1
|
Zhang X, Li L, Wang B, Cai Z, Zhang B, Chen F, Xing G, Li K, Qu S. Donor-Acceptor Type Supra-Carbon-Dots with Long Lifetime Photogenerated Radicals Boosting Tumor Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202410522. [PMID: 39171506 DOI: 10.1002/anie.202410522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Carbon dots (CDs) have gained significant interest because of their potential in biomedical applications. Nevertheless, developing CDs with efficient photoinduced charge separation for tumor photodynamic therapy (PDT) remains a challenge. This study presents a novel class of supra-carbon-dots (supra-CDs) developed by fusing red emissive CDs with 2,3-dicyanohydroquinone (DCHQ) via post-solvothermal treatment. In supra-CDs, the core, acting as electron donors, is formed by assembled CDs with substantial sp2 domains, the fused interface originating from DCHQ with electron-withdrawing groups functions as the electron acceptor. This configuration creates the unique donor-acceptor nanostructure. Upon white light irradiation, the excited electrons from the assembled CDs were transferred to the electron-withdrawing interface, whereas the photogenerated holes were retained within the assembled CDs as radicals, leading to effective photoinduced charge separation. The separated photogenerated electrons then react with oxygen to generate superoxide radicals. Simultaneously, the photogenerated holes undergo oxidation of crucial cellular substrates. This dual action underscores the exceptional cell-killing efficacy of supra-CDs. Moreover, the increased particle sizes (~20 nm) ensure supra-CDs to exhibit a notable capacity for tumor accumulation via the improved permeability and retention effect, thereby achieving satisfactory anti-tumor PDT efficacy in a mouse subcutaneous tumor model.
Collapse
Affiliation(s)
- Xianming Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Lingyun Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Zhipeng Cai
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bohan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau, 999078, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau, 999078, China
- MOE Frontier Science Centre for Precision Oncology Cancer Center, University of Macau, Taipa, Macau, 999078, China
| |
Collapse
|
2
|
Lin S, Yu X, Zhang Z, Zhang Y, Chen J, Li C, Meng Q. A giant macrocycle overcomes the post-treatment phototoxicity of photofrin through host-guest complexation. Chem Commun (Camb) 2024; 60:13686-13689. [PMID: 39485031 DOI: 10.1039/d4cc04777j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Here we reported a supramolecular sequestration strategy to overcome the post-treatment phototoxicity of photofrin via direct host-guest complexation. Efficient recognition potency of a giant pentaphen[3]arene derivative could favor suppressing sunlight-induced skin damage through weakening the ability of complexed photofrin to generate singlet oxygen.
Collapse
Affiliation(s)
- Shujie Lin
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | - Xiang Yu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Ziliang Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | - Yahan Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | - Junyi Chen
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Qingbin Meng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| |
Collapse
|
3
|
Tang X, Li Y, Zhu T, Lv L, Liu J. Low-dose X-ray stimulated NO-releasing nanocomposites for closed-loop dual-mode cancer therapy. Biomater Sci 2024; 12:4211-4225. [PMID: 38980700 DOI: 10.1039/d4bm00593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
X-ray-excited photodynamic therapy (X-PDT) employs X-rays as an energy source, overcoming the light penetration limitations of traditional photodynamic therapy (PDT) but is constrained by high-energy radiation and the hypoxic tumor microenvironment. Low-dose X-ray-excited photodynamic therapy and reduction of mitochondrial oxygen consumption can serve as significant breakthroughs in overcoming these barriers. In this study, NaLuF4:Tb/Gd (15%/5%)@NaYF4 (ScNP) nanoparticles adsorbing the photosensitizer MC540 and loaded with α-(nitrate ester) acid (NEAA) were prepared as low X-ray dose triggered nano-scintillators. The final product obtained was NaLuF4:Tb/Gd (15%/5%)@NaYF4@mSiO2@MC540@NEAA (ScNP-MS@MC540@NEAA) nanocomposites, which exhibited intense green luminescence. X-PDT generates cytotoxic reactive oxygen species (ROS) with minimal ionizing radiation damage. Simultaneously, NEAA reacts with glutathione (GSH) to generate nitric oxide (NO) for gaseous treatment of the damaged mitochondrial respiratory chain to reduce oxygen consumption and alleviate hypoxia, enhancing the X-PDT efficacy and realizing a closed-loop treatment. The superoxide ions (˙O2-) can rapidly react with NO produced to form the highly cytotoxic reactive nitrogen species (RNS) peroxynitrite anion (ONOO-), which exhibits higher cytotoxicity compared to ROS. Furthermore, GSH scavenges toxic ROS and maintains the physiological function of tumor cells. It can induce cancer cell overoxidation and nitrosative stress. This work describes a low-dose X-ray-triggered X-PDT system with total radiation of 50 mGy, which involves GSH consumption, self-supplied NO, mitochondrial damage alleviation, and hypoxia relief to generate ROS and RNS, forming a closed-loop anti-hypoxia dual-mode system with synergistically enhanced anti-tumor effects, without significant biological side effects. It provides a promising platform for deep-seated tumor X-PDT with considerable application prospects.
Collapse
Affiliation(s)
- Xiaoli Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Tao Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Longhao Lv
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
4
|
Namulinda T, Song ZB, Yan YJ, Zhang M, Meerovich GA, Margetic D, Chen ZL. Enhanced biosafety, anticancer and antibacterial photodynamic activities using silver-pyropheophorbide-a nanoconjugates. Nanomedicine (Lond) 2024; 19:1643-1658. [PMID: 39011648 PMCID: PMC11389735 DOI: 10.1080/17435889.2024.2370226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: A study of the enhancement of photodynamic activities of pyropheophorbide-a using PG-Ag-PPa nanoconjugates.Materials & methods: The nanoconjugates were formulated from silver nanoparticles and PPa via amide linkage, then characterized, and their photodynamic activities were examined.Results: The nanoconjugates displayed a higher rate of reactive oxygen species generation, commendable cellular uptake by Eca-109 cancer cells, higher photocytotoxicity toward the cancer cells and better bio-safety. They revealed strong antibacterial activity against Escherichia coli following internal reactive oxygen species generation and membrane disintegration. The in vivo anticancer studies confirmed higher cytotoxicity of the nanoconjugates toward cancer cells and better safety than PPa.Conclusion: Therefore, PG-Ag-PPa nanoconjugates could be considered potential nano photosensitizers for photodynamic therapy of tumors and bacterial infection with good bio-safety.
Collapse
Affiliation(s)
- Tabbisa Namulinda
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Zhi-Bing Song
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China
- Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai 201620, China
| | - Min Zhang
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Gennady A Meerovich
- General Physics Institute of Russian Academy of Sciences, Moscow 119435, Russia
| | | | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
Filošević Vujnović A, Čabrijan S, Mušković M, Malatesti N, Andretić Waldowski R. Systemic Effects of Photoactivated 5,10,15,20-tetrakis( N-methylpyridinium-3-yl) Porphyrin on Healthy Drosophila melanogaster. BIOTECH 2024; 13:23. [PMID: 39051338 PMCID: PMC11270250 DOI: 10.3390/biotech13030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Porphyrins are frequently employed in photodynamic therapy (PDT), a non-invasive technique primarily utilized to treat subcutaneous cancers, as photosensitizing agents (PAs). The development of a new PA with improved tissue selectivity and efficacy is crucial for expanding the application of PDT for the management of diverse cancers. We investigated the systemic effects of 5,10,15,20-tetrakis(N-methylpyridinium-3-yl)-porphyrin (TMPyP3) using Drosophila melanogaster adult males. We established the oral administration schedule and demonstrated that TMPyP3 was absorbed and stored higher in neuronal than in non-neuronal extracts. Twenty-four hours after oral TMPyP3 photoactivation, the quantity of hydrogen peroxide (H2O2) increased, but exclusively in the head extracts. Regardless of photoactivation, TMPyP3 resulted in a reduced concentration of H2O2 after 7 days, and this was linked with a decreased capacity to climb, as indicated by negative geotaxis. The findings imply that systemic TMPyP3 therapy may disrupt redox regulation, impairing cellular signaling and behavioral outcomes in the process. To determine the disruptive effect of porphyrins on redox homeostasis, its duration, and the mechanistic variations in retention across various tissues, more research is required.
Collapse
Affiliation(s)
- Ana Filošević Vujnović
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (S.Č.); (M.M.); (N.M.); (R.A.W.)
| | | | | | | | | |
Collapse
|
6
|
Zhou X, Ying X, Wu L, Liu L, Wang Y, He Y, Han M. Research Progress of Natural Product Photosensitizers in Photodynamic Therapy. PLANTA MEDICA 2024; 90:368-379. [PMID: 38423033 DOI: 10.1055/a-2257-9194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Photodynamic therapy is a noninvasive cancer treatment that utilizes photosensitizers to generate reactive oxygen species upon light exposure, leading to tumor cell apoptosis. Although photosensitizers have shown efficacy in clinical practice, they are associated with certain disadvantages, such as a certain degree of toxicity and limited availability. Recent studies have shown that natural product photosensitizers offer promising options due to their low toxicity and potential therapeutic effects. In this review, we provide a summary and evaluation of the current clinical photosensitizers that are commonly used and delve into the anticancer potential of natural product photosensitizers like psoralens, quinonoids, chlorophyll derivatives, curcumin, chrysophanol, doxorubicin, tetracyclines, Leguminosae extracts, and Lonicera japonica extract. The emphasis is on their phototoxicity, pharmacological benefits, and effectiveness against different types of diseases. Novel and more effective natural product photosensitizers for future clinical application are yet to be explored in further research. In conclusion, natural product photosensitizers have potential in photodynamic therapy and represent a promising area of research for cancer treatment.
Collapse
Affiliation(s)
- Xiaoxia Zhou
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Xufang Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liqin Liu
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Ying Wang
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Ying He
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Zou J, Yuan Z, Chen X, Chen Y, Yao M, Chen Y, Li X, Chen Y, Ding W, Xia C, Zhao Y, Gao F. Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications. Asian J Pharm Sci 2024; 19:100858. [PMID: 38362469 PMCID: PMC10867614 DOI: 10.1016/j.ajps.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 02/17/2024] Open
Abstract
Hydrogen sulfide (H2S) is a toxic, essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter. These studies have mainly focused on the production and pharmacological side effects caused by H2S. Therefore, effective strategies to remove H2S has become a key research topic. Furthermore, the development of novel nanoplatforms has provided new tools for the targeted removal of H2S. This paper was performed to review the association between H2S and disease, related H2S inhibitory drugs, as well as H2S responsive nanoplatforms (HRNs). This review first analyzed the role of H2S in multiple tissues and conditions. Second, common drugs used to eliminate H2S, as well as their potential for combination with anticancer agents, were summarized. Not only the existing studies on HRNs, but also the inhibition H2S combined with different therapeutic methods were both sorted out in this review. Furthermore, this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail. Finally, potential challenges of HRNs were proposed. This study demonstrates the excellent potential of HRNs for biomedical applications.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Li
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Mohammadinejad A, Gaman LE, Aleyaghoob G, Gaceu L, Mohajeri SA, Moga MA, Badea M. Aptamer-Based Targeting of Cancer: A Powerful Tool for Diagnostic and Therapeutic Aims. BIOSENSORS 2024; 14:78. [PMID: 38391997 PMCID: PMC10887380 DOI: 10.3390/bios14020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Cancer is known as one of the most significant causes of death worldwide, and, in spite of novel therapeutic methods, continues to cause a considerable number of deaths. Targeted molecular diagnosis and therapy using aptamers with high affinity have become popular techniques for pathological angiogenesis and cancer therapy scientists. In this paper, several aptamer-based diagnostic and therapeutic techniques such as aptamer-nanomaterial conjugation, aptamer-drug conjugation (physically or covalently), and biosensors, which have been successfully designed for biomarkers, were critically reviewed. The results demonstrated that aptamers can potentially be incorporated with targeted delivery systems and biosensors for the detection of biomarkers expressed by cancer cells. Aptamer-based therapeutic and diagnostic methods, representing the main field of medical sciences, possess high potential for use in cancer therapy, pathological angiogenesis, and improvement of community health. The clinical use of aptamers is limited due to target impurities, inaccuracy in the systematic evolution of ligands via exponential enrichment (SELEX)stage process, and in vitro synthesis, making them unreliable and leading to lower selectivity for in vivo targets. Moreover, size, behavior, probable toxicity, low distribution, and the unpredictable behavior of nanomaterials in in vivo media make their usage in clinical assays critical. This review is helpful for the implementation of aptamer-based therapies which are effective and applicable for clinical use and the design of future studies.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Laura Elena Gaman
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Chemistry, Payame Noor University, Tehran 19395-4697, Iran
| | - Liviu Gaceu
- Faculty of Food and Tourism, Transilvania University of Brasov, 500014 Brașov, Romania;
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Centre for Applied Medicine and Intervention Strategies in Medical Practice, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| |
Collapse
|
9
|
Seo SH, Joe A, Han HW, Manivasagan P, Jang ES. Mesoporous Silica-Layered Gold Nanorod Core@Silver Shell Nanostructures for Intracellular SERS Imaging and Phototherapy. Pharmaceutics 2024; 16:137. [PMID: 38276508 PMCID: PMC10821141 DOI: 10.3390/pharmaceutics16010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Precision diagnosis-guided efficient treatment is crucial to extending the lives of cancer patients. The integration of surface-enhanced Raman scattering (SERS) imaging and phototherapy into a single nanoplatform has been considered a more accurate diagnosis and treatment strategy for cancer nanotheranostics. Herein, we constructed a new type of mesoporous silica-layered gold nanorod core@silver shell nanostructures loaded with methylene blue (GNR@Ag@mSiO2-MB) as a multifunctional nanotheranostic agent for intracellular SERS imaging and phototherapy. The synthesized GNR@Ag@mSiO2-MB nanostructures possessed a uniform core-shell structure, strong near-infrared (NIR) absorbance, photothermal conversion efficiency (65%), dye loading ability, SERS signal, and Raman stability under phototherapy conditions. Under single 785 nm NIR laser irradiation, the intracellular GNR@Ag@mSiO2-MB nanostructures were dramatically decreased to <9%, which showed excellent photothermal and photodynamic effects toward cancer cell killing, indicating that the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) of the GNR@Ag@mSiO2-MB nanostructures could greatly enhance the therapeutic efficacy of cancer cell death. GNR@Ag@mSiO2-MB nanostructures demonstrated a strong Raman signal at 450 and 502 cm-1, corresponding to the δ(C-N-C) mode, suggesting that the Raman bands of GNR@Ag@mSiO2-MB nanostructures were more efficient to detect CT-26 cell SERS imaging with high specificity. Our results indicate that GNR@Ag@mSiO2-MB nanostructures offer an excellent multifunctional nanotheranostic platform for SERS imaging and synergistic anticancer phototherapy in the future.
Collapse
Affiliation(s)
| | | | | | | | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 730-701, Gyeongbuk, Republic of Korea; (S.-H.S.); (A.J.); (H.-W.H.); (P.M.)
| |
Collapse
|
10
|
Luo H, Gao S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. J Control Release 2023; 362:425-445. [PMID: 37660989 DOI: 10.1016/j.jconrel.2023.08.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Phototherapy (including photothermal therapy, PTT; and photodynamic therapy, PDT) has been widely used for cancer treatment, but conventional PTT/PDT show limited therapeutic effects due to the lack of disease recognition ability. The integration of fluorescence imaging with PTT/PDT can reveal tumor locations in a real-time manner, holding great potential in early diagnosis and precision treatment of cancers. However, the traditional fluorescence imaging in the visible and near-infrared-I regions (VIS/NIR-I, 400-900 nm) might be interfered by the scattering and autofluorescence from tissues, leading to a low imaging resolution and high false positive rate. The deeper near-infrared-II (NIR-II, 1000-1700 nm) fluorescence imaging can address these interferences. Combining NIR-II fluorescence imaging with PTT/PDT can significantly improve the accuracy of tumor theranostics and minimize damages to normal tissues. This review summarized recent advances in tumor PTT/PDT and NIR-II fluorophores, especially discussed achievements, challenges and prospects around NIR-II fluorescence imaging-guided PTT/PDT for cancers.
Collapse
Affiliation(s)
- Hangqi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shuai Gao
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Borges HS, Gusmão LA, Tedesco AC. Multi-charged nanoemulsion for photodynamic treatment of glioblastoma cell line in 2D and 3D in vitro models. Photodiagnosis Photodyn Ther 2023; 43:103723. [PMID: 37487809 DOI: 10.1016/j.pdpdt.2023.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.
Collapse
Affiliation(s)
- Hiago Salge Borges
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Luiza Araújo Gusmão
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
12
|
Song WF, Zeng JY, Ji P, Han ZY, Sun YX, Zhang XZ. Self-Assembled Copper-Based Nanoparticles for Glutathione Activated and Enzymatic Cascade-Enhanced Ferroptosis and Immunotherapy in Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301148. [PMID: 37118853 DOI: 10.1002/smll.202301148] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
As an emerging cancer treatment strategy, ferroptosis is greatly restricted by excessive glutathione (GSH) in tumor microenvironment (TME) and low reactive oxygen species (ROS) generation efficiency. Here, this work designs self-assembled copper-alanine nanoparticles (CACG) loaded with glucose oxidase (GOx) and cinnamaldehyde (Cin) for in situ glutathione activated and enzymatic cascade-enhanced ferroptosis and immunotherapy. In response to GSH-rich and acidic TME, CACG allows to effectively co-deliver Cu2+ , Cin, and GOx into tumors. Released Cin consumes GSH through Michael addition, accompanying with the reduction of Cu2+ into Cu+ for further GSH depletion. With the cascade of Cu+ -catalyzed Fenton reactions and enzyme-catalyzed reactions by GOx, CACG could get rid of the restriction of insufficient hydrogen peroxide in TME, leading to a robust and constant generation of ROS. With the high efficiency of GSH depletion and ROS production, ferroptosis is significantly enhanced by CACG in vivo. Moreover, elevated oxidative stress triggers robust immune responses by promoting dendritic cells maturation and T cell infiltration. The in vivo results prove that CACG could efficiently inhibit tumor growth in 4T1 tumor-bearing mouse model without causing obvious systemic toxicity, suggesting the great potential of CACG in enhancing ferroptosis and immunotherapy for effective cancer treatment.
Collapse
Affiliation(s)
- Wen-Fang Song
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yun-Xia Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, P. R. China
| |
Collapse
|
13
|
Wang S, Liao Y, Wu Z, Peng Y, Liu Y, Chen Y, Shao L, Zeng Z, Liu Y. A lysosomes and mitochondria dual-targeting AIE-active NIR photosensitizer: Constructing amphiphilic structure for enhanced antitumor activity and two-photon imaging. Mater Today Bio 2023; 21:100721. [PMID: 37502829 PMCID: PMC10368935 DOI: 10.1016/j.mtbio.2023.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
Development of lysosomes and mitochondria dual-targeting photosensitizer with the virtues of near-infrared (NIR) emission, highly efficient reactive oxygen generation, good phototoxicity and biocompatibility is highly desirable in the field of imaging-guided photodynamic therapy (PDT) for cancer. Herein, a new positively charged amphiphilic organic compound (2-(2-(5-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)vinyl)-3-methylbenzo[d]thiazol-3-ium iodide) (ADB) based on a D-A-π-A structure is designed and comprehensively investigated. ADB demonstrates special lysosomes and mitochondria dual-organelles targeting, bright NIR aggregation-induced emission (AIE) at 736 nm, high singlet oxygen (1O2) quantum yield (0.442), as well as good biocompatibility and photostability. In addition, ADB can act as a two-photon imaging agent for the elaborate observation of living cells and blood vessel networks of tissues. Upon light irradiation, obvious decrease of mitochondrial membrane potential (MMP), abnormal mitochondria morphology, as well as phagocytotic vesicles and lysosomal disruption in cells are observed, which further induce cell apoptosis and resulting in enhanced antitumor activity for cancer treatment. In vivo experiments reveal that ADB can inhibit tumor growth efficiently upon light exposure. These findings demonstrate that this dual-organelles targeted ADB has great potential for clinical imaging-guided photodynamic therapy, and this work provides a new avenue for the development of multi-organelles targeted photosensitizers for highly efficient cancer treatment.
Collapse
Affiliation(s)
- Shaozhen Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yunhui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoji Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yihong Peng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuchen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yinghua Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhijie Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanshan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
14
|
Perez-Potti A, Rodríguez-Pérez M, Polo E, Pelaz B, Del Pino P. Nanoparticle-based immunotherapeutics: from the properties of nanocores to the differential effects of administration routes. Adv Drug Deliv Rev 2023; 197:114829. [PMID: 37121275 DOI: 10.1016/j.addr.2023.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
The engagement with the immune system is one of the main cornerstones in the development of nanotechnologies for therapy and diagnostics. Recent advances have made possible the tuning of features like size, shape and biomolecular modifications that influence such interactions, however, the capabilities for immune modulation of nanoparticles are still not well defined and exploited. This review focuses on recent advances made in preclinical research for the application of nanoparticles to modulate immune responses, and the main features making them relevant for such applications. We review and discuss newest evidence in the field, which include in vivo experiments with an extensive physicochemical characterization as well as detailed study of the induced immune response. We emphasize the need of incorporating knowledge about immune response development and regulation in the design and application of nanoparticles, including the effect by parameters such as the administration route and the differential interactions with immune subsets.
Collapse
Affiliation(s)
- André Perez-Potti
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Rodríguez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Abdul Rinshad V, Sahoo J, Venkateswarulu M, Hickey N, De M, Sarathi Mukherjee P. Solvent Induced Conversion of a Self-Assembled Gyrobifastigium to a Barrel and Encapsulation of Zinc-Phthalocyanine within the Barrel for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218226. [PMID: 36715420 DOI: 10.1002/anie.202218226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
A rare gyrobifastigium architecture (GB) was constructed by self-assembly of a tetradentate donor (L) with PdII acceptor in DMSO. The GB was converted to its isomeric tetragonal barrel (MB) upon treatment with water. The hydrophobic cavity of MB has been explored for the encapsulation of zinc-phthalocyanine (ZnPc), which is an excellent photosensitizer for photodynamic therapy (PDT). However, the poor water-solubility and aggregation tendency are the main reasons for the suboptimal PDT performance of free ZnPc in the aqueous medium. Effective solubilization of ZnPc in an aqueous medium was achieved by encapsulating it in the cavity of MB. The inclusion complex (ZnPc⊂MB) showed enhanced singlet oxygen generation in water. Higher cellular uptake and anticancer activity of the ZnPc⊂MB compared to free ZnPc on HeLa cells indicate that encapsulation of ZnPc in an aqueous host is a potential strategy for enhancement of its PDT activity in water.
Collapse
Affiliation(s)
- Valiyakath Abdul Rinshad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
16
|
Tam LKB, Chu JCH, He L, Yang C, Han KC, Cheung PCK, Ng DKP, Lo PC. Enzyme-Responsive Double-Locked Photodynamic Molecular Beacon for Targeted Photodynamic Anticancer Therapy. J Am Chem Soc 2023; 145:7361-7375. [PMID: 36961946 PMCID: PMC10080691 DOI: 10.1021/jacs.2c13732] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
An advanced photodynamic molecular beacon (PMB) was designed and synthesized, in which a distyryl boron dipyrromethene (DSBDP)-based photosensitizer and a Black Hole Quencher 3 moiety were connected via two peptide segments containing the sequences PLGVR and GFLG, respectively, of a cyclic peptide. These two short peptide sequences are well-known substrates of matrix metalloproteinase-2 (MMP-2) and cathepsin B, respectively, both of which are overexpressed in a wide range of cancer cells either extracellularly (for MMP-2) or intracellularly (for cathepsin B). Owing to the efficient Förster resonance energy transfer between the two components, this PMB was fully quenched in the native form. Only upon interaction with both MMP-2 and cathepsin B, either in a buffer solution or in cancer cells, both of the segments were cleaved specifically, and the two components could be completely separated, thereby restoring the photodynamic activities of the DSBDP moiety. This PMB could also be activated in tumors, and it effectively suppressed the tumor growth in A549 tumor-bearing nude mice upon laser irradiation without causing notable side effects. In particular, it did not cause skin photosensitivity, which is a very common side effect of photodynamic therapy (PDT) using conventional "always-on" photosensitizers. The overall results showed that this "double-locked" PMB functioned as a biological AND logic gate that could only be unlocked by the coexistence of two tumor-associated enzymes, which could greatly enhance the tumor specificity in PDT.
Collapse
Affiliation(s)
- Leo K B Tam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lin He
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Caixia Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Kam-Chu Han
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
17
|
Sarı C, Değirmencioğlu İ, Eyüpoğlu FC. Synthesis and characterization of novel Schiff base-silicon (IV) phthalocyanine complex for photodynamic therapy of breast cancer cell lines. Photodiagnosis Photodyn Ther 2023; 42:103504. [PMID: 36907257 DOI: 10.1016/j.pdpdt.2023.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Photodynamic therapy is an alternative anticancer treatment approach that promises high therapeutic efficacy. In this study, it is aimed to investigate the PDT-mediated anticancer effects of newly synthesized silicon phthalocyanine (SiPc) molecules on MDA-MB-231, MCF-7 breast cancer cell lines, and non-tumorigenic MCF-10A breast cell line. METHODS Novel bromo substituted Schiff base (3a), its nitro homolog (3b), and their silicon complexes (SiPc-5a and SiPc-5b) were synthesized. Their proposed structures were confirmed by FT-IR, NMR, UV-vis and MS instrumental techniques. MDA-MB-231, MCF-7 and MCF-10A cells were illuminated at a light wavelength of 680 nm for 10 min, giving a total irradiation dose of 10 j/cm2. MTT assay was used to determine the cytotoxic effects of SiPc-5a and SiPc-5b. Apoptotic cell death was analyzed using flow cytometry. Changes in the mitochondrial membrane potential were determined by TMRE staining. Intracellular ROS generation was observed microscopically using H2DCFDA dye. Colony formation assay and in vitro scratch assay were performed to analyze the clonogenic activity and cell motility. Transwell migration and matrigel invasion analyzes were conducted to observe changes in the migration and invasion status of the cells. RESULTS The combination of SiPc-5a and SiPc-5b with PDT exhibited cytotoxic effects on cancer cells and triggered cell death. SiPc-5a/PDT and SiPc-5b/PDT decreased mitochondrial membrane potential and increased intracellular ROS production. Statistically significant changes were detected in cancer cells' colony-forming ability and motility. SiPc-5a/PDT and SiPc-5b/PDT reduced cancer cells' migration and invasion capacities. CONCLUSION The present study identifies PDT-mediated antiproliferative, apoptotic, and anti-migratory characteristics of novel SiPc molecules. The outcomes of this study emphasize the anticancer properties of these molecules and suggest that they may be evaluated as drug-candidate molecules for therapeutic purposes.
Collapse
Affiliation(s)
- Ceren Sarı
- Department of Medical Biology, Institute of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - İsmail Değirmencioğlu
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Figen Celep Eyüpoğlu
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
18
|
Witkowska M, Golusińska-Kardach E, Golusiński W, Florek E. Polydopamine-Based Material and Their Potential in Head and Neck Cancer Therapy-Current State of Knowledge. Int J Mol Sci 2023; 24:4890. [PMID: 36902321 PMCID: PMC10003234 DOI: 10.3390/ijms24054890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Head and neck cancers (HNC) are among the most common cancers in the world. In terms of frequency of occurrence in the world, HNC ranks sixth. However, the problem of modern oncology is the low specificity of the therapies used, which is why most of the currently used chemotherapeutic agents have a systemic effect. The use of nanomaterials could overcome the limitations of traditional therapies. Researchers are increasingly using polydopamine (PDA) in nanotherapeutic systems for HNC due to its unique properties. PDA has found applications in chemotherapy, photothermal therapy, targeted therapy, and combination therapies that facilitate better carrier control for the effective reduction of cancer cells than individual therapies. The purpose of this review was to present the current knowledge on the potential use of polydopamine in head and neck cancer research.
Collapse
Affiliation(s)
- Marta Witkowska
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Ewelina Golusińska-Kardach
- Department and Clinic of Dental Surgery, Periodontal Diseases and Oral Mucosa, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Wojciech Golusiński
- Department and Clinic of Head and Neck Surgery and Laryngological Oncology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| |
Collapse
|
19
|
Salman A, Lupi S, Vaccari L, Piccirilli F, Eid MM. FTIR microscopy evaluation of the immunogenicity of eco-friendly γFe 2O 3@Ag@Cs nanocomposite as a platform for the discovery and screening of vaccine adjuvants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122087. [PMID: 36417818 DOI: 10.1016/j.saa.2022.122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/23/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Core-shell nanoparticles have been extensively researched, particularly as multimodal for medical applications. Scientists are interested in combining the optical properties of nano-plasmonic nanoparticles with the magnetic properties of super-paramagnetic nanoparticles. This combination is very important because it reduces metal toxicity and improves nanoparticle targeting. Tuning the shape and size of the nanoparticles significantly reflects their properties and applications. In previous study, we assessed the SPION@Ag@chitosan core-shell nanocomposite (γFe2O3@Ag@Cs NCs) toxicity both in vitro and preclinically in vivo, using traditional toxicological assessment and biochemical parameters. The results showed that up to100 ug/kg is a safe NP dose as evaluated by pathological and biochemical parameters. The aim of the present study was to gain insight into the effect of γFe2O3@Ag@Cs NC at sub-cytotoxic concentrations (100ug/ml) on the biochemical profile of immune organs (inguinal, axillary, spleen and thymus) by combining the investigation of cytokine secretion to ex vivo FTIR spectroscopy. The four immune organs were treated with 100 ug/kg NC and the time dependence of the effects produced by the treatment was analyzed. The Data shows that the used core-shell NC with the indicate dose have a stimulatory effect on the immune system, as evidenced by an increase in antibody secretion (IgG and IgM), lipid, nucleic acid, and protein synthesis after uptake time which depends on the specific immune organ.
Collapse
Affiliation(s)
- Asmaa Salman
- Pharmaceutical Industry Research Division, National Research Center, Dokki, Giza 12622, Egypt
| | - Stefano Lupi
- Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy; CNR-IOM, Trieste, Italy
| | - Lisa Vaccari
- CNR-IOM, Trieste, Italy; Elettra Sincrotrone Trieste, Trieste, Italy
| | | | - May M Eid
- Physics Division, National Research Center, Dokki, Giza 12622, Egypt.
| |
Collapse
|
20
|
Xu X, Xiang Y, Yang Y, Liu K, Cui Z, Tong X, Chen J, Hou F, Luo Z. The application of tumor cell-derived vesicles in oncology therapy. Clin Transl Oncol 2023; 25:364-374. [PMID: 36207510 DOI: 10.1007/s12094-022-02966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Tumor cell-derived vesicles are released by tumor cells, have a phospholipid bilayer, and are widely distributed in various biological fluids. In recent years, it has been found that tumor cell-derived vesicles contain proteins, metabolites and nucleic acids and can be delivered to recipient cells to perform their physiological functions, such as mediating specific intercellular communication, activating or inhibiting signaling pathways, participating in regulating the modulation of tumor microenvironment and influencing tumor development, which can be used for early detection and diagnosis of cancer. In addition, tumor cell-derived vesicles exhibit multiple properties in tumor therapeutic applications and may serve as a new class of delivery systems. In this review, we elaborate on the application of tumor cell-derived vesicles in oncology therapy.
Collapse
Affiliation(s)
- Ximei Xu
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China.
| | - Yin Xiang
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Yang Yang
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Kai Liu
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Zhiwei Cui
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Xiaodong Tong
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Junliang Chen
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Fang Hou
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Zhiqiang Luo
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| |
Collapse
|
21
|
An Overview of Potential Natural Photosensitizers in Cancer Photodynamic Therapy. Biomedicines 2023; 11:biomedicines11010224. [PMID: 36672732 PMCID: PMC9855789 DOI: 10.3390/biomedicines11010224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. There are several different types of cancer recognized thus far, which can be treated by different approaches including surgery, radiotherapy, chemotherapy or a combination thereof. However, these approaches have certain drawbacks and limitations. Photodynamic therapy (PDT) is regarded as an alternative noninvasive approach for cancer treatment based on the generation of toxic oxygen (known as reactive oxygen species (ROS)) at the treatment site. PDT requires photoactivation by a photosensitizer (PS) at a specific wavelength (λ) of light in the vicinity of molecular oxygen (singlet oxygen). The cell death mechanisms adopted in PDT upon PS photoactivation are necrosis, apoptosis and stimulation of the immune system. Over the past few decades, the use of natural compounds as a photoactive agent for the selective eradication of neoplastic lesions has attracted researchers' attention. Many reviews have focused on the PS cell death mode of action and photonanomedicine approaches for PDT, while limited attention has been paid to the photoactivation of phytocompounds. Photoactivation is ever-present in nature and also found in natural plant compounds. The availability of various laser light setups can play a vital role in the discovery of photoactive phytocompounds that can be used as a natural PS. Exploring phytocompounds for their photoactive properties could reveal novel natural compounds that can be used as a PS in future pharmaceutical research. In this review, we highlight the current research regarding several photoactive phytocompound classes (furanocoumarins, alkaloids, poly-acetylenes and thiophenes, curcumins, flavonoids, anthraquinones, and natural extracts) and their photoactive potential to encourage researchers to focus on studies of natural agents and their use as a potent PS to enhance the efficiency of PDT.
Collapse
|
22
|
Role of Tunable Gold Nanostructures in Cancer Nanotheranostics: Implications on Synthesis, Toxicity, Clinical Applications and Their Associated Opportunities and Challenges. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The existing diagnosis and treatment modalities have major limitations related to their precision and capability to understand several stages of disease development. A superior therapeutic system consists of a multifunctional approach in early diagnosis of the disease with a simultaneous progressive cure, using a precise medical approach towards complex treatment. These challenges can be addressed via nanotheranostics and explore suitable approaches to improve health care. Nanotechnology in combination with theranostics as an unconventional platform paved the way for developing novel strategies and modalities leading to diagnosis and therapy for complex disease conditions, ranging from acute to chronic levels. Among the metal nanoparticles, gold nanoparticles are being widely used for theranostics due to their inherent non-toxic nature and plasmonic properties. The unique optical and chemical properties of plasmonic metal nanoparticles along with theranostics have led to a promising era of plausible early detection of disease conditions, and they enable real-time monitoring with enhanced non-invasive or minimally invasive imaging of several ailments. This review aims to highlight the improvement and advancement brought to nanotheranostics by gold nanoparticles in the past decade. The clinical use of the metal nanoparticles in nanotheranostics is explained, along with the future perspectives on addressing the key applications related to diagnostics and therapeutics, respectively. The scope of gold nanoparticles and their realistic potential to design a sophisticated theranostic system is discussed in detail, along with their implications in clinical advancements which are the needs of the hour. The review concluded with the challenges, opportunities, and implications on translational potential of using gold nanoparticles in nanotheranostics.
Collapse
|
23
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
24
|
Multifunctional Photoactive Nanomaterials for Photodynamic Therapy against Tumor: Recent Advancements and Perspectives. Pharmaceutics 2022; 15:pharmaceutics15010109. [PMID: 36678738 PMCID: PMC9866498 DOI: 10.3390/pharmaceutics15010109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous treatments are available for cancer, including chemotherapy, immunotherapy, radiation therapy, hormone therapy, biomarker testing, surgery, photodynamic therapy, etc. Photodynamic therapy (PDT) is an effective, non-invasive, novel, and clinically approved strategy to treat cancer. In PDT, three main agents are utilized, i.e., photosensitizer (PS) drug, oxygen, and light. At first, the photosensitizer is injected into blood circulation or applied topically, where it quickly becomes absorbed or accumulated at the tumor site passively or actively. Afterward, the tumor is irradiated with light which leads to the activation of the photosensitizing molecule. PS produces the reactive oxygen species (ROS), resulting in the death of the tumor cell. However, the effectiveness of PDT for tumor destruction is mainly dependent on the cellular uptake and water solubility of photosensitizer molecules. Therefore, the delivery of photosensitizer molecules to the tumor cell is essential in PDT against cancer. The non-specific distribution of photosensitizer results in unwanted side effects and unsuccessful therapeutic outcomes. Therefore, to improve PDT clinical outcomes, the current research is mostly focused on developing actively targeted photosensitizer molecules, which provide a high cellular uptake and high absorption capacity to the tumor site by overcoming the problem associated with conventional PDT. Therefore, this review aims to provide current knowledge on various types of actively and passively targeted organic and inorganic nanocarriers for different cancers.
Collapse
|
25
|
Monteiro CJP, Lourenço LMO, Abrahamse H, Vivero-Escoto JL, Faustino MAF. Editorial: Next generation nanomaterials for photodynamic therapy. Front Chem 2022; 10:1123216. [PMID: 36618863 PMCID: PMC9812555 DOI: 10.3389/fchem.2022.1123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, Aveiro, Portugal,*Correspondence: Carlos J. P. Monteiro, ; Leandro M. O. Lourenço, ; M. Amparo F. Faustino,
| | - Leandro M. O. Lourenço
- LAQV-Requimte and Department of Chemistry, University of Aveiro, Aveiro, Portugal,*Correspondence: Carlos J. P. Monteiro, ; Leandro M. O. Lourenço, ; M. Amparo F. Faustino,
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Juan L. Vivero-Escoto
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC, United States
| | - M. Amparo F. Faustino
- LAQV-Requimte and Department of Chemistry, University of Aveiro, Aveiro, Portugal,*Correspondence: Carlos J. P. Monteiro, ; Leandro M. O. Lourenço, ; M. Amparo F. Faustino,
| |
Collapse
|
26
|
Estevão BM, Vilela RRC, Geremias IP, Zanoni KPS, de Camargo ASS, Zucolotto V. Mesoporous silica nanoparticles incorporated with Ir(III) complexes: From photophysics to photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 40:103052. [PMID: 35934182 DOI: 10.1016/j.pdpdt.2022.103052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Organically modified mesoporous silica nanoparticles (MSNs) containing Ir complexes (Ir1, Ir2 and Ir3) were successfully synthesized. These Ir-entrapped MCM41-COOH nanoparticles have shown relevant photophysical characteristics including high efficiency in the photoproduction and delivery of singlet oxygen (1O2), which is particularly promising for photodynamic therapy (PDT) applications. In vitro tests have evidenced that complex@MCM41-COOH are able to reduce cell proliferation after 10 min of blue-light irradiation in Hep-G2 liver cancer cells.
Collapse
Affiliation(s)
- Bianca M Estevão
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil.
| | - Raquel R C Vilela
- Laboratory of Spectroscopy of Functional Materials, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil.
| | - Isabella P Geremias
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Kassio P S Zanoni
- Laboratory of Spectroscopy of Functional Materials, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil; Molecular Optoelectronic Devices, Instituto de Ciencia Molecular (ICMol), University of Valencia, Catedrático J. Beltrán 2, Paterna, Valencia 46980, Spain
| | - Andrea S S de Camargo
- Laboratory of Spectroscopy of Functional Materials, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| |
Collapse
|
27
|
Malindi Z, Barth S, Abrahamse H. The Potential of Antibody Technology and Silver Nanoparticles for Enhancing Photodynamic Therapy for Melanoma. Biomedicines 2022; 10:2158. [PMID: 36140259 PMCID: PMC9495799 DOI: 10.3390/biomedicines10092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Melanoma is highly aggressive and is known to be efficient at resisting drug-induced apoptotic signals. Resection is currently the gold standard for melanoma management, but it only offers local control of the early stage of the disease. Metastatic melanoma is prone to recurrence, and has a poor prognosis and treatment response. Thus, the need for advanced theranostic alternatives is evident. Photodynamic therapy has been increasingly studied for melanoma treatment; however, it relies on passive drug accumulation, leading to off-target effects. Nanoparticles enhance drug biodistribution, uptake and intra-tumoural concentration and can be functionalised with monoclonal antibodies that offer selective biorecognition. Antibody-drug conjugates reduce passive drug accumulation and off-target effects. Nonetheless, one limitation of monoclonal antibodies and antibody-drug conjugates is their lack of versatility, given cancer's heterogeneity. Monoclonal antibodies suffer several additional limitations that make recombinant antibody fragments more desirable. SNAP-tag is a modified version of the human DNA-repair enzyme, O6-alkylguanine-DNA alkyltransferase. It reacts in an autocatalytic and covalent manner with benzylguanine-modified substrates, providing a simple protein labelling system. SNAP-tag can be genetically fused with antibody fragments, creating fusion proteins that can be easily labelled with benzylguanine-modified payloads for site-directed delivery. This review aims to highlight the benefits and limitations of the abovementioned approaches and to outline how their combination could enhance photodynamic therapy for melanoma.
Collapse
Affiliation(s)
- Zaria Malindi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
28
|
Matlou GG, Abrahamse H. Nanoscale metal–organic frameworks as photosensitizers and nanocarriers in photodynamic therapy. Front Chem 2022; 10:971747. [PMID: 36092660 PMCID: PMC9458963 DOI: 10.3389/fchem.2022.971747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a new therapeutic system for cancer treatment that is less invasive and offers greater selectivity than chemotherapy, surgery, and radiation therapy. PDT employs irradiation light of known wavelength to excite a photosensitizer (PS) agent that undergoes photochemical reactions to release cytotoxic reactive oxygen species (ROS) that could trigger apoptosis or necrosis-induced cell death in tumor tissue. Nanoscale metal–organic frameworks (NMOFs) have unique structural advantages such as high porosity, large surface area, and tunable compositions that have attracted attention toward their use as photosensitizers or nanocarriers in PDT. They can be tailored for specific drug loading, targeting and release, hypoxia resistance, and with photoactive properties for efficient response to optical stimuli that enhance the efficacy of PDT. In this review, an overview of the basic chemistry of NMOFs, their design and use as photosensitizers in PDT, and as nanocarriers in synergistic therapies is presented. The review also discusses the morphology and size of NMOFs and their ability to improve photosensitizing properties and localize within a targeted tissue for effective and selective cancer cell death over healthy cells. Furthermore, targeting strategies that improve the overall PDT efficacy through stimulus-activated release and sub-cellular internalization are outlined with relevance to in vitro and in vivo studies from recent years.
Collapse
|
29
|
Abstract
Cancerous diseases are rightfully considered among the most lethal, which have a consistently negative effect when considering official statistics in regular health reports around the globe. Nowadays, metallic nanoparticles can be potentially applied in medicine as active pharmaceuticals, adjustable carriers, or distinctive enhancers of physicochemical properties if combined with other drugs. Boron dipyrromethene (BODIPY) molecules have been considered for future applications in theranostics in the oncology field, thus expanding the potential of conceivable applicability. Hence, taking into account positive practical features of both metal-based nanostructures and BODIPY derivatives, the present study aims to gather recent results connected to BODIPY-conjugated metallic nanoparticles. This is with respect to their expediency in the diagnosis and treatment of tumor ailments as well as in sensing of heavy metals. To fulfill the designated objectives, multiple research documents were analyzed concerning the latest discoveries within the scope of BODIPY-based nanomaterials with particular emphasis on their utilization for diagnostical sensing as well as cancer diagnostics and therapy. In addition, collected examples of mentioned conjugates were presented in order to draw the attention of the scientific community to their practical applications, elucidate the topic in a consistent manner, and inspire fellow researchers for new findings.
Collapse
|
30
|
Liu Z, Li H, Tian Z, Liu X, Guo Y, He J, Wang Z, Zhou T, Liu Y. Porphyrin-Based Nanoparticles: A Promising Phototherapy Platform. Chempluschem 2022; 87:e202200156. [PMID: 35997087 DOI: 10.1002/cplu.202200156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Phototherapy, including photodynamic therapy and photothermal therapy, is an emerging form of non-invasive treatment. The combination of imaging technology and phototherapy is becoming an attractive development in the treatment of cancer, as it allows for highly effective therapeutic results through image-guided phototherapy. Porphyrins have attracted significant interest in the treatment and diagnosis of cancer due to their excellent phototherapeutic effects in phototherapy and their remarkable imaging capabilities in fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. However, porphyrins suffer from poor water solubility, low near-infrared absorption and insufficient tumor accumulation. The development of nanotechnology provides an effective way to improve the bioavailability, phototherapeutic effect and imaging capability of porphyrins. This review highlights the research results of porphyrin-based small molecule nanoparticles in phototherapy and image-guided phototherapy in the last decade and discusses the challenges and directions for the development of porphyrin-based small molecule nanoparticles in phototherapy.
Collapse
Affiliation(s)
- Zhenhua Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Hui Li
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Xin Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Zhenyu Wang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Tao Zhou
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| |
Collapse
|
31
|
Jiang F, Lee C, Zhang W, Jiang W, Cao Z, Chong HB, Yang W, Zhan S, Li J, Teng Y, Li Z, Xie J. Radiodynamic therapy with CsI(na)@MgO nanoparticles and 5-aminolevulinic acid. J Nanobiotechnology 2022; 20:330. [PMID: 35842630 PMCID: PMC9288050 DOI: 10.1186/s12951-022-01537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 12/06/2022] Open
Abstract
Background Radiodynamic therapy (RDT) holds the potential to overcome the shallow tissue penetration issue associated with conventional photodynamic therapy (PDT). To this end, complex and sometimes toxic scintillator–photosensitizer nanoconjugates are often used, posing barriers for large-scale manufacturing and regulatory approval. Methods Herein, we report a streamlined RDT strategy based on CsI(Na)@MgO nanoparticles and 5-aminolevulinic acid (5-ALA). 5-ALA is a clinically approved photosensitizer, converted to protoporphyrin IX (PpIX) in cancer cells’ mitochondria. CsI(Na)@MgO nanoparticles produce strong ~ 410 nm X-ray luminescence, which matches the Soret band of PpIX. We hypothesize that the CsI(Na)@MgO-and-5-ALA combination can mediate RDT wherein mitochondria-targeted PDT synergizes with DNA-targeted irradiation for efficient cancer cell killing. Because scintillator nanoparticles and photosensitizer are administered separately, the approach forgoes issues such as self-quenching or uncontrolled release of photosensitizers. Results When tested in vitro with 4T1 cells, the CsI(Na)@MgO and 5-ALA combination elevated radiation-induced reactive oxygen species (ROS), enhancing damages to mitochondria, DNA, and lipids, eventually reducing cell proliferation and clonogenicity. When tested in vivo in 4T1 models, RDT with the CsI(Na)@MgO and 5-ALA combination significantly improved tumor suppression and animal survival relative to radiation therapy (RT) alone. After treatment, the scintillator nanoparticles, made of low-toxic alkali and halide elements, were efficiently excreted, causing no detectable harm to the hosts. Conclusions Our studies show that separately administering CsI(Na)@MgO nanoparticles and 5-ALA represents a safe and streamlined RDT approach with potential in clinical translation. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01537-z.
Collapse
Affiliation(s)
- Fangchao Jiang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Chaebin Lee
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Wen Jiang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zhengwei Cao
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | | | - Wei Yang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Shuyue Zhan
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jianwen Li
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology & Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
32
|
Bhattacharya K, Das S, Kundu M, Singh S, Kalita U, Mandal M, Singha NK. Gold Nanoparticle Embedded Stimuli-Responsive Functional Glycopolymer: A Potential Material for Synergistic Chemo-Photodynamic Therapy of Cancer Cells. Macromol Biosci 2022; 22:e2200069. [PMID: 35797485 DOI: 10.1002/mabi.202200069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/20/2022] [Indexed: 11/07/2022]
Abstract
Photodynamic therapy has emerged as a non-invasive treatment modality for several types of cancers. However, conventional hydrophobic photosensitizers (PS) suffer from low water solubility and poor tumor-targeting ability. Therefore, PS modified with glycopolymers can offer adequate water solubility, biocompatibility and tumor-targeting ability due to the presence of multiple sugar units. In this study, a well-defined block copolymer (BCP) poly(3-O-methacryloyl-D-glucopyranose)-b-poly(2-(4-formylbenzoyloxy)ethylmethacrylate) (PMAG-b-PFBEMA) containing pendant glucose and aldehyde units was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization method. A water-soluble PS (toluidine blue O; TBO) and a potent anti-cancer drug, Doxorubicin (Dox) were introduced to the polymer backbone via acid-labile Schiff-base reaction (PMAG-b-PFBEMA_TBO_Dox). The PMAG-b-PFBEMA_TBO_Dox was then anchored on the surface of AuNP via electrostatic interaction. This hybrid system exhibited excellent reactive oxygen species (ROS) generating ability under exposure of 630 nm LED along with triggered release of Dox under the acidic pH of tumor cells. The in vitro cytotoxicity study on human breast cancer cell line, MDA MB 231, for this hybrid system showed promising results due to the synergistic effect of ROS and Dox released. Thus, this glycopolymer-based dual (chemo-photodynamic) therapy model can work as potential material for future therapeutics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Koushik Bhattacharya
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Sudarshan Singh
- Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Uddhab Kalita
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.,School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
33
|
Sargazi S, ER S, Sacide Gelen S, Rahdar A, Bilal M, Arshad R, Ajalli N, Farhan Ali Khan M, Pandey S. Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: An updated and comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Yan H, Zhai B, Yang F, Chen Z, Zhou Q, Paiva-Santos AC, Yuan Z, Zhou Y. Nanotechnology-Based Diagnostic and Therapeutic Strategies for Neuroblastoma. Front Pharmacol 2022; 13:908713. [PMID: 35721107 PMCID: PMC9201105 DOI: 10.3389/fphar.2022.908713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB), as the most common extracranial solid tumor in childhood, is one of the critical culprits affecting children's health. Given the heterogeneity and invisibility of NB tumors, the existing diagnostic and therapeutic approaches are inadequate and ineffective in early screening and prognostic improvement. With the rapid innovation and development of nanotechnology, nanomedicines have attracted widespread attention in the field of oncology research for their excellent physiological and chemical properties. In this review, we first explored the current common obstacles in the diagnosis and treatment of NB. Then we comprehensively summarized the advancements in nanotechnology-based multimodal synergistic diagnosis and treatment of NB and elucidate the underlying mechanisms. In addition, a discussion of the pending challenges in biocompatibility and toxicity of nanomedicine was conducted. Finally, we described the development and application status of nanomaterials against some of the recognized targets in the field of NB research, and pointed out prospects for nanomedicine-based precision diagnosis and therapy of NB.
Collapse
Affiliation(s)
- Hui Yan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Bo Zhai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Fang Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhenliang Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qiang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ana Cláudia Paiva-Santos
- Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
35
|
Liu X, Zhang H. New Generation of Photosensitizers Based on Inorganic Nanomaterials. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2451:213-244. [PMID: 35505021 DOI: 10.1007/978-1-0716-2099-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advance of nanomaterials and nanotechnology has offered new possibilities for photodynamic therapy (PDT). Large amount of different kinds of sensitizers and targeting moieties can now be loaded in nanometer's volume, which not only results in the improvement of the efficacy of PDT, but also enables the control of image-guided PDT with unprecedented precision and variation. This chapter shall overview the recently most studied inorganic nanomaterials for PDT.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.,State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences , Changchun, China
| | - Hong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China. .,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Xiao F, Huang J, Zhao Y, Qu H, Yu H, Wang W. PDA-PEG-Ce6-Mn Multifunctional Nanoparticles for Magnetic Resonance Images-Guided Photo-Dynamic/Photo-Thermal Therapy. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the most common brain cancer type is gliomas. Although traditional multi-modal therapy has made some progress, overall poor prognosis and low long-run rate of patient’s survival still persist. Due to its selective, noninvasive and repetitive nature, photo-dynamic/photo-thermal
therapy (PDT/PTT) is considered to enhance therapeutic effect of glioma. We report a new type of polydopamine (PDA) nanoparticle with targeting ability and excellent PDT/PTT synergistic effect. The Mn2+ chelated nanocomposite material exhibited a favorable contrast T1-weighted magnetic
resonance images (MRI). In the U251 tumor-bearing mouse model, near-infrared (NIR) imaging and MRI-guided PDT/PTT achieved significant synergistic therapeutic effects compared to their single treatment methods. Conclusively, PDA-PEG-Ce6-Mn nanoparticle demonstrated high potential in the diagnosis
and treatment of glioma.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| | - Jie Huang
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| | - Yi Zhao
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| | - Hang Qu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| | - Han Yu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| | - Wei Wang
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| |
Collapse
|
37
|
Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. NANOSCALE ADVANCES 2022; 4:1868-1925. [PMID: 36133407 PMCID: PMC9419838 DOI: 10.1039/d1na00880c] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 05/22/2023]
Abstract
Extensive research in nanotechnology has been conducted to investigate new behaviours and properties of materials with nanoscale dimensions. ZnO NPs owing to their distinct physical and chemical properties have gained considerable importance and are hence investigated to a detailed degree for exploitation of these properties. This communication, at the outset, elaborates the various chemical methods of preparation of ZnO NPs, viz., the mechanochemical process, controlled precipitation, sol-gel method, vapour transport method, solvothermal and hydrothermal methods, and methods using emulsion and micro-emulsion environments. The paper further describes the green methods employing the use of plant extracts, in particular, for the synthesis of ZnO NPs. The modifications of ZnO with organic (carboxylic acid, silanes) and inorganic (metal oxides) compounds and polymer matrices have then been described. The multitudinous applications of ZnO NPs across a variety of fields such as the rubber industry, pharmaceutical industry, cosmetics, textile industry, opto-electronics and agriculture have been presented. Elaborative narratives on the photocatalytic and a variety of biomedical applications of ZnO have also been included. The ecotoxic impacts of ZnO NPs have additionally been briefly highlighted. Finally, efforts have been made to examine the current challenges and future scope of the synthetic modes and applications of ZnO NPs.
Collapse
Affiliation(s)
- Sauvik Raha
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
38
|
Xue EY, Yang C, Fong WP, Ng DKP. Site-Specific Displacement-Driven Activation of Supramolecular Photosensitizing Nanoassemblies for Antitumoral Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14903-14915. [PMID: 35333503 DOI: 10.1021/acsami.1c23740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The delivery and activation of photosensitizers in a specific manner is crucial in photodynamic therapy. For an antitumoral application, it can confine the photodynamic action on the cancer cells, thereby enhancing the treatment efficacy and reducing the side effects. We report herein a novel supramolecular photosensitizing nanosystem that can be specifically activated in cancer cells and tumors that overexpress epidermal growth factor receptor (EGFR). It involves the self-assembly of the amphiphilic host-guest complex of a β-cyclodextrin-conjugated phthalocyanine-based photosensitizer (Pc-CD) and a ferrocene-substituted poly(ethylene glycol) (Mn = 2000) (Fc-PEG) in aqueous media. The resulting nanosystem Pc-CD@Fc-PEG with a hydrodynamic diameter of 124-147 nm could not emit fluorescence and generate reactive oxygen species due to the self-quenching effect and the ferrocene-based quencher. Upon interactions with molecules of adamantane substituted with an EGFR-targeting peptide (Ad-QRH*) in water and in EGFR-positive HT29 and A431 cells, the ferrocene guest species were displaced, resulting in disassembly of the nanoparticles and restoration of these photoactivities. The half-maximal inhibitory concentration values were down to 1.24 μM (for HT29 cells). The nanosystem Pc-CD@Fc-PEG could also be activated in an Ad-QRH*-treated HT29 tumor in nude mice, leading to increased intratumoral fluorescence intensity and effective eradication of the tumor upon laser irradiation. The results showed that this two-step supramolecular approach can actualize site-specific photosensitization and minimize nonspecific phototoxicity in a general photodynamic treatment.
Collapse
|
39
|
Triple-negative breast cancer treatment in xenograft models by bifunctional nanoprobes combined to photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 38:102796. [PMID: 35263669 DOI: 10.1016/j.pdpdt.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022]
Abstract
Triple-negative breast cancer (TNBC) overexpresses the Epidermal Growth Factor Receptor (EGFR), a characteristic of different types of tumors, linked to worse disease prognosis and risk of recurrence. Conventional treatments are aggressive and, on several occasions, have a poor prognosis, which may be related to the clinical heterogeneity of tumors, among other factors. Therefore, the improvement and development of new methods are notorious. Photodynamic Therapy (PDT) is an effective method for treating different types of cancer by using radiation to activate a photosensitizing agent (drug) in molecular oxygen presence, promoting cell death. Aiming to urge new treatments against breast cancer, drug uptake in target cells could contribute to PDT efficiency. This association is less invasive and has fewer side effects, increasing quality of life and survival rate. Accordingly, we developed a bifunctional nanoprobe (BN), used in PDT as an alternative treatment method in vivo against breast cancer. The BN uses gold nanoparticles with active targeting through the Epidermal Growth Factor (EGF) protein and Chlorine e6 (Ce6) carriers. We evaluated the therapeutic efficacy of in vivo xenograft in 4 groups: Saline, BN, Ce6+PDT, and BN+PDT. As a result, we observed that the BN+PDT group exhibited an excellent effect with greater selectivity to tumor tissue and tissue damage when compared to the Saline, BN, and Ce6+PDT groups. The results indicate a potential impact on breast cancer treatment in vivo, promising therapeutic benefits against cancer. In conclusion, our data propose that the BN developed heightened PDT efficacy through cellular DNA repair effects and tumor microenvironment.
Collapse
|
40
|
Liu Y, Liu CZ, Wang ZK, Zhou W, Wang H, Zhang YC, Zhang DW, Ma D, Li ZT. Supramolecular organic frameworks improve the safety of clinically used porphyrin photodynamic agents and maintain their antitumor efficacy. Biomaterials 2022; 284:121467. [DOI: 10.1016/j.biomaterials.2022.121467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
|
41
|
Sajjad F, Jin H, Han Y, Wang L, Bao L, Chen T, Yan Y, Qiu Y, Chen ZL. Incorporation of green emission polymer dots into pyropheophorbide-α enhance the PDT effect and biocompatibility. Photodiagnosis Photodyn Ther 2022; 37:102562. [PMID: 34610430 DOI: 10.1016/j.pdpdt.2021.102562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND A green emission up-conversion carbon-based polymer dots (CPDs) owned excellent photophysical properties and good solubility. Most photosensitizers (PS) are hydrophobic which limits their application in biomedicine. Herein we synthesized and integrated green emitting CPDs into pyropheophorbide-α (PPa) to improve the overall properties of the PS. MATERIAL AND METHODS The nano-agent was incorporated through amide condensation and electrostatic interaction. The structure, size and morphology of the prepared conjugates were determined by FTIR, TEM, DLS, TGA, 1HNMR, Uv-vis, and fluorescence spectrophotometry. The dark and light toxicity, as well as cellular uptake, was also monitored on the human esophageal cancer cell line (Eca-109). RESULTS Our results illustrate that the conjugation improved the PDT efficacy by increasing the ROS generation. The nano-hybrids showed pH sensitivity as well as good hemocompatibility as the hemolysis ratio was decreased when treated with nano-conjugates. PPa-CPD1 and PPa-CPD2 had the pH response and stronger ability to absorb light and produce fluorescence in an acidic environment (pH 4.0 and pH 5.0) The synthesized nano-hybrids doesnot affect the clotting time. An increase in the absorbance wavelengths was observed. The results of MTT assay showed that dark toxicity was reduced after conjugation. CONCLUSION This CPDs-based drug enhanced tumor-inhibition efficiency as well as low dark toxicity in vitro, showing significant application potential for PDT-based treatment.
Collapse
Affiliation(s)
- Faiza Sajjad
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Hui Jin
- Pudong New Area People's Hospital, Shanghai 201200, China
| | - Yiping Han
- Shanghai Changhai Hospital, Shanghai 200433, China
| | - Laixing Wang
- Shanghai Changhai Hospital, Shanghai 200433, China
| | - Leilei Bao
- Shanghai Changhai Hospital, Shanghai 200433, China
| | - Ting Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yijia Yan
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yan Qiu
- Pudong New Area People's Hospital, Shanghai 201200, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| |
Collapse
|
42
|
Tyagi N, Kaur N, Sahoo SC, Venugopalan P. Photodynamic therapy applications of Re(I)‐BODIPY functionalized nanoparticles. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nidhi Tyagi
- Energy and Environment Unit Institute of Nano Science and Technology Mohali India
| | - Navneet Kaur
- Energy and Environment Unit Institute of Nano Science and Technology Mohali India
| | | | | |
Collapse
|
43
|
Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology 2022; 20:57. [PMID: 35101048 PMCID: PMC8805415 DOI: 10.1186/s12951-022-01240-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Targeted cancer therapy has become one of the most important medical methods because of the spreading and metastatic nature of cancer. Based on the introduction of AS1411 and its four-chain structure, this paper reviews the research progress in cancer detection and drug delivery systems by modifying AS1411 aptamers based on graphene, mesoporous silica, silver and gold. The application of AS1411 in cancer treatment and drug delivery and the use of AS1411 as a targeting agent for the detection of cancer markers such as nucleoli were summarized from three aspects of active targeting, passive targeting and targeted nucleic acid apharmers. Although AS1411 has been withdrawn from clinical trials, the research surrounding its structural optimization is still very popular. Further progress has been made in the modification of nanoparticles loaded with TCM extracts by AS1411.
Collapse
Affiliation(s)
- Xin Tong
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Jun Ai
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| | - Yong Wang
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
44
|
Feng Y, Liu X, Li Q, Mei S, Wu K, Yuan J, Tu L, Que I, Tamburini F, Baldazzi F, Chan A, Cruz LJ, Zuo J, Yao C, Zhang H. A scintillating nanoplatform with upconversion function for the synergy of radiation and photodynamic therapies for deep tumors. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:688-695. [PMID: 35127099 PMCID: PMC8740696 DOI: 10.1039/d1tc04930e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 05/27/2023]
Abstract
Collaborative therapy is regarded as an effective approach in increasing the therapeutic efficacy of cancer. In this work, we have proposed and validated the concept of upconversion lumienscence image guided synergy of photodynamic therapy (PDT) and radiotherapy (RT) for deep cancer, via a specially designed nanoplatform integrating near infrared (NIR) light activated luminescence upconversion and X-ray induced scintillation. Upon NIR light irradiation, the nanoplatform emits highly monochromatic red light solely for imaging the targeted cancer cells without triggering therapy; however, when the irradiation turns to a low dose of X-rays, scintillation will occur which induces effectively the PDT destroying the cancer cells together with X-ray induced RT. The novel theranostic nanoplatform is constructed in such a way that the interactions between the upconversion core and the outmost scintillating shell are blocked effectively by an inert layer between them. This structural design not only enables a nearly perfect excitation energy delivery (∼100% at a spectral overlapping wavelength of ∼540 nm) from the outermost scintellating layer to the surface-anchored photosensitizers and so a maximum yield of radical oxygen species, but also achieves a strong NIR induced upconversion luminescence for imaging. Since PDT and RT attack different parts of a cancer cell, this synergy is more effective in destroying cancer than a single therapy, resulting in the reduction of the X-ray irradiation dosage. As a proof of principle, the theranostic effect is validated by in vitro and in vivo experiments, exhibiting the great potential of this sort of nanoplatform in deep cancer treatment.
Collapse
Affiliation(s)
- Yansong Feng
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology 100081 Beijing China
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Xiaomeng Liu
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology 100081 Beijing China
| | - Qiqing Li
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Shilin Mei
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology 100081 Beijing China
| | - Kefan Wu
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jun Yuan
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Langping Tu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 130033 Changchun China
| | - Ivo Que
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center 2333 ZA Leiden The Netherlands
| | | | - Fabio Baldazzi
- Percuros B.V. Zernikedreef 8 2333 CL Leiden The Netherlands
| | - Alan Chan
- Percuros B.V. Zernikedreef 8 2333 CL Leiden The Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center 2333 ZA Leiden The Netherlands
| | - Jing Zuo
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University 130025 Changchun China
| | - Changjiang Yao
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology 100081 Beijing China
| | - Hong Zhang
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
45
|
Nanomedicine in Clinical Photodynamic Therapy for the Treatment of Brain Tumors. Biomedicines 2022; 10:biomedicines10010096. [PMID: 35052776 PMCID: PMC8772938 DOI: 10.3390/biomedicines10010096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
The current treatment for malignant brain tumors includes surgical resection, radiotherapy, and chemotherapy. Nevertheless, the survival rate for patients with glioblastoma multiforme (GBM) with a high grade of malignancy is less than one year. From a clinical point of view, effective treatment of GBM is limited by several challenges. First, the anatomical complexity of the brain influences the extent of resection because a fine balance must be struck between maximal removal of malignant tissue and minimal surgical risk. Second, the central nervous system has a distinct microenvironment that is protected by the blood–brain barrier, restricting systemically delivered drugs from accessing the brain. Additionally, GBM is characterized by high intra-tumor and inter-tumor heterogeneity at cellular and histological levels. This peculiarity of GBM-constituent tissues induces different responses to therapeutic agents, leading to failure of targeted therapies. Unlike surgical resection and radiotherapy, photodynamic therapy (PDT) can treat micro-invasive areas while protecting sensitive brain regions. PDT involves photoactivation of photosensitizers (PSs) that are selectively incorporated into tumor cells. Photo-irradiation activates the PS by transfer of energy, resulting in production of reactive oxygen species to induce cell death. Clinical outcomes of PDT-treated GBM can be advanced in terms of nanomedicine. This review discusses clinical PDT applications of nanomedicine for the treatment of GBM.
Collapse
|
46
|
jinchao S, Liao X, Wu W, Feng T, Karges J, Lin M, Luo H, Chen Y, Chao H. pH-Responsive Iridium(III) Two-Photon Photosensitizers Loaded CaCO3 Nanoplatform for Combined Ca2+ Overload and Photodynamic Therapy. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00951j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intracellular calcium levels are closely related to cell survival. The disruption of the calcium buffering capacity or an overload of the calcium levels enhances the susceptibility of cells towards external...
Collapse
|
47
|
Sajjad F, Han Y, Bao L, Yan Y, O Shea D, Wang L, Chen Z. The improvement of biocompatibility by incorporating porphyrins into carbon dots with photodynamic effects and pH sensitivities. J Biomater Appl 2021; 36:1378-1389. [PMID: 34968148 DOI: 10.1177/08853282211050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photodynamic therapy (PDT) is a promising new treatment for cancer; however, the hydrophobic interactions and poor solubility in water of photosensitizers limit the use in clinic. Nanoparticles especially carbon dots have attracted the attention of the world's scientists because of their unique properties such as good solubility and biocompatibility. In this paper, we integrated carbon dots with different porphyrins to improve the properties of porphyrins and evaluated their efficacy as PDT drugs. The spectroscopic characteristics of porphyrins nano-conjugates were studied. Singlet oxygen generation rate and the light- and dark-induced toxicity of the conjugates were studied. Our results showed that the covalent interaction between CDs and porphyrins has improved the biocompatibility. The synthesized conjugates also inherit the pH sensitivity of the carbon dots, while the conjugation also decreases the hemolysis ratio making them a promising candidate for PDT. The incorporation of carbon dots into porphyrins improved their biocompatibility by reducing toxicity.
Collapse
Affiliation(s)
| | - Yiping Han
- Shanghai Changhai Hospital, Shanghai, China
| | - Leilei Bao
- Shanghai Changhai Hospital, Shanghai, China
| | - Yijia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | - Donal O Shea
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | | | | |
Collapse
|
48
|
Sun X, Chen K, Liu Y, Zhang G, Shi M, Shi P, Zhang S. Metal-organic framework combined with CaO 2 nanoparticles for enhanced and targeted photodynamic therapy. NANOSCALE ADVANCES 2021; 3:6669-6677. [PMID: 36132652 PMCID: PMC9418691 DOI: 10.1039/d1na00610j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 05/28/2023]
Abstract
Photodynamic therapy (PDT) has been rapidly developed as an effective therapeutic approach in clinical settings. However, hypoxia seriously limits the effectiveness of PDT. Here, we report a porphyrin-based metal-organic framework combined with hyaluronate-modified CaO2 nanoparticles (PCN-224-CaO2-HA) to target and enhance PDT efficacy. CaO2 reacts with H2O or weak acid to produce O2, overcoming the hypoxia problem. Hyaluronate protects CaO2 and specifically targets the CD44 receptor, which is highly expressed on tumor cell membranes, performing targeted therapy. After PDT treatment in vitro, the survival rates of 4T1 and MCF-7 tumor cells were 14.58% and 22.45%, respectively. The fluorescence imaging showed that PCN-224-CaO2-HA effectively aggregated in the tumor after 12 h of its intravenous injection into tumor-bearing mice. PCN-224-CaO2-HA exhibited efficacious tumor growth inhibition via enhanced PDT. Overall, this nanosystem providing in situ oxygen production was successfully used for targeted PDT with a significantly enhanced therapeutic efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Xinran Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Kaixiu Chen
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Yingyan Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Guoda Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Min Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| |
Collapse
|
49
|
Liao Y, Wang R, Wang S, Xie Y, Chen H, Huang R, Shao L, Zhu Q, Liu Y. Highly Efficient Multifunctional Organic Photosensitizer with Aggregation-Induced Emission for In Vivo Bioimaging and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54783-54793. [PMID: 34763423 DOI: 10.1021/acsami.1c17476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photosensitizers play a critical role in photodynamic therapy (PDT). Multifunctional organic nanoparticles (NPs) that possess bright fluorescence in aggregates, high singlet oxygen (1O2) quantum yield, near-infrared (NIR) absorption and emission, large Stokes shift, two-photon bioimaging, specific organelle targeting, high PDT efficiency, as well as good biocompatibility and photostability are ideal candidate photosensitizers for image-guided PDT. Due to its enhanced fluorescence and high 1O2 generation efficiency in aggregate states, photosensitizers with aggregation-induced emission (AIE) characteristics have attracted increasing interest in PDT. In this study, a new AIE-active Schiff base 5-(((5-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)methylene)amino)-3-methylthiophene-2,4-dicarbonitrile (TBTDC) based on a D-A-π-A skeleton has been designed and synthesized, and it can be readily encapsulated by Pluronic F-127 to form uniform nanoparticles. TBTDC NPs exhibit bright NIR emission at 825 nm with a Stokes shift up to 300 nm, impressive two-photon bioimaging capability with tissue penetration deep into 300 μm, high 1O2 generation quantum yield (0.552), specific targeting to lysosome, as well as good biocompatibility and photostability. Furthermore, TBTDC NPs present remarkable cytotoxicity for tumor cells and suppression of tumor growth in nude mice through reactive oxygen species generation upon white light irradiation. These results reveal that TBTDC NPs have great potential to become excellent candidates for multifunctional organic photosensitizers for two-photon bioimaging and image-guided PDT and are promising in future clinical applications.
Collapse
Affiliation(s)
- Yunhui Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Ruolan Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shaozhen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Yifan Xie
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Huanhao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Runjia Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qiuhua Zhu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Yanshan Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| |
Collapse
|
50
|
Nguyen PV, Hervé-Aubert K, Chourpa I, Allard-Vannier E. Active targeting strategy in nanomedicines using anti-EGFR ligands - A promising approach for cancer therapy and diagnosis. Int J Pharm 2021; 609:121134. [PMID: 34571073 DOI: 10.1016/j.ijpharm.2021.121134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
As active targeting using nanomedicines establishes itself as a strategy of choice in cancer therapy, several target receptors or ligands overexpressed in cancer cells have been identified and exploited. Among them, the epidermal growth factor receptor (EGFR) has emerged as one of the most promising oncomarkers for active targeting nanomedicines due to its overexpression and its active involvement in a wide range of cancer types. Henceforth, many novel EGFR-targeted nanomedicines for cancer therapy have been developed, giving encouraging results both in vitro and in vivo. This review focuses on different applications of such medicines in oncotherapy. On an important note, the contribution of EGFR-targeting ligands to final therapy efficacy along with current challenges and possible solutions or alternatives are emphasized.
Collapse
Affiliation(s)
- Phuoc Vinh Nguyen
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | |
Collapse
|