1
|
Li M, Li J, Tang Q, Zhu Y. Potential antitumor activity of triptolide and its derivatives: Focused on gynecological and breast cancers. Biomed Pharmacother 2024; 180:117581. [PMID: 39427548 DOI: 10.1016/j.biopha.2024.117581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer remains one of the greatest global health concerns. This is especially true for gynecological cancers, which include cervical, ovarian, and endometrial cancers, and breast cancer. Natural products used for cancer treatment offer some unique advantages. Triptolide (TPL) is a biologically active terpenoid extracted from Tripterygium wilfordii, which exhibits anti-inflammatory, immunosuppressive, antitumor, and other pharmacological activities. However, clinical applications of TPL are restricted because of poor water solubility and severe cytotoxicity; to overcome these limitations, various TPL derivatives and drug delivery systems, especially nanocarriers, have been used. Furthermore, various preclinical and clinical studies have demonstrated that TPL and its derivatives exhibit excellent antitumor effects by targeting proteins involved in multiple signaling pathways. Here, we review the progress regarding novel drug delivery systems, antitumor activities, and molecular mechanisms of action of TPL and its derivatives against gynecological and breast cancers. TPL and its derivatives inhibit tumor growth, suppress tumor metastasis, and enhance the drug sensitization of resistant cancers. In addition, TPL and its derivatives exert synergistic antitumor effects against gynecological and breast cancers when combined with existing antitumor drugs, such as carboplatin, cisplatin, and PI3K inhibitors. Moreover, we highlight the clinical potential of TPL analogs against cancer from bench to bedside and their prospects for future applications in gynecologic and breast cancers.
Collapse
Affiliation(s)
- Mengjie Li
- College of Pharmacy, Qinghai University for Nationalities, Xining, China; Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jiamiao Li
- Department of Pharmacy, The Affilliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, China
| | - Qing Tang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Bao S, Yi M, Xiang B, Chen P. Antitumor mechanisms and future clinical applications of the natural product triptolide. Cancer Cell Int 2024; 24:150. [PMID: 38678240 PMCID: PMC11055311 DOI: 10.1186/s12935-024-03336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Triptolide (TPL) is a compound sourced from Tripterygium wilfordii Hook. F., a traditional Chinese medicinal herb recognized for its impressive anti-inflammatory, anti-angiogenic, immunosuppressive, and antitumor qualities. Notwithstanding its favorable attributes, the precise mechanism through which TPL influences tumor cells remains enigmatic. Its toxicity and limited water solubility significantly impede the clinical application of TPL. We offer a comprehensive overview of recent research endeavors aimed at unraveling the antitumor mechanism of TPL in this review. Additionally, we briefly discuss current strategies to effectively manage the challenges associated with TPL in future clinical applications. By compiling this information, we aim to enhance the understanding of the underlying mechanisms involved in TPL and identify potential avenues for further advancement in antitumor therapy.
Collapse
Affiliation(s)
- Shiwei Bao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Yang GZ, Wang L, Gao K, Zhu X, Lou LG, Yue JM. Design and Synthesis of Cyclolipopeptide Mimics of Dysoxylactam A and Evaluation of the Reversing Potencies against P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2024. [PMID: 38502936 DOI: 10.1021/acs.jmedchem.3c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Inspired by the structure of dysoxylactam A (DLA) that has been demonstrated to reverse P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) effectively, 61 structurally simplified cyclolipopeptides were thus designed and synthesized via an effective method, and their reversing P-gp-mediated MDR potentials were evaluated, which provided a series of more potent analogues and allowed us to explore their structure-activity relationship (SAR). Among them, a well-simplified compound, 56, with only two chiral centers that all derived from amino acids dramatically reversed drug resistance in KBV200 cells at 10 μM in combination with vinorelbine (VNR), paclitaxel (PTX), and adriamycin (ADR), respectively, which is more promising than DLA. The mechanism study showed that 56 reversed the MDR of tumor cells by inhibiting the transport function of P-gp rather than reducing its expression. Notably, compound 56 effectively restored the sensitivity of MDR tumors to VNR in vivo at a dosage without obvious toxicity.
Collapse
Affiliation(s)
- Guan-Zhou Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xi Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Li-Guang Lou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, People's Republic of China
| |
Collapse
|
4
|
Dong X, Zhu LW, Zhang Z, Cao R, Liu P, Shu X, Cao X, Hu Y, Bao X, Xu L, Li C, Xu Y. LLDT-8 ameliorates experimental autoimmune encephalomyelitis by mediating macrophage functions in the priming stage. Eur J Pharmacol 2024; 962:176201. [PMID: 37984728 DOI: 10.1016/j.ejphar.2023.176201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease in the central nervous system caused by T cell activation mediated by peripheral macrophages, resulting in severe neurological deficits and disability. Due to the currently limited and expensive treatments for MS, we here introduce an economic Chinese medicine extract, (5R)-5-Hydroxytriptolide (LLDT-8), which shows low toxicity and high immunosuppressive activity. We used the widely accepted mouse model of MS, experimental autoimmune encephalomyelitis (EAE), to examine the immunosuppressive effect of LLDT-8 in vivo. Through the RNA-sequence analysis of peripheral macrophages in EAE mice, we discovered that LLDT-8 alleviates the symptoms of EAE by inhibiting the proinflammatory effect of macrophages, thereby blocking the activation and proliferation of T cells. In all, we found that LLDT-8 could be a potential treatment for MS.
Collapse
Affiliation(s)
- Xiaohong Dong
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Li-Wen Zhu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Runjing Cao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yujie Hu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Lushan Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Chenggang Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
5
|
Jianbin X, Peng D, Jing Z, Xiaofei A, Yudie F, Jing Z, Yanping Y, Xiaorong Y, Kaida M, Jinan Z. (5R)-5-hydroxytriptolide ameliorates diabetic kidney damage by inhibiting macrophage infiltration and its cross-talk with renal resident cells. Int Immunopharmacol 2024; 126:111253. [PMID: 38007850 DOI: 10.1016/j.intimp.2023.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE Diabetic nephropathy (DN) is the main cause of end-stage renal disease, and there are no targeted treatment options at present. The efficacy of the new immunosuppressive drug (5R)-5-hydroxytriptolide (LLDT8) in improving kidney inflammation has been demonstrated in multiple studies. The present study was intended to investigate the preventive and therapeutic effects of LLDT8 on DN and to reveal its potential pharmacological mechanisms. METHODS The effects of LLDT8 on liver and kidney functions, and urine microprotein of Streptozotocin (STZ) induced DN mice were detected. The protective effect of LLDT8 on the kidney tissue was observed by pathological staining and transmission electron microscopy. Cell culture experiments were performed to detect the effects of LLDT8 on the expression of chemokines and epithelial-mesenchymal transition (EMT) in high glucose-induced TCMK1 cells using real-time polymerase chain reaction (RT-PCR) and western blot (WB) techniques and to detect the influence of LLDT8 on the secretion of pro-inflammatory and pro-fibrotic factors in high glucose-induced RAW264.7 cells. RESULTS In animal experiments, treatment with high-dose LLDT8 (0.25 mg/kg/2d) reduced 24 h urinary albumin excretion, improved structural kidney damage, and delayed fibrosis progression in DN mice. Immunofluorescence results showed that LLDT8 intervention reduced macrophage infiltration in kidney tissues of DN mice. PCR and WB results of kidney tissues showed reduced expressions of chemokines CCL2 and M-CSF1 in the LLDT8 intervention group compared to the DN group. In cellular assays, LLDT8 treatment reduced chemokine secretion in high glucose-induced TCMK1 cells, but had no effect on EMT of TCMK1 cells. LLDT8 treatment reduced the secretion of pro-inflammatory and pro-fibrotic factors in high glucose-induced RAW264.7 cells. CONCLUSIONS The present study suggests that LLDT8 could effectively inhibit the secretion of pro-inflammatory and pro-fibrotic factors by macrophages, which could alleviate high glucose-induced renal tissue injury and slow down the process of tissue fibrosis and DN.
Collapse
Affiliation(s)
- Xu Jianbin
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Du Peng
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhao Jing
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - An Xiaofei
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China
| | - Fang Yudie
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhang Jing
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yang Yanping
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yang Xiaorong
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Mu Kaida
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| | - Zhang Jinan
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
6
|
Gao J, Zhang Y, Liu X, Wu X, Huang L, Gao W. Triptolide: pharmacological spectrum, biosynthesis, chemical synthesis and derivatives. Theranostics 2021; 11:7199-7221. [PMID: 34158845 PMCID: PMC8210588 DOI: 10.7150/thno.57745] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
Triptolide, an abietane-type diterpenoid isolated from Tripterygium wilfordii Hook. F., has significant pharmacological activity. Research results show that triptolide has obvious inhibitory effects on many solid tumors. Therefore, triptolide has become one of the lead compounds candidates for being the next "blockbuster" drug, and multiple triptolide derivatives have entered clinical research. An increasing number of researchers have developed triptolide synthesis methods to meet the clinical need. To provide new ideas for researchers in different disciplines and connect different disciplines with researchers aiming to solve scientific problems more efficiently, this article reviews the research progress made with analyzes of triptolide pharmacological activity, biosynthetic pathways, and chemical synthesis pathways and reported in toxicological and clinical studies of derivatives over the past 20 years, which have laid the foundation for subsequent researchers to study triptolide in many ways.
Collapse
Affiliation(s)
- Jie Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xihong Liu
- Basic Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiayi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
7
|
Zhang M, Quan H, Fu L, Li Y, Fu H, Lou L. Third-generation EGFR inhibitor HS-10296 in combination with famitinib, a multi-targeted tyrosine kinase inhibitor, exerts synergistic antitumor effects through enhanced inhibition of downstream signaling in EGFR-mutant non-small cell lung cancer cells. Thorac Cancer 2021; 12:1210-1218. [PMID: 33656275 PMCID: PMC8046080 DOI: 10.1111/1759-7714.13902] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND As a highly heterogeneous disease, lung cancer has a multitude of cellular components and patterns of gene expression which are not dependent on a single mutation or signaling pathway. Thus, using combined drugs to treat lung cancer may be a practical strategy. METHODS The combined antitumor effects of HS-10296, a third-generation EGFR inhibitor targeting EGFR T790M mutation, with the multitargeted tyrosine kinase inhibitor (TKI) famitinib in non-small cell lung cancer (NSCLC) were evaluated by in vitro methods such as cell proliferation, apoptosis, angiogenesis assays, and in vivo animal efficacy studies. RESULTS Famitinib strengthened the effects of HS-10296 on inhibiting proliferation and inducing apoptosis of NSCLC cells, possibly by synergistic inhibition of AKT and ERK phosphorylation. Meanwhile, HS-10296 significantly potentiated the effects of famitinib on inhibiting the proliferation and migration of HUVEC, which may be through synergistic inhibition of ERK phosphorylation in HUVEC, suggesting that HS-10296 may improve the inhibition of angiogenesis by famitinib. Moreover, combination of HS-10296 and famitinib exerted synergistic antitumor activity in NCI-H1975 and PC-9 xenograft models, and this effect may be accomplished by synergistic inhibition of phosphorylation of AKT and ERK and tumor angiogenesis in tumor tissues. CONCLUSIONS Collectively, our results indicate that HS-10296 and famitinib exhibit significant synergistic antitumor activity, suggesting that the third-generation EGFR inhibitor combined with VEGFR inhibitor provides a promising strategy in the treatment of EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Mi Zhang
- School of Life Sciences, Shanghai UniversityShanghaiChina
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Li Fu
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Haoyu Fu
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
8
|
Zhou X, Xie D, Huang J, Lu A, Wang R, Jin Y, Zhang R, Chang C, Xu L, Xu L, Fan J, Liang C, He D. Therapeutic Effects of (5R)-5-Hydroxytriptolide on Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via lncRNA WAKMAR2/miR-4478/E2F1/p53 Axis. Front Immunol 2021; 12:605616. [PMID: 33664742 PMCID: PMC7921149 DOI: 10.3389/fimmu.2021.605616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease. Fibroblast-like synoviocytes (FLS) serve a major role in synovial hyperplasia and inflammation in RA. (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide derivative, shows promising therapeutic effects for RA and is now in phase II clinical trials in China. However, the underlying mechanism of LLDT-8 is still not fully understood. Here, we found that LLDT-8 inhibited proliferation and invasion of RA FLS, as well as the production of cytokines. Microarray data demonstrated that LLDT-8 upregulated the expression of long non-coding RNA (lncRNA) WAKMAR2, which was negatively associated with proliferation and invasion of RA FLS, as well as the production of pro-inflammatory cytokines. Knockdown of WAKMAR2 abolished the inhibitory effects of LLDT-8 on RA FLS. Mechanistically, WAKMAR2 sponged miR-4478, which targeted E2F1 and downstreamed p53 signaling. Rescue experiments indicated that the inhibitory effects of LLDT-8 on RA FLS were dependent on WAKMAR2/miR-4478/E2F1/p53 axis.
Collapse
Affiliation(s)
- Xinpeng Zhou
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China.,Department of Rheumatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Duoli Xie
- School of Chinese Medicine, Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Aiping Lu
- School of Chinese Medicine, Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, Hong Kong Baptist University, Hong Kong, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongsheng Wang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Yehua Jin
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Runrun Zhang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Lingxia Xu
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Junyu Fan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Tong L, Zhao Q, Datan E, Lin GQ, Minn I, Pomper MG, Yu B, Romo D, He QL, Liu JO. Triptolide: reflections on two decades of research and prospects for the future. Nat Prod Rep 2021; 38:843-860. [PMID: 33146205 DOI: 10.1039/d0np00054j] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2000 to 2020 Triptolide is a bioactive diterpene triepoxide isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal plant whose extracts have been used as anti-inflammatory and immunosuppressive remedies for centuries. Although triptolide and its analogs exhibit potent bioactivities against various cancers, and inflammatory and autoimmune diseases, none of them has been approved to be used in the clinic. This review highlights advances in material sourcing, molecular mechanisms, clinical progress and new drug design strategies for triptolide over the past two decades, along with some prospects for the future course of development of triptolide.
Collapse
Affiliation(s)
- Lu Tong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Emmanuel Datan
- Department of Pharmacology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Hunterian Building, Room 516, Baltimore, MD 21205, USA.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Daniel Romo
- Department of Chemistry and Biochemistry, The CPRIT Synthesis and Drug Lead Discovery Laboratory, Baylor University, Waco, Texas 76710, USA
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jun O Liu
- Department of Pharmacology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Hunterian Building, Room 516, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Datan E, Minn I, Xu P, He QL, Ahn HH, Yu B, Pomper MG, Liu JO. A Glucose-Triptolide Conjugate Selectively Targets Cancer Cells under Hypoxia. iScience 2020; 23:101536. [PMID: 33083765 PMCID: PMC7509213 DOI: 10.1016/j.isci.2020.101536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/01/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022] Open
Abstract
A major hurdle in the treatment of cancer is chemoresistance induced under hypoxia that is characteristic of tumor microenvironment. Triptolide, a potent inhibitor of eukaryotic transcription, possesses potent antitumor activity. However, its clinical potential has been limited by toxicity and water solubility. To address those limitations of triptolide, we designed and synthesized glucose-triptolide conjugates (glutriptolides) and demonstrated their antitumor activity in vitro and in vivo. Herein, we identified a lead, glutriptolide-2 with an altered linker structure. Glutriptolide-2 possessed improved stability in human serum, greater selectivity toward cancer over normal cells, and increased potency against cancer cells. Glutriptolide-2 exhibits sustained antitumor activity, prolonging survival in a prostate cancer metastasis animal model. Importantly, we found that glutriptolide-2 was more potent against cancer cells under hypoxia than normoxia. Together, this work provides an attractive glutriptolide drug lead and suggests a viable strategy to overcome chemoresistance through conjugation of cytotoxic agents to glucose. A second-generation glucose-triptolide conjugate (glutriptolide-2) was developed Glutriptolide-2 exhibits selective toxicity to cancer cells over normal cells Glutriptolide-2 possesses sustained antitumor activity in vivo Glutriptolide-2 shows greater potency against cancer cells under hypoxia
Collapse
Affiliation(s)
- Emmanuel Datan
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peng Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Li He
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hye-Hyun Ahn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Wang L, Wang Q, Xu P, Fu L, Li Y, Fu H, Quan H, Lou L. YES1 amplification confers trastuzumab-emtansine (T-DM1) resistance in HER2-positive cancer. Br J Cancer 2020; 123:1000-1011. [PMID: 32572172 PMCID: PMC7494777 DOI: 10.1038/s41416-020-0952-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Trastuzumab-emtansine (T-DM1), one of the most potent HER2-targeted drugs, shows impressive efficacy in patients with HER2-positive breast cancers. However, resistance inevitably occurs and becomes a critical clinical problem. METHODS We modelled the development of acquired resistance by exposing HER2-positive cells to escalating concentrations of T-DM1. Signalling pathways activation was detected by western blotting, gene expression was analysed by qRT-PCR and gene copy numbers were determined by qPCR. The role of Yes on resistance was confirmed by siRNA-mediated knockdown and stable transfection-mediated overexpression. The in vivo effects were tested in xenograft model. RESULTS We found that Yes is overexpressed in T-DM1-resistant cells owing to amplification of chromosome region 18p11.32, where the YES1 gene resides. Yes activated multiple proliferation-related signalling pathways, including EGFR, PI3K and MAPK, and led to cross-resistance to all types of HER2-targeted drugs, including antibody-drug conjugate, antibody and small molecule inhibitor. The outcome of this cross-resistance may be a clinically incurable condition. Importantly, we found that inhibiting Yes with dasatinib sensitised resistant cells in vitro and in vivo. CONCLUSIONS Our study revealed that YES1 amplification conferred resistance to HER2-targeted drugs and suggested the potential application of the strategy of combining HER2 and Yes inhibition in the clinic.
Collapse
Affiliation(s)
- Lei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Quanren Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Piaopiao Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Li Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Haoyu Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| |
Collapse
|
12
|
Zhang H, Lu G. Synthesis of celastrol derivatives as potential non-nucleoside hepatitis B virus inhibitors. Chem Biol Drug Des 2020; 96:1380-1386. [PMID: 32573976 DOI: 10.1111/cbdd.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
A series of para-quinone methide (pQM) moiety and C-20- modified derivatives of celastrol were synthesized and evaluated for their inhibitory effect on the secretion of HBsAg and HBeAg as well as the inhibitory effect against HBV DNA replication. The results suggested that amidation of C-20 carboxylic group could generate derivatives with good anti-HBV profile, among them compound 14 showed the best inhibitory activity on the secretion of HBsAg (IC50 = 11.9 µμ) and HBeAg (IC50 = 13.1 µμ) with SI of 3.3 and 3.0, respectively. In addition, 14 also showed potent inhibitory effect against HBV DNA replication (48.5 ± 15.1%, 25 µM). This is, to our knowledge, the first report of celastrol derivatives as potential non-nucleoside HBV inhibitors.
Collapse
Affiliation(s)
- He Zhang
- Beijing BeiqinBiotech Co. Ltd., Xinggu Economic Development Zone, Beijing, China
| | - Gongxi Lu
- Beijing BeiqinBiotech Co. Ltd., Xinggu Economic Development Zone, Beijing, China
| |
Collapse
|
13
|
Tu L, Su P, Zhang Z, Gao L, Wang J, Hu T, Zhou J, Zhang Y, Zhao Y, Liu Y, Song Y, Tong Y, Lu Y, Yang J, Xu C, Jia M, Peters RJ, Huang L, Gao W. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat Commun 2020; 11:971. [PMID: 32080175 PMCID: PMC7033203 DOI: 10.1038/s41467-020-14776-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 02/01/2020] [Indexed: 11/23/2022] Open
Abstract
Triptolide is a trace natural product of Tripterygium wilfordii. It has antitumor activities, particularly against pancreatic cancer cells. Identification of genes and elucidation of the biosynthetic pathway leading to triptolide are the prerequisite for heterologous bioproduction. Here, we report a reference-grade genome of T. wilfordii with a contig N50 of 4.36 Mb. We show that copy numbers of triptolide biosynthetic pathway genes are impacted by a recent whole-genome triplication event. We further integrate genomic, transcriptomic, and metabolomic data to map a gene-to-metabolite network. This leads to the identification of a cytochrome P450 (CYP728B70) that can catalyze oxidation of a methyl to the acid moiety of dehydroabietic acid in triptolide biosynthesis. We think the genomic resource and the candidate genes reported here set the foundation to fully reveal triptolide biosynthetic pathway and consequently the heterologous bioproduction. Tripterygium wilfordii is a medical plant that can produce antitumor activity compound triptolide. Here, the authors assemble its genome and identify a cytochrome P450 that can catalyze oxidation of a methyl to the acid moiety of dehydroabietic acid in triptolide biosynthesis by integrating multi-omics data.
Collapse
Affiliation(s)
- Lichan Tu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Ping Su
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
| | | | - Linhui Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiadian Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yadi Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuru Tong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cao Xu
- University of Chinese Academy of Sciences, Beijing, China
| | - Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China. .,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
15
|
Dong Y, Lu H, Li Q, Qi X, Li Y, Zhang Z, Chen J, Ren J. (5R)-5-hydroxytriptolide ameliorates liver lipid accumulation by suppressing lipid synthesis and promoting lipid oxidation in mice. Life Sci 2019; 232:116644. [DOI: 10.1016/j.lfs.2019.116644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
|
16
|
Hou W, Liu B, Xu H. Triptolide: Medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem 2019; 176:378-392. [DOI: 10.1016/j.ejmech.2019.05.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
|
17
|
Su P, Gao L, Tong Y, Guan H, Liu S, Zhang Y, Zhao Y, Wang J, Hu T, Tu L, Zhou J, Ma B, Huang L, Gao W. Analysis of the role of geranylgeranyl diphosphate synthase 8 from Tripterygium wilfordii in diterpenoids biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:184-192. [PMID: 31203883 DOI: 10.1016/j.plantsci.2019.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Tripterygium wilfordii is known to contain various types of bioactive diterpenoids that exhibit many remarkable activities. Many studies have recently been targeted toward the elucidation of the diterpenoids biosynthetic pathways in attempts to obtain these compounds with a view to solving the dilemma of low yield in plants. However, the short-chain prenyltransferases (SC-PTSs) responsible for the formation of geranylgeranyl diphosphate (GGPP), a crucial precursor for synthesizing the skeleton structures of diterpenoids, have not been characterized in depth. Here, T. wilfordii transcriptome data were used to identify eight putative GGPPSs, including two small subunits of geranyl diphosphate synthase (GPPS.SSU). Of them, GGPPS1, GGPPS7, GGPPS8, GPPS.SSU II and GPPS.SSU were translocated mainly into chloroplasts, and GGPPS8 exhibited the optimal catalytic efficiency with respect to catalyzing the formation of GGPP. In addition, the expression pattern of GGPPS8 was similar to that of downstream terpene synthase genes that are directly correlated with triptolide production in roots, indicating that GGPPS8 was most likely to participate in triptolide biosynthesis in roots among the studied enzymes. GPPS.SSU was inactive alone but interacted with GGPPS1, GGPPS7 and GGPPS8 to change the product from GGPP to GPP. These findings implicate that these candidate genes can be regulated to shift the metabolic flux toward diterpenoid formation, increasing the yields of bioactive diterpenoids in plants.
Collapse
Affiliation(s)
- Ping Su
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Linhui Gao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yuru Tong
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongyu Guan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Shuang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiadian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Lichan Tu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Baowei Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
18
|
He G, Ma R. Overview of Molecular Mechanisms Involved in Herbal Compounds for Inhibiting Osteoclastogenesis from Macrophage Linage RAW264.7. Curr Stem Cell Res Ther 2019; 15:570-578. [PMID: 31269885 DOI: 10.2174/1574888x14666190703144917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Differentiation from RAW264.7 cells to osteoclasts rely on many signaling pathways, such as NF-κB, MAPK, Akt and others. However, the specific underlying mechanisms are not clear. Recently, much works have focused on the inhibitory effects of plant derived compounds in the differentiation from RAW264.7 to osteoclasts. However, the specific mechanisms remain unclear. In this paper, we summarize a lot of plant derived compounds which exert blocking effect on the progression of differentiation via signaling pathways.
Collapse
Affiliation(s)
- Gaole He
- Department of Spine, Honghui-Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Rui Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
19
|
Wang L, Yang C, Xie C, Jiang J, Gao M, Fu L, Li Y, Bao X, Fu H, Lou L. Pharmacologic characterization of fluzoparib, a novel poly(ADP-ribose) polymerase inhibitor undergoing clinical trials. Cancer Sci 2019; 110:1064-1075. [PMID: 30663191 PMCID: PMC6398880 DOI: 10.1111/cas.13947] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) enzymes play an important role in repairing DNA damage and maintaining genomic stability. Olaparib, the first-in-class PARP inhibitor, has shown remarkable clinical benefits in the treatment of BRCA-mutated ovarian or breast cancer. However, the undesirable hematological toxicity and pharmacokinetic properties of olaparib limit its clinical application. Here, we report the first preclinical characterization of fluzoparib (code name: SHR-3162), a novel, potent, and orally available inhibitor of PARP. Fluzoparib potently inhibited PARP1 enzyme activity and induced DNA double-strand breaks, G2 /M arrest, and apoptosis in homologous recombination repair (HR)-deficient cells. Fluzoparib preferentially inhibited the proliferation of HR-deficient cells and sensitized both HR-deficient and HR-proficient cells to cytotoxic drugs. Notably, fluzoparib showed good pharmacokinetic properties, favorable toxicity profile, and superior antitumor activity in HR-deficient xenografts models. Furthermore, fluzoparib in combination with apatinib or with apatinib plus paclitaxel elicited significantly improved antitumor responses without extra toxicity. Based on these findings, studies to evaluate the efficacy and safety of fluzoparib (phase II) and those two combinations (phase I) have been initiated. Taken together, our results implicate fluzoparib as a novel attractive PARP inhibitor.
Collapse
Affiliation(s)
- Lei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Changyong Yang
- Jiangsu Hengrui Medicine Co Ltd, Lianyungang, China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China.,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiahua Jiang
- Jiangsu Hengrui Medicine Co Ltd, Lianyungang, China
| | - Mingzhao Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xubin Bao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haoyu Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Wang L, Wang Q, Gao M, Fu L, Li Y, Quan H, Lou L. STAT3 activation confers trastuzumab-emtansine (T-DM1) resistance in HER2-positive breast cancer. Cancer Sci 2018; 109:3305-3315. [PMID: 30076657 PMCID: PMC6172075 DOI: 10.1111/cas.13761] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023] Open
Abstract
Trastuzumab‐emtansine (T‐DM1) is an antibody‐drug conjugate that has been approved for the treatment of human epidermal growth factor receptor 2 (HER2)‐positive metastatic breast cancer. Despite the remarkable efficacy of T‐DM1 in many patients, resistance to this therapeutic has emerged as a significant clinical problem. In the current study, we used BT‐474/KR cells, a T‐DM1‐resistant cell line established from HER2‐positive BT‐474 breast cancer cells, as a model to investigate mechanisms of T‐DM1 resistance and explore effective therapeutic regimens. We show here for the first time that activation of signal transducer and activator of transcription 3 (STAT3) mediated by leukemia inhibitory factor receptor (LIFR) overexpression confers resistance to T‐DM1. Moreover, secreted factors induced by activated STAT3 in resistant cells limit the responsiveness of cells that were originally sensitive to T‐DM1. Importantly, STAT3 inhibition sensitizes resistant cells to T‐DM1, both in vitro and in vivo, suggesting that the combination T‐DM1 with STAT3‐targeted therapy is a potential treatment for T‐DM1‐refractory patients.
Collapse
Affiliation(s)
- Lei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Quanren Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingzhao Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Chen SR, Dai Y, Zhao J, Lin L, Wang Y, Wang Y. A Mechanistic Overview of Triptolide and Celastrol, Natural Products from Tripterygium wilfordii Hook F. Front Pharmacol 2018; 9:104. [PMID: 29491837 PMCID: PMC5817256 DOI: 10.3389/fphar.2018.00104] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022] Open
Abstract
Triptolide and celastrol are predominantly active natural products isolated from the medicinal plant Tripterygium wilfordii Hook F. These compounds exhibit similar pharmacological activities, including anti-cancer, anti-inflammation, anti-obesity, and anti-diabetic activities. Triptolide and celastrol also provide neuroprotection and prevent cardiovascular and metabolic diseases. However, toxicity restricts the further development of triptolide and celastrol. In this review, we comprehensively review therapeutic targets and mechanisms of action, and translational study of triptolide and celastrol. We systemically discuss the structure-activity-relationship of triptolide, celastrol, and their derivatives. Furthermore, we propose the use of structural derivatives, targeted therapy, and combination treatment as possible solutions to reduce toxicity and increase therapeutic window of these potent natural products from T. wilfordii Hook F.
Collapse
Affiliation(s)
- Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yan Dai
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
22
|
Fan D, Guo Q, Shen J, Zheng K, Lu C, Zhang G, Lu A, He X. The Effect of Triptolide in Rheumatoid Arthritis: From Basic Research towards Clinical Translation. Int J Mol Sci 2018; 19:ijms19020376. [PMID: 29373547 PMCID: PMC5855598 DOI: 10.3390/ijms19020376] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Triptolide (TP), a major extract of the herb Tripterygium wilfordii Hook F (TWHF), has been shown to exert potent pharmacological effects, especially an immunosuppressive effect in the treatment of rheumatoid arthritis (RA). However, its multiorgan toxicity prevents it from being widely used in clinical practice. Recently, several attempts are being performed to reduce TP toxicity. In this review, recent progress in the use of TP for RA, including its pharmacological effects and toxicity, is summarized. Meanwhile, strategies relying on chemical structural modifications, innovative delivery systems, and drug combinations to alleviate the disadvantages of TP are also reviewed. Furthermore, we also discuss the challenges and perspectives in their clinical translation.
Collapse
Affiliation(s)
- Danping Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qingqing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Jiawen Shen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Kang Zheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
23
|
Yu C, Li Y, Liu M, Gao M, Li C, Yan H, Li C, Sun L, Mo L, Wu C, Qi X, Ren J. Critical Role of Hepatic Cyp450s in the Testis-Specific Toxicity of (5R)-5-Hydroxytriptolide in C57BL/6 Mice. Front Pharmacol 2017; 8:832. [PMID: 29209210 PMCID: PMC5702336 DOI: 10.3389/fphar.2017.00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Low solubility, tissue accumulation, and toxicity are chief obstacles to developing triptolide derivatives, so a better understanding of the pharmacokinetics and toxicity of triptolide derivatives will help with these limitations. To address this, we studied pharmacokinetics and toxicity of (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide derivative immunosuppressant in a conditional knockout (KO) mouse model with liver-specific deletion of CYP450 reductase. Compared to wild type (WT) mice, after LLDT-8 treatment, KO mice suffered severe testicular toxicity (decreased testicular weight, spermatocytes apoptosis) unlike WT mice. Moreover, KO mice had greater LLDT-8 exposure as confirmed with elevated AUC and Cmax, increased drug half-life, and greater tissue distribution. γ-H2AX, a marker of meiosis process, its localization and protein level in testis showed a distinct meiosis block induced by LLDT-8. RNA polymerase II (Pol II), an essential factor for RNA storage and synapsis in spermatogenesis, decreased in testes of KO mice after LLDT-8 treatment. Germ-cell line based assays confirmed that LLDT-8 selectively inhibited Pol II in spermatocyte-like cells. Importantly, the analysis of androgen receptor (AR) related genes showed that LLDT-8 did not change AR-related signaling in testes. Thus, hepatic CYP450s were responsible for in vivo metabolism and clearance of LLDT-8 and aggravated testicular injury may be due to increased LLDT-8 exposure in testis and subsequent Pol II reduction.
Collapse
Affiliation(s)
- Cunzhi Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingxia Liu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Man Gao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hong Yan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunzhu Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lihan Sun
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Liying Mo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Xu H, Fan X, Zhang G, Liu X, Li Z, Li Y, Jiang B. LLDT-288, a novel triptolide analogue exhibits potent antitumor activity in vitro and in vivo. Biomed Pharmacother 2017; 93:1004-1009. [DOI: 10.1016/j.biopha.2017.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023] Open
|
25
|
LLDT-8 protects against cerebral ischemia/reperfusion injury by suppressing post-stroke inflammation. J Pharmacol Sci 2016; 131:131-7. [DOI: 10.1016/j.jphs.2016.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 01/17/2023] Open
|
26
|
Novel piperazine core compound induces death in human liver cancer cells: possible pharmacological properties. Sci Rep 2016; 6:24172. [PMID: 27072064 PMCID: PMC4829832 DOI: 10.1038/srep24172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/23/2016] [Indexed: 11/22/2022] Open
Abstract
The current study evaluates the cytotoxic mechanism of a novel piperazine derivate designated as PCC against human liver cancer cells. In this context, human liver cancer cell lines, SNU-475 and 243, human monocyte/macrophage cell line, CRL-9855, and human B lymphocyte cell line, CCL-156, were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on SNU-475 and SNU-423 cells with an IC50 value of 6.98 ± 0.11 μg/ml and 7.76 ± 0.45 μg/ml respectively, after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-ƙB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. This study suggests that PCC is a simultaneous inducer of intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines.
Collapse
|
27
|
Samie N, Muniandy S, Kanthimathi MS, Haerian BS. Mechanism of action of novel piperazine containing a toxicant against human liver cancer cells. PeerJ 2016; 4:e1588. [PMID: 27019772 PMCID: PMC4806608 DOI: 10.7717/peerj.1588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/21/2015] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to assess the cytotoxic potential of a novel piperazine derivative (PCC) against human liver cancer cells. SNU-475 and 423 human liver cancer cell lines were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on liver cancer cells with an IC50 value of 6.98 ± 0.11 µM and 7.76 ± 0.45 µM against SNU-475 and SNU-423 respectively after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of this study suggest that PCC is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines.
Collapse
Affiliation(s)
- Nima Samie
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - MS Kanthimathi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Batoul Sadat Haerian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Qi X, Li C, Wu C, Yu C, Liu M, Gao M, Li C, Yan H, Ren J. Dephosphorylation of Tak1 at Ser412 greatly contributes to the spermatocyte-specific testis toxicity induced by (5R)-5-hydroxytriptolide in C57BL/6 mice. Toxicol Res (Camb) 2016; 5:594-601. [PMID: 30090373 PMCID: PMC6062262 DOI: 10.1039/c5tx00409h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/30/2015] [Indexed: 11/21/2022] Open
Abstract
(5R)-5-Hydroxytriptolide (LLDT-8), a novel triptolide derivative, will proceed to phase II clinical trials for the treatment of rheumatoid arthritis and cancer. However, the selection of disease and patients is largely limited by the testis toxicity, yet toxicity mechanisms are still poorly understood. In this study, LLDT-8 dose and time-dependently decreased the testes weight, germinal cell layers and induced abnormal spermatid development. Analysis of the germ cell-specific marker showed that spermatocytes were more sensitive to LLDT-8, which was confirmed by the in vitro sensitivity assay with spermatocyte-like GC-2spd and sertoli-like TM4 cells. In GC-2spd, LLDT-8 induced G1/S arrest and apoptosis. MAPK activity screening identified that TGF-β activated kinase 1 (Tak1) is critical in LLDT-8 induced apoptosis. LLDT-8 reduced the Tak1 protein and dephosphorylated Tak1 at Ser412 in GC-2spd and the testes, but not in TM4. RNAi mediated depletion or pharmacologic inhibition of Tak1 induced apoptosis in GC-2spd. Meanwhile, activating Tak1 rescued up to 50% of the GC-2spd cells from the apoptosis induced by LLDT-8. Altogether, our study firstly revealed the important role of Tak1 in the survival of spermatocytes, and dephosphorylation of Tak1 at Ser412 may contribute to the spermatocyte-specific testis toxicity induced by LLDT-8.
Collapse
Affiliation(s)
- Xinming Qi
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Chunzhu Li
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Chunyong Wu
- Department of Pharmaceutical Analysis , School of Pharmacy , China Pharmaceutical University , China
| | - Cunzhi Yu
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Mingxia Liu
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Man Gao
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Hong Yan
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Jin Ren
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| |
Collapse
|
29
|
Samie N, Haerian BS, Muniandy S, Marlina A, Kanthimathi MS, Abdullah NB, Ahmadian G, Aziddin RER. Mechanism of Action of the Novel Nickel(II) Complex in Simultaneous Reactivation of the Apoptotic Signaling Networks Against Human Colon Cancer Cells. Front Pharmacol 2016; 6:313. [PMID: 26858642 PMCID: PMC4729910 DOI: 10.3389/fphar.2015.00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the cytotoxic potential of a novel nickel(II) complex (NTC) against WiDr and HT-29 human colon cancer cells by determining the IC50 using the standard MTT assay. The NTC displayed a strong suppressive effect on colon cancer cells with an IC50 value of 6.07 ± 0.22 μM and 6.26 ± 0.13 μM against WiDr and HT-29 respectively, after 24 h of treatment. Substantial reduction in the mitochondrial membrane potential and increase in the release of cytochrome c from the mitochondria directed the induction of the intrinsic apoptosis pathway by the NTC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. The NTC was also shown to activate the extrinsic pathway of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of the current work indicates that NTC possess a potent cancer cell abolishing activity by simultaneous induction of intrinsic and extrinsic pathways of apoptosis in colon cancer cell lines.
Collapse
Affiliation(s)
- Nima Samie
- Department of Pharmacology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
- Drug and Research Unit, Department of Pathology, Hospital Kuala LumpurKuala Lumpur, Malaysia
| | - Batoul Sadat Haerian
- Department of Pharmacology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Anita Marlina
- Department of Chemistry, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - M. S. Kanthimathi
- Department of Molecular Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
- Faculty of Medicine, University of Malaya Centre for Proteomics Research, University of MalayaKuala Lumpur, Malaysia
| | - Norbani B. Abdullah
- Department of Chemistry, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Gholamreza Ahmadian
- Department of Environmental and Industrial Biotechnology, National Institute of Genetic Engineering and BiotechnologyTehran, Iran
| | - Raja E. R. Aziddin
- Drug and Research Unit, Department of Pathology, Hospital Kuala LumpurKuala Lumpur, Malaysia
| |
Collapse
|
30
|
Hajrezaie M, Paydar M, Looi CY, Moghadamtousi SZ, Hassandarvish P, Salga MS, Karimian H, Shams K, Zahedifard M, Majid NA, Ali HM, Abdulla MA. Apoptotic effect of novel Schiff based CdCl₂(C₁₄H₂₁N₃O₂) complex is mediated via activation of the mitochondrial pathway in colon cancer cells. Sci Rep 2015; 5:9097. [PMID: 25764970 PMCID: PMC4649862 DOI: 10.1038/srep09097] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/21/2015] [Indexed: 01/06/2023] Open
Abstract
The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies.
Collapse
Affiliation(s)
- Maryam Hajrezaie
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammadjavad Paydar
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pouya Hassandarvish
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Hamed Karimian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keivan Shams
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Maryam Zahedifard
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Li C, Xing G, Maeda K, Wu C, Gong L, Sugiyama Y, Qi X, Ren J, Wang G. The role of breast cancer resistance protein (Bcrp/Abcg2) in triptolide-induced testis toxicity. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00058k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Triptolide possesses unique immunosuppressive and anti-tumor activities. However, its clinical use is limited by the cumulative toxicity in the testis and the mechanisms are poorly understood.
Collapse
Affiliation(s)
- Chunzhu Li
- State Key Laboratory of Natural Medicines
- Key Lab of Drug Metabolism and Pharmacokinetics
- China Pharmaceutical University
- China
| | - Guozhen Xing
- Center for Drug Safety Evaluation and Research
- State Key Laboratory of New Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Kazuya Maeda
- Graduate School of Pharmaceutical Sciences
- the University of Tokyo
- Tokyo
- Japan
| | - Chunyong Wu
- Department of Pharmaceutical Analysis
- School of Pharmacy
- China Pharmaceutical University
- China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research
- State Key Laboratory of New Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Yuichi Sugiyama
- Graduate School of Pharmaceutical Sciences
- the University of Tokyo
- Tokyo
- Japan
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research
- State Key Laboratory of New Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research
- State Key Laboratory of New Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines
- Key Lab of Drug Metabolism and Pharmacokinetics
- China Pharmaceutical University
- China
| |
Collapse
|
32
|
Wang L, Song Y. [Advances on effects of triptolide with non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 16:378-81. [PMID: 23866670 PMCID: PMC6000656 DOI: 10.3779/j.issn.1009-3419.2013.07.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
雷公藤内酯醇对多种非小细胞肺癌(non-small cell lung cancer, NSCLC)细胞系具有杀伤作用,可通过干预细胞周期、激活caspase信号通路、抑制血管内皮生长因子(vascular endothelial growth factor, VEGF)的表达、抑制NF-κB活性等多种途径来促进肺癌细胞死亡。现将雷公藤内酯醇的抑瘤功能及其具体作用机制加以综述,为其在NSCLC中的科学研究及临床应用提供思路。
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory Medicine, Nanjing General Hospital of Nanjing Command, Clinical School of the Medical College of Nanjing University, Nanjing 210002, China
| | | |
Collapse
|
33
|
Hajrezaie M, Paydar M, Zorofchian Moghadamtousi S, Hassandarvish P, Gwaram NS, Zahedifard M, Rouhollahi E, Karimian H, Looi CY, Ali HM, Abdul Majid N, Abdulla MA. A Schiff base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway. ScientificWorldJournal 2014; 2014:540463. [PMID: 24737979 PMCID: PMC3967396 DOI: 10.1155/2014/540463] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/16/2014] [Indexed: 11/17/2022] Open
Abstract
Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87 μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25 μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.
Collapse
Affiliation(s)
- Maryam Hajrezaie
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Faculty of Science, Institute of Biological Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammadjavad Paydar
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pouya Hassandarvish
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nura Suleiman Gwaram
- Department of Chemistry, University of Malaya, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Maryam Zahedifard
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Faculty of Science, Institute of Biological Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Elham Rouhollahi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, University of Malaya, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Wang Q, Quan H, Zhao J, Xie C, Wang L, Lou L. RON confers lapatinib resistance in HER2-positive breast cancer cells. Cancer Lett 2013; 340:43-50. [DOI: 10.1016/j.canlet.2013.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/04/2013] [Accepted: 06/20/2013] [Indexed: 12/26/2022]
|