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Laboratory Medicine, Karolinska Institutet, Experimental Cancer Medicine, Clinical Research Center (KFC), Novum, Karolinska University Hospital-Huddinge and Biomolecular and Cellular Medicine (BCM, Stockholm, Sweden
| |
Collapse
|
31
|
Lim J, Ali S, Liao LS, Nguyen ES, Ortiz L, Reshel S, Luderer U. Antioxidant supplementation partially rescues accelerated ovarian follicle loss, but not oocyte quality, of glutathione-deficient mice†. Biol Reprod 2021; 102:1065-1079. [PMID: 31950131 DOI: 10.1093/biolre/ioaa009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
The tripeptide thiol antioxidant glutathione (GSH) has multiple physiological functions. Female mice lacking the modifier subunit of glutamate cysteine ligase (GCLM), the rate-limiting enzyme in GSH synthesis, have decreased GSH concentrations, ovarian oxidative stress, preimplantation embryonic mortality, and accelerated age-related decline in ovarian follicles. We hypothesized that supplementation with thiol antioxidants, N-acetyl cysteine (NAC), or α-lipoic acid (ALA) will rescue this phenotype. Gclm-/- and Gclm+/+ females received 0 or 80 mM NAC in drinking water from postnatal day (PND) 21-30; follicle growth was induced with equine chorionic gonadotropin (eCG) on PND 27, followed by an ovulatory dose of human CG and mating with a wild type male on PND 29 and zygote harvest 20 h after hCG. N-acetyl cysteine supplementation failed to rescue the low rate of second pronucleus formation in zygotes from Gclm-/- versus Gclm+/+ females. In the second study, Gclm-/- and Gclm+/+ females received diet containing 0, 150, or 600 mg/kg ALA beginning at weaning and were mated with wild type males from 8 to 20 weeks of age. α-Lipoic acid failed to rescue the decreased offspring production of Gclm-/- females. However, 150 mg/kg diet ALA partially rescued the accelerated decline in primordial follicles, as well as the increased recruitment of follicles into the growing pool and the increased percentages of follicles with γH2AX positive oocytes or granulosa cells of Gclm-/- females. We conclude that ovarian oxidative stress is the cause of accelerated primordial follicle decline, while GSH deficiency per se may be responsible for preimplantation embryonic mortality in Gclm-/- females.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Medicine, University of California, Irvine, California, USA
| | - Samiha Ali
- Department of Medicine, University of California, Irvine, California, USA
| | - Lisa S Liao
- Department of Medicine, University of California, Irvine, California, USA
| | - Emily S Nguyen
- Department of Medicine, University of California, Irvine, California, USA
| | - Laura Ortiz
- Department of Medicine, University of California, Irvine, California, USA
| | - Samantha Reshel
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ulrike Luderer
- Department of Medicine, University of California, Irvine, California, USA.,Department of Developmental and Cell Biology, University of California, Irvine, California, USA.,Program in Public Health, University of California, Irvine, California, USA
| |
Collapse
|
32
|
Lukácsi S, Farkas Z, Saskői É, Bajtay Z, Takács-Vellai K. Conserved and Distinct Elements of Phagocytosis in Human and C. elegans. Int J Mol Sci 2021; 22:ijms22168934. [PMID: 34445642 PMCID: PMC8396242 DOI: 10.3390/ijms22168934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Endocytosis provides the cellular nutrition and homeostasis of organisms, but pathogens often take advantage of this entry point to infect host cells. This is counteracted by phagocytosis that plays a key role in the protection against invading microbes both during the initial engulfment of pathogens and in the clearance of infected cells. Phagocytic cells balance two vital functions: preventing the accumulation of cell corpses to avoid pathological inflammation and autoimmunity, whilst maintaining host defence. In this review, we compare elements of phagocytosis in mammals and the nematode Caenorhabditis elegans. Initial recognition of infection requires different mechanisms. In mammals, pattern recognition receptors bind pathogens directly, whereas activation of the innate immune response in the nematode rather relies on the detection of cellular damage. In contrast, molecules involved in efferocytosis—the engulfment and elimination of dying cells and cell debris—are highly conserved between the two species. Therefore, C. elegans is a powerful model to research mechanisms of the phagocytic machinery. Finally, we show that both mammalian and worm studies help to understand how the two phagocytic functions are interconnected: emerging data suggest the activation of innate immunity as a consequence of defective apoptotic cell clearance.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (S.L.); (Z.B.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
| | - Éva Saskői
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
| | - Zsuzsa Bajtay
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (S.L.); (Z.B.)
- Department of Immunology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
- Correspondence:
| |
Collapse
|
33
|
Zahra KF, Lefter R, Ali A, Abdellah EC, Trus C, Ciobica A, Timofte D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965916. [PMID: 34394838 PMCID: PMC8360750 DOI: 10.1155/2021/9965916] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Oxygen-free radicals, reactive oxygen species (ROS) or reactive nitrogen species (RNS), are known by their "double-sided" nature in biological systems. The beneficial effects of ROS involve physiological roles as weapons in the arsenal of the immune system (destroying bacteria within phagocytic cells) and role in programmed cell death (apoptosis). On the other hand, the redox imbalance in favor of the prooxidants results in an overproduction of the ROS/RNS leading to oxidative stress. This imbalance can, therefore, be related to oncogenic stimulation. High levels of ROS disrupt cellular processes by nonspecifically attacking proteins, lipids, and DNA. It appears that DNA damage is the key player in cancer initiation and the formation of 8-OH-G, a potential biomarker for carcinogenesis. The harmful effect of ROS is neutralized by an antioxidant protection treatment as they convert ROS into less reactive species. However, contradictory epidemiological results show that supplementation above physiological doses recommended for antioxidants and taken over a long period can lead to harmful effects and even increase the risk of cancer. Thus, we are describing here some of the latest updates on the involvement of oxidative stress in cancer pathology and a double view on the role of the antioxidants in this context and how this could be relevant in the management and pathology of cancer.
Collapse
Affiliation(s)
- Kamal Fatima Zahra
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials/Agri-Food and Health, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Ech-Chahad Abdellah
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania
| | - Daniel Timofte
- Faculty of Medicine, “Grigore T. Popa”, University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania
| |
Collapse
|
34
|
Yan ZY, Chen J, Shao J, Jiao ZQ, Tang TS, Tang M, Sheng ZG, Mao L, Huang R, Huang CH, Zhang ZH, Su HM, Zhu BZ. The cell-impermeable Ru(II) polypyridyl complex as a potent intracellular photosensitizer under visible light irradiation via ion-pairing with suitable lipophilic counter-anions. Free Radic Biol Med 2021; 171:69-79. [PMID: 33957221 DOI: 10.1016/j.freeradbiomed.2021.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/01/2022]
Abstract
Developing the cell-impermeable Ru(II) polypyridyl cationic complexes as effective photosensitizers (PS) which have high cellular uptake and photo-toxicity, but low dark toxicity, is quite challenging. Here we found that the highly reactive singlet oxygen (1O2) can be generated by the irradiation of a typical Ru(II) polypyridyl complex Ru(II)tris(tetramethylphenanthroline) ([Ru(TMP)3]2+) under visible light irradiation by ESR with TEMPO (2,2,6,6-tetramethyl-4-piperidone-N-oxyl) as 1O2 probe. Effective cellular and nuclear delivery of cationic [Ru(TMP)3]2+ was achieved through our recently developed ion-pairing method, and 2,3,4,5-tetrachlorophenol (2,3,4,5-TeCP) was found to be the most effective among all chlorophenols tested. The accelerated cellular, especially nuclear uptake of [Ru(TMP)3]2+ results in the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and DNA strand breaks, caspase 3/7 activation and cell apoptosis in HeLa cells upon light irradiation. More importantly, compared with other traditional photosensitizers, [Ru(TMP)3]2+ showed significant photo-toxicity but low dark toxicity. Similar effects were observed when 2,3,4,5-TeCP was substituted by the currently clinically used anti-inflammatory drug flufenamic acid. This represents the first report that the cell-impermeable Ru(II) polypyridyl complex ion-paired with suitable lipophilic counter-anions functions as potent intracellular photosensitizer under visible light irradiation mainly via a 1O2-mediated mechanism. These findings should provide new perspectives for future investigations on other metal complexes with similar characteristics as promising photosensitizers for potential photodynamic therapy.
Collapse
Affiliation(s)
- Zhu-Ying Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Ze-Qing Jiao
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rong Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhi-Hui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Department of Stomatology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Hong-Mei Su
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
35
|
Baptista MS, Cadet J, Greer A, Thomas AH. Photosensitization Reactions of Biomolecules: Definition, Targets and Mechanisms. Photochem Photobiol 2021; 97:1456-1483. [PMID: 34133762 DOI: 10.1111/php.13470] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
Photosensitization reactions have been demonstrated to be largely responsible for the deleterious biological effects of UV and visible radiation, as well as for the curative actions of photomedicine. A large number of endogenous and exogenous photosensitizers, biological targets and mechanisms have been reported in the past few decades. Evolving from the original definitions of the type I and type II photosensitized oxidations, we now provide physicochemical frameworks, classifications and key examples of these mechanisms in order to organize, interpret and understand the vast information available in the literature and the new reports, which are in vigorous growth. This review surveys in an extended manner all identified photosensitization mechanisms of the major biomolecule groups such as nucleic acids, proteins, lipids bridging the gap with the subsequent biological processes. Also described are the effects of photosensitization in cells in which UVA and UVB irradiation triggers enzyme activation with the subsequent delayed generation of superoxide anion radical and nitric oxide. Definitions of photosensitized reactions are identified in biomolecules with key insights into cells and tissues.
Collapse
Affiliation(s)
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, NY, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
36
|
Zaher DM, Ramadan WS, El-Awady R, Omar HA, Hersi F, Srinivasulu V, Hachim IY, Al-Marzooq FI, Vazhappilly CG, Merali S, Merali C, Soares NC, Schilf P, Ibrahim SM, Al-Tel TH. A Novel Benzopyrane Derivative Targeting Cancer Cell Metabolic and Survival Pathways. Cancers (Basel) 2021; 13:cancers13112840. [PMID: 34200264 PMCID: PMC8201054 DOI: 10.3390/cancers13112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/03/2023] Open
Abstract
(1) Background: Today, the discovery of novel anticancer agents with multitarget effects and high safety margins represents a high challenge. Drug discovery efforts indicated that benzopyrane scaffolds possess a wide range of pharmacological activities. This spurs on building a skeletally diverse library of benzopyranes to identify an anticancer lead drug candidate. Here, we aim to characterize the anticancer effect of a novel benzopyrane derivative, aiming to develop a promising clinical anticancer candidate. (2) Methods: The anticancer effect of SIMR1281 against a panel of cancer cell lines was tested. In vitro assays were performed to determine the effect of SIMR1281 on GSHR, TrxR, mitochondrial metabolism, DNA damage, cell cycle progression, and the induction of apoptosis. Additionally, SIMR1281 was evaluated in vivo for its safety and in a xenograft mice model. (3) Results: SIMR1281 strongly inhibits GSHR while it moderately inhibits TrxR and modulates the mitochondrial metabolism. SIMR1281 inhibits the cell proliferation of various cancers. The antiproliferative activity of SIMR1281 was mediated through the induction of DNA damage, perturbations in the cell cycle, and the inactivation of Ras/ERK and PI3K/Akt pathways. Furthermore, SIMR1281 induced apoptosis and attenuated cell survival machinery. In addition, SIMR1281 reduced the tumor volume in a xenograft model while maintaining a high in vivo safety profile at a high dose. (4) Conclusions: Our findings demonstrate the anticancer multitarget effect of SIMR1281, including the dual inhibition of glutathione and thioredoxin reductases. These findings support the development of SIMR1281 in preclinical and clinical settings, as it represents a potential lead compound for the treatment of cancer.
Collapse
Affiliation(s)
- Dana M. Zaher
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A. Omar
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
| | - Ibrahim Y. Hachim
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farah I. Al-Marzooq
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Cijo G. Vazhappilly
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- School of Arts and Sciences, American University of Ras Al Khaimah, P.O. Box 10021, Ras Al Khaimah 10021, United Arab Emirates
| | - Salim Merali
- School of Pharmacy, Temple University, 3307 N Broad Street, Room 552, Philadelphia, PA 19140, USA; (S.M.); (C.M.)
| | - Carmen Merali
- School of Pharmacy, Temple University, 3307 N Broad Street, Room 552, Philadelphia, PA 19140, USA; (S.M.); (C.M.)
| | - Nelson C. Soares
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - Saleh M. Ibrahim
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7417
| |
Collapse
|
37
|
Research Development on Anti-Microbial and Antioxidant Properties of Camel Milk and Its Role as an Anti-Cancer and Anti-Hepatitis Agent. Antioxidants (Basel) 2021; 10:antiox10050788. [PMID: 34067516 PMCID: PMC8156492 DOI: 10.3390/antiox10050788] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Camel milk is a rich source of vitamin C, lactic acid bacteria (LAB), beta-caseins and milk whey proteins, including lactoferrin, lysozyme, lactoperoxidase, alpha-lactalbumin and immunoglobulin. The lactoferrin plays a key role in several physiological functions, such as conferring antioxidant, anti-microbial and anti-inflammatory functions in cells. Similarly, the camel milk alpha-lactalbumin has shown greater antioxidative activity because of its higher antioxidant amino acid residues. The antioxidant properties of camel milk have also been ascribed to the structural conformation of its beta-caseins. Upon hydrolysis, the beta-caseins lead to some bioactive peptides having antioxidant activities. Consequently, the vitamin C in camel milk has a significant antioxidant effect and can be used as a source of vitamin C when the climate is harsh. Furthermore, the lysozyme and immunoglobulins in camel milk have anti-microbial and immune regulatory properties. The LAB isolated from camel milk have a protective role against both Gram-positive and -negative bacteria. Moreover, the LAB can be used as a probiotic and may restore the oxidative status caused by various pathogenic bacterial infections. Various diseases such as cancer and hepatitis have been associated with oxidative stress. Camel milk could increase antiproliferative effects and regulate antioxidant genes during cancer and hepatitis, hence ameliorating oxidative stress. In the current review, we have illustrated the anti-microbial and antioxidant properties of camel milk in detail. In addition, the anti-cancer and anti-hepatitis properties of camel milk have also been discussed.
Collapse
|
38
|
Funke J, Prasse C, Dietrich C, Ternes TA. Ozonation products of zidovudine and thymidine in oxidative water treatment. WATER RESEARCH X 2021; 11:100090. [PMID: 33604534 PMCID: PMC7873472 DOI: 10.1016/j.wroa.2021.100090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 05/08/2023]
Abstract
Ozonation is an advanced treatment technology that is increasingly used for the removal of organic micropollutants from wastewater and drinking water. However, reaction of organic compounds with ozone can also result in the formation of toxic transformation products. In the present study, the degradation of the antiviral drug zidovudine during ozonation was investigated. To obtain further insights into the reaction mechanisms and pathways, results of zidovudine were compared with the transformation of the naturally occurring derivative thymidine. Kinetic experiments were accompanied by elucidation of formed transformation products using lab-scale batch experiments and subsequent liquid chromatography - high resolution mass spectrometry (LC-HRMS) analysis. Degradation rate constants for zidovudine with ozone in the presence of t-BuOH as radical scavenger varied between 2.8 ∙ 104 M-1 s-1 (pH 7) and 3.2 ∙ 104 M-1 s-1 (pH 3). The structural difference of zidovudine to thymidine is the exchange of the OH-moiety by the azide function at position 3'. In contrast to inorganic azide, no reaction with ozone was observed for the organic bound azide. In total, nine transformation products (TPs) were identified for both zidovudine and thymidine. Their formation can be attributed to the attack of ozone at the C-C-double bond of the pyrimidine-base. As a result of rearrangements, the primary ozonide decomposed in three pathways forming two different TPs, including hydroperoxide TPs. Rearrangement reactions followed by hydrolysis and subsequent release of H2O2 further revealed a cascade of TPs containing amide moieties. In addition, a formyl amide riboside and a urea riboside were identified as TPs indicating that oxidations of amide groups occur during ozonation processes.
Collapse
Affiliation(s)
- Jan Funke
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Carsten Prasse
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Christian Dietrich
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Thomas A. Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
- Corresponding author.
| |
Collapse
|
39
|
Cai TJ, Li S, Lu X, Zhang CF, Yuan JL, Zhang QZ, Tian XL, Lian DX, Li MS, Zhang Z, Liu G, Zhao H, Niu LM, Tian M, Hou CS, Liu QJ. Dose-effect relationships of 12C 6+ ions-induced dicentric plus ring chromosomes, micronucleus and nucleoplasmic bridges in human lymphocytes in vitro. Int J Radiat Biol 2021; 97:657-663. [PMID: 33704009 DOI: 10.1080/09553002.2021.1900945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The objective of this research was to explore the dose-effect relationships of dicentric plus ring (dic + r), micronucleus (MN) and nucleoplasmic bridges (NPB) induced by carbon ions in human lymphocytes. MATERIALS AND METHODS Venous blood samples were collected from three healthy donors. 12C6+ ions beam was used to irradiate the blood samples at the energy of 330 MeV and linear energy transfer (LET) of 50 keV/μm with a dose rate of 1 Gy/min in the spread-out Bragg peak. The irradiated doses were 0 (sham irradiation), 1, 2, 3, 4, 5 and 6 Gy. Dic + r chromosomes aberrations were scored in metaphases. The cytokinesis-block micronucleus cytome (CBMN) was conducted to analyze MN and NPB. The maximum low-dose relative biological effectiveness (RBEM) values of the induction of dic + r, MN and NPB in human lymphocytes for 12C6+ ions irradiation was calculated relative to 60Co γ-rays. RESULTS The frequencies of dic + r, MN and NPB showed significantly increases in a dose-depended manner after exposure to 12C6+ ions. The distributions of dic + r and MN exhibited overdispersion, while the distribution of NPB agreed with Poisson distribution at all doses. Linear-quadratic equations were established based on the frequencies of dic + r and MN. The dose-response curves of NPB frequencies followed a linear model. The derived RBEM values for dic + r, MN and NPB in human lymphocytes irradiated with 12C6+ ions were 8.07 ± 2.73, 2.69 ± 0.20 and 4.00 ± 2.69 in comparison with 60Co γ-rays. CONCLUSION The dose-response curves of carbon ions-induced dic + r, MN and NPB were constructed. These results could be helpful to improve radiation risk assessment and dose estimation after exposed to carbon ions irradiation.
Collapse
Affiliation(s)
- Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Chun-Fei Zhang
- Central Medical District of PLA General Hospital, Beijing, P. R. China
| | - Ji-Long Yuan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Qing-Zhao Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - De-Xing Lian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Ming-Sheng Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Zhen Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Gang Liu
- Gansu Province Center for Disease Control and Prevention, Lanzhou, Gansu, P. R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Li-Mei Niu
- Gansu Province Center for Disease Control and Prevention, Lanzhou, Gansu, P. R. China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Chang-Song Hou
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| |
Collapse
|
40
|
Baiken Y, Kanayeva D, Taipakova S, Groisman R, Ishchenko AA, Begimbetova D, Matkarimov B, Saparbaev M. Role of Base Excision Repair Pathway in the Processing of Complex DNA Damage Generated by Oxidative Stress and Anticancer Drugs. Front Cell Dev Biol 2021; 8:617884. [PMID: 33553154 PMCID: PMC7862338 DOI: 10.3389/fcell.2020.617884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023] Open
Abstract
Chemical alterations in DNA induced by genotoxic factors can have a complex nature such as bulky DNA adducts, interstrand DNA cross-links (ICLs), and clustered DNA lesions (including double-strand breaks, DSB). Complex DNA damage (CDD) has a complex character/structure as compared to singular lesions like randomly distributed abasic sites, deaminated, alkylated, and oxidized DNA bases. CDD is thought to be critical since they are more challenging to repair than singular lesions. Although CDD naturally constitutes a relatively minor fraction of the overall DNA damage induced by free radicals, DNA cross-linking agents, and ionizing radiation, if left unrepaired, these lesions cause a number of serious consequences, such as gross chromosomal rearrangements and genome instability. If not tightly controlled, the repair of ICLs and clustered bi-stranded oxidized bases via DNA excision repair will either inhibit initial steps of repair or produce persistent chromosomal breaks and consequently be lethal for the cells. Biochemical and genetic evidences indicate that the removal of CDD requires concurrent involvement of a number of distinct DNA repair pathways including poly(ADP-ribose) polymerase (PARP)-mediated DNA strand break repair, base excision repair (BER), nucleotide incision repair (NIR), global genome and transcription coupled nucleotide excision repair (GG-NER and TC-NER, respectively), mismatch repair (MMR), homologous recombination (HR), non-homologous end joining (NHEJ), and translesion DNA synthesis (TLS) pathways. In this review, we describe the role of DNA glycosylase-mediated BER pathway in the removal of complex DNA lesions.
Collapse
Affiliation(s)
- Yeldar Baiken
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan.,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Damira Kanayeva
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sabira Taipakova
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Regina Groisman
- Groupe ≪Mechanisms of DNA Repair and Carcinogenesis≫, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexander A Ishchenko
- Groupe ≪Mechanisms of DNA Repair and Carcinogenesis≫, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Murat Saparbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan.,Groupe ≪Mechanisms of DNA Repair and Carcinogenesis≫, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
41
|
Dong Y, Liao H, Gao Y, Cloutier P, Zheng Y, Sanche L. Early Events in Radiobiology: Isolated and Cluster DNA Damage Induced by Initial Cations and Nonionizing Secondary Electrons. J Phys Chem Lett 2021; 12:717-723. [PMID: 33400538 DOI: 10.1021/acs.jpclett.0c03341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Radiobiological damage is principally triggered by an initial cation and a secondary electron (SE). We address the fundamental questions: What lesions are first produced in DNA by this cation or nonionizing SE? What are their relative contributions to isolated and potentially lethal cluster lesions? Five monolayer films of dry plasmid DNA deposited on graphite or tantalum substrates are bombarded by 0.1-100 eV electrons in a vacuum. From measurements of the current transmitted through the films, 3.5 and 4.5 cations per incident 60 and 100 eV electrons, respectively, are estimated to be produced and stabilized within DNA. Damage analysis at 6, 10, 20, 30, 60, and 100 eV indicates that essentially all lesions, but preferentially cluster damages, are produced by non-ionizing or weakly ionizing electrons of energies below 12 eV. Most of these lesions are induced within femtosecond times, via transient anions and electron transfer within DNA, with little contributions from the numerous cations.
Collapse
Affiliation(s)
- Yanfang Dong
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Hong Liao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| |
Collapse
|
42
|
Impact of hypoxia on the double-strand break repair after photon and carbon ion irradiation of radioresistant HNSCC cells. Sci Rep 2020; 10:21357. [PMID: 33288855 PMCID: PMC7721800 DOI: 10.1038/s41598-020-78354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) induced by photon irradiation are the most deleterious damage for cancer cells and their efficient repair may contribute to radioresistance, particularly in hypoxic conditions. Carbon ions (C-ions) act independently of the oxygen concentration and trigger complex- and clustered-DSBs difficult to repair. Understanding the interrelation between hypoxia, radiation-type, and DNA-repair is therefore essential for overcoming radioresistance. The DSBs signaling and the contribution of the canonical non-homologous end-joining (NHEJ-c) and homologous-recombination (HR) repair pathways were assessed by immunostaining in two cancer-stem-cell (CSCs) and non-CSCs HNSCC cell lines. Detection and signaling of DSBs were lower in response to C-ions than photons. Hypoxia increased the decay-rate of the detected DSBs (γH2AX) in CSCs after photons and the initiation of DSB repair signaling (P-ATM) in CSCs and non-CSCs after both radiations, but not the choice of DSB repair pathway (53BP1). Additionally, hypoxia increased the NHEJ-c (DNA-PK) and the HR pathway (RAD51) activation only after photons. Furthermore, the involvement of the HR seemed to be higher in CSCs after photons and in non-CSCs after C-ions. Taken together, our results show that C-ions may overcome the radioresistance of HNSCC associated with DNA repair, particularly in CSCs, and independently of a hypoxic microenvironment.
Collapse
|
43
|
Kciuk M, Marciniak B, Mojzych M, Kontek R. Focus on UV-Induced DNA Damage and Repair-Disease Relevance and Protective Strategies. Int J Mol Sci 2020; 21:ijms21197264. [PMID: 33019598 PMCID: PMC7582305 DOI: 10.3390/ijms21197264] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The protective ozone layer is continually depleting due to the release of deteriorating environmental pollutants. The diminished ozone layer contributes to excessive exposure of cells to ultraviolet (UV) radiation. This leads to various cellular responses utilized to restore the homeostasis of exposed cells. DNA is the primary chromophore of the cells that absorbs sunlight energy. Exposure of genomic DNA to UV light leads to the formation of multitude of types of damage (depending on wavelength and exposure time) that are removed by effectively working repair pathways. The aim of this review is to summarize current knowledge considering cellular response to UV radiation with special focus on DNA damage and repair and to give a comprehensive insight for new researchers in this field. We also highlight most important future prospects considering application of the progressing knowledge of UV response for the clinical control of diverse pathologies.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
- Correspondence:
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| |
Collapse
|
44
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694+10.3389/fphys.2020.00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/20/2024] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694 10.3389/fphys.2020.00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Distinct roles of XRCC1 in genome integrity in Xenopus egg extracts. Biochem J 2020; 476:3791-3804. [PMID: 31808793 DOI: 10.1042/bcj20190798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Oxidative DNA damage represents one of the most abundant DNA lesions. It remains unclear how DNA repair and DNA damage response (DDR) pathways are co-ordinated and regulated following oxidative stress. While XRCC1 has been implicated in DNA repair, it remains unknown how exactly oxidative DNA damage is repaired and sensed by XRCC1. In this communication, we have demonstrated evidence that XRCC1 is dispensable for ATR-Chk1 DDR pathway following oxidative stress in Xenopus egg extracts. Whereas APE2 is essential for SSB repair, XRCC1 is not required for the repair of defined SSB and gapped plasmids with a 5'-OH or 5'-P terminus, suggesting that XRCC1 and APE2 may contribute to SSB repair via different mechanisms. Neither Polymerase beta nor Polymerase alpha is important for the repair of defined SSB structure. Nonetheless, XRCC1 is important for the repair of DNA damage following oxidative stress. Our observations suggest distinct roles of XRCC1 for genome integrity in oxidative stress in Xenopus egg extracts.
Collapse
|
48
|
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. The Similarities between Human Mitochondria and Bacteria in the Context of Structure, Genome, and Base Excision Repair System. Molecules 2020; 25:E2857. [PMID: 32575813 PMCID: PMC7356350 DOI: 10.3390/molecules25122857] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria emerged from bacterial ancestors during endosymbiosis and are crucial for cellular processes such as energy production and homeostasis, stress responses, cell survival, and more. They are the site of aerobic respiration and adenosine triphosphate (ATP) production in eukaryotes. However, oxidative phosphorylation (OXPHOS) is also the source of reactive oxygen species (ROS), which are both important and dangerous for the cell. Human mitochondria contain mitochondrial DNA (mtDNA), and its integrity may be endangered by the action of ROS. Fortunately, human mitochondria have repair mechanisms that allow protecting mtDNA and repairing lesions that may contribute to the occurrence of mutations. Mutagenesis of the mitochondrial genome may manifest in the form of pathological states such as mitochondrial, neurodegenerative, and/or cardiovascular diseases, premature aging, and cancer. The review describes the mitochondrial structure, genome, and the main mitochondrial repair mechanism (base excision repair (BER)) of oxidative lesions in the context of common features between human mitochondria and bacteria. The authors present a holistic view of the similarities of mitochondria and bacteria to show that bacteria may be an interesting experimental model for studying mitochondrial diseases, especially those where the mechanism of DNA repair is impaired.
Collapse
Affiliation(s)
| | | | | | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.B.); (M.S.); (J.K.-B.)
| |
Collapse
|
49
|
Lerner LK, Moreno NC, Rocha CRR, Munford V, Santos V, Soltys DT, Garcia CCM, Sarasin A, Menck CFM. XPD/ERCC2 mutations interfere in cellular responses to oxidative stress. Mutagenesis 2020; 34:341-354. [PMID: 31348825 DOI: 10.1093/mutage/gez020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/10/2019] [Indexed: 01/28/2023] Open
Abstract
Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPD-mutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments. The studied cells are derived from patients with XPD mutations but expressing different clinical phenotypes, including xeroderma pigmentosum (XP), XP and Cockayne syndrome (XP-D/CS) and trichothiodystrophy (TTD). We show by different approaches that all XPD-mutated cell lines tested were sensitive to oxidative stress, with those from TTD patients being the most sensitive. Host cell reactivation (HCR) assays showed that XP-D/CS and TTD cells have severely impaired repair capacity of oxidised lesions in plasmid DNA, and alkaline comet assays demonstrated the induction of significantly higher amounts of DNA strand breaks after treatment with photoactivated MB in these cells compared to wild-type cells. All XPD-mutated cells presented strong S/G2 arrest and persistent γ-H2AX staining after photoactivated MB treatment. Taken together, these results indicate that XPD participates in the repair of lesions induced by the redox process, and that XPD mutations lead to differences in the response to oxidatively induced damage.
Collapse
Affiliation(s)
- Leticia K Lerner
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Natália C Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Clarissa R R Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Valquíria Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela T Soltys
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Camila C M Garcia
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Alain Sarasin
- CNRS-UMR8200, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
50
|
Taverna Porro ML, Saint-Pierre C, Gasparutto D, Ravanat JL. Solid-phase synthesis of branched oligonucleotides containing a biologically relevant dCyd341 interstrand crosslink DNA lesion. Org Biomol Chem 2020; 18:1892-1899. [PMID: 31960874 DOI: 10.1039/c9ob01021a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Branched oligonucleotides containing a biologically relevant DNA lesion, dCyd341, which involves an interstrand crosslink between a cytosine base on one strand and a ribose moiety on the opposite strand, were prepared in a single automated solid-phase synthesis. For this, we first prepared the phosphoramidite analogue of dCyd341 bearing an orthogonal levulinyl protecting group. Then, following the synthesis of the first DNA strand containing dCyd341, the levulinic group was removed and the synthesis was then continued from the free base hydroxyl group at the branching point, using traditional phosphoramidites. The synthesized oligonucleotides were fully characterized by MALDI-TOF/MS and were enzymatically digested, and the presence of the lesion was confirmed by HPLC-MS/MS and the sequence was finally controlled upon exonuclease digestion followed by MALDI-TOF/MS analysis. The developed strategy was successfully employed for the preparation of several short linear and branched oligonucleotides containing the aforementioned lesion.
Collapse
Affiliation(s)
| | | | - Didier Gasparutto
- Univ. Grenoble Alpes, CEA, CNRS IRIG/SyMMES, F-38054 Grenoble Cedex 9, France.
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS IRIG/SyMMES, F-38054 Grenoble Cedex 9, France.
| |
Collapse
|