1
|
Wen H, Johnson JS, Mulim HA, Araujo AC, De Carvalho FE, Rocha AO, Huang Y, Tiezzi F, Maltecca C, Schinckel AP, Brito LF. Genomic regions and biological mechanisms underlying climatic resilience traits derived from automatically-recorded vaginal temperature in lactating sows under heat stress conditions. Front Genet 2024; 15:1498380. [PMID: 39574795 PMCID: PMC11578969 DOI: 10.3389/fgene.2024.1498380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Climate change poses a growing threat to the livestock industry, impacting animal productivity, animal welfare, and farm management practices. Thus, enhancing livestock climatic resilience (CR) is becoming a key priority in various breeding programs. CR can be defined as the ability of an animal to be minimally affected or rapidly return to euthermia under thermally stressful conditions. The primary study objectives were to perform genome-wide association studies for 12 CR indicators derived from variability in longitudinal vaginal temperature in lactating sows under heat stress conditions. A total of 31 single nucleotide polymorphisms (SNPs) located on nine chromosomes were considered as significantly associated with nine CR indicators based on different thresholds. Among them, only two SNPs were simultaneously identified for different CR indicators, SSC6:16,449,770 bp and SSC7:39,254,889 bp. These results highlighted the polygenic nature of CR indicators with small effects distributed across different chromosomes. Furthermore, we identified 434 positional genes associated with CR. Key candidate genes include SLC3A2, STX5, POLR2G, and GANAB, which were previously related to heat stress responses, protein folding, and cholesterol metabolism. Furthermore, the enriched KEGG pathways and Gene Ontology (GO) terms associated with these candidate genes are linked to stress responses, immune and inflammatory responses, neural system, and DNA damage and repair. The most enriched quantitative trait loci are related to "Meat and Carcass", followed by "Production", "Reproduction", "Health", and "Exterior (conformation and appearance)" traits. Multiple genomic regions were identified associated with different CR indicators, which reveals that CR is a highly polygenic trait with small effect sizes distributed across the genome. Many heat tolerance or HS related genes in our study, such as HSP90AB1, DMGDH, and HOMER1, have been identified. The complexity of CR encompasses a range of adaptive responses, from behavioral to cellular. These results highlight the possibility of selecting more heat-tolerant individuals based on the identified SNP for CR indicators.
Collapse
Affiliation(s)
- Hui Wen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jay S. Johnson
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Andre C. Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | | | - Artur O. Rocha
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Yijian Huang
- Smithfield Premium Genetics, Raleigh, NC, United States
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
2
|
Jia X, Feng Y. Energy-Based Skin Rejuvenation: A Review of Mechanisms and Thermal Effects. J Cosmet Dermatol 2024. [PMID: 39485034 DOI: 10.1111/jocd.16657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Energy-based photoelectric and ultrasonic devices are essential for skin rejuvenation and resurfacing in the field of plastic surgery and dermatology. Both functionality and appearance are impacted by factors that cause skin to age, and various energy types have variable skin penetration depths and modes of transmission. AIM The objective is to advise safe and efficient antiaging treatment while precisely and sensitively controlling and assessing the extent of thermal damage to tissues caused by different kinds of energy-based devices. METHODS A literature search was conducted on PubMed to review the mechanisms of action and thermal effects of photoelectric and ultrasonic devices in skin remodeling applications. RESULTS This paper reviews the thermal effects of energy-based devices in skin resurfacing applications, including the tissue level and molecular biochemical level. It seeks to summarize the distribution form, depth of action, and influencing factors of thermal effects in combination with the mechanisms of action of various types of devices. CONCLUSION Accurate control of thermal damage is crucial for safe and effective skin remodeling treatments. Thorough investigation of molecular biochemical indicators and signaling pathways is needed for real-time monitoring and prevention of severe thermal injury. Ongoing research and technological advancements will improve the accuracy and control of thermal damage during treatments.
Collapse
Affiliation(s)
- Ximeng Jia
- Laser Aesthetic Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongqiang Feng
- Laser Aesthetic Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Poursharifi N, Hassanpouramiri M, Zink A, Ucuncu M, Parlak O. Transdermal Sensing of Enzyme Biomarker Enabled by Chemo-Responsive Probe-Modified Epidermal Microneedle Patch in Human Skin Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403758. [PMID: 38733567 DOI: 10.1002/adma.202403758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Wearable bioelectronics represents a significant breakthrough in healthcare settings, particularly in (bio)sensing which offers an alternative way to track individual health for diagnostics and therapy. However, there has been no notable improvement in the field of cancer, particularly for skin cancer. Here, a wearable bioelectronic patch is established for transdermal sensing of the melanoma biomarker, tyrosinase (Tyr), using a microneedle array integrated with a surface-bound chemo-responsive smart probe to enable target-specific electrochemical detection of Tyr directly from human skin tissue. The results presented herein demonstrate the feasibility of a transdermal microneedle sensor for direct quantification of enzyme biomarkers in an ex vivo skin model. Initial performance analysis of the transdermal microneedle sensor proves that the designed methodology can be an alternative for fast and reliable diagnosis of melanoma and the evaluation of skin moles. The innovative approach presented here may revolutionize the landscape of skin monitoring by offering a nondisruptive means for continuous surveillance and timely intervention of skin anomalies, such as inflammatory skin diseases or allergies and can be extended to the screening of multiple responses of complementary biomarkers with simple modification in device design.
Collapse
Affiliation(s)
- Nazanin Poursharifi
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Morteza Hassanpouramiri
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, 80802, Munich, Germany
| | - Alexander Zink
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, 80802, Munich, Germany
| | - Muhammed Ucuncu
- Department of Analytical Chemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, 35620, Türkiye
| | - Onur Parlak
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, 80802, Munich, Germany
- Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, 171 64, Sweden
| |
Collapse
|
4
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Heat shock response during the resolution of inflammation and its progressive suppression in chronic-degenerative inflammatory diseases. Cell Stress Chaperones 2024; 29:116-142. [PMID: 38244765 PMCID: PMC10939074 DOI: 10.1016/j.cstres.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Wen H, Johnson JS, Freitas PHF, Maskal JM, Gloria LS, Araujo AC, Pedrosa VB, Tiezzi F, Maltecca C, Huang Y, Schinckel AP, Brito LF. Longitudinal genomic analyses of automatically-recorded vaginal temperature in lactating sows under heat stress conditions based on random regression models. Genet Sel Evol 2023; 55:95. [PMID: 38129768 PMCID: PMC10734178 DOI: 10.1186/s12711-023-00868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Automatic and continuous recording of vaginal temperature (TV) using wearable sensors causes minimal disruptions to animal behavior and can generate data that enable the evaluation of temporal body temperature variation under heat stress (HS) conditions. However, the genetic basis of TV in lactating sows from a longitudinal perspective is still unknown. The objectives of this study were to define statistical models and estimate genetic parameters for TV in lactating sows using random regression models, and identify genomic regions and candidate genes associated with HS indicators derived from automatically-recorded TV. RESULTS Heritability estimates for TV ranged from 0.14 to 0.20 over time (throughout the day and measurement period) and from 0.09 to 0.18 along environmental gradients (EG, - 3.5 to 2.2, which correspond to dew point values from 14.87 to 28.19 ˚C). Repeatability estimates of TV over time and along EG ranged from 0.57 to 0.66 and from 0.54 to 0.77, respectively. TV measured from 12h00 to 16h00 had moderately high estimates of heritability (0.20) and repeatability (0.64), indicating that this period might be the most suitable for recording TV for genetic selection purposes. Significant genotype-by-environment interactions (GxE) were observed and the moderately high estimates of genetic correlations between pairs of extreme EG indicate potential re-ranking of selection candidates across EG. Two important genomic regions on chromosomes 10 (59.370-59.998 Mb) and16 (21.548-21.966 Mb) were identified. These regions harbor the genes CDC123, CAMK1d, SEC61A2, and NUDT5 that are associated with immunity, protein transport, and energy metabolism. Across the four time-periods, respectively 12, 13, 16, and 10 associated genomic regions across 14 chromosomes were identified for TV. For the three EG classes, respectively 18, 15, and 14 associated genomic windows were identified for TV, respectively. Each time-period and EG class had uniquely enriched genes with identified specific biological functions, including regulation of the nervous system, metabolism and hormone production. CONCLUSIONS TV is a heritable trait with substantial additive genetic variation and represents a promising indicator trait to select pigs for improved heat tolerance. Moderate GxE for TV exist, indicating potential re-ranking of selection candidates across EG. TV is a highly polygenic trait regulated by a complex interplay of physiological, cellular and behavioral mechanisms.
Collapse
Affiliation(s)
- Hui Wen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, USA
| | - Pedro H F Freitas
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jacob M Maskal
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Leonardo S Gloria
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Huang Y, Song H, Wang Z, Cheng Y, Liu Y, Hao S, Li N, Wang Y, Wang Y, Zhang X, Sun B, Li Y, Yao X. Heat and outpatient visits of skin diseases – A multisite analysis in China, 2014–2018. Heliyon 2022; 8:e11203. [PMID: 36339999 PMCID: PMC9626933 DOI: 10.1016/j.heliyon.2022.e11203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background Many studies have shown that various kinds of diseases were associated with the variation of ambient temperature. However, there’s only a scrap of evidence paying attention to the link between temperature and skin diseases, and no relevant national research was performed in China. Objective This study aimed to quantify the effect of heat on skin diseases and identify the vulnerable populations and areas in China. Methods Daily meteorological data, air pollutant data and outpatient data were collected from in 18 sites of China during 2014–2018. A time-series study with distributed lag nonlinear model and multivariate meta-analysis was applied to analyze the site-specific and pooled associations between daily mean temperature and daily outpatient visits of skin diseases by using the data of warm season (from June to September). Stratified analysis by age, sex and climate zones and subtypes of skin diseases were also conducted. Results We found a positive linear relationship between the ambient temperature and risk of skin diseases, with a 1.25% (95%CI: 0.34%, 2.16%) increase of risk of outpatient visits for each 1 °C increase in daily mean temperature during the warm season. In general, groups aged 18–44 years, males and people living in temperate climate regions were more susceptible to high temperature. Immune dysfunction including dermatitis and eczema were heat-sensitive skin diseases. Conclusions Our findings suggested that people should take notice of heat-related skin diseases and also provided some references about related health burden for strategy-makers. Targeted measures for vulnerable populations need to be taken to reduce disease burden, including monitoring and early warning systems, and sun-protection measures.
Collapse
|
8
|
Wipf AJ, Brown MR. Malignant transformation of erythema ab igne. JAAD Case Rep 2022; 26:85-87. [PMID: 35942353 PMCID: PMC9356017 DOI: 10.1016/j.jdcr.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Angela J. Wipf
- Correspondence to: Angela J. Wipf, MD, Department of Dermatology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, 3rd Floor, Mailstop F703, Aurora, CO 80045.
| | | |
Collapse
|
9
|
Ernst B, Setayesh T, Nersesyan A, Kundi M, Fenech M, Bolognesi C, Mišík M, Ghane M, Mousavi SF, Knasmüller S. Investigations concerning the impact of consumption of hot beverages on acute cytotoxic and genotoxic effects in oral mucosa cells. Sci Rep 2021; 11:23014. [PMID: 34836993 PMCID: PMC8626505 DOI: 10.1038/s41598-021-01995-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/01/2021] [Indexed: 12/09/2022] Open
Abstract
Consumption of very hot beverages and foods increases the incidence of oral and esophageal cancer but the mechanisms are not known and the critical temperature is not well defined. We realized a study with exfoliated cells from the oral cavity of individuals (n = 73) that live in an area in Iran which has the highest incidence of EC worldwide. Consumption of beverages at very high temperatures is a characteristic feature of this population. We analyzed biomarkers which are (i) indicative for genetic instability (micronuclei that are formed as a consequence of chromosomal damage, nuclear buds which are a consequence of gene amplifications and binucleated cells which reflect mitotic disturbances), (ii) markers that reflect cytotoxic effects (condensed chromatin, karyorrhectic, karyolitic and pyknotic cells), (iii) furthermore, we determined the number of basal cells which is indicative for the regenerative capacity of the buccal mucosa. The impact of the drinking temperature on the frequencies of these parameters was monitored with thermometers. We found no evidence for induction of genetic damage but an increase of the cytotoxic effects with the temperature was evident. This effect was paralleled by an increase of the cell division rate of the mucosa which was observed when the temperature exceeded 60 °C. Our findings indicate that cancer in the upper digestive tract in drinkers of very hot beverages is not caused by damage of the genetic material but by an increase of the cell division rate as a consequence of cytotoxic effects which take place at temperatures over 60 °C. It is known from earlier experiments with rodents that increased cell divisions lead to tumor promotion in the esophagus. Our findings provide a mechanistic explanation and indicate that increased cancer risks can be expected when the drinking temperature of beverages exceeds 60 °C.
Collapse
Affiliation(s)
- Benjamin Ernst
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Tahereh Setayesh
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 43650, Bangi, Selangor, Malaysia
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Miroslav Mišík
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Masood Ghane
- Department of Microbiology, Islamic Azad University of Tonekabon, Mazandaran, Iran
| | | | - Siegfried Knasmüller
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Kim S, Kim Y, Hyun YS, Choi H, Kim SY, Kim TG. Exosomes from human cord blood plasma accelerate cutaneous wound healing by promoting fibroblast function, angiogenesis, and M2 macrophage differentiation. Biomater Sci 2021; 9:3028-3039. [PMID: 33657200 DOI: 10.1039/d0bm01801e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exosomes contain natural cargo molecules, such as miRNA, mRNA, and proteins, and transfer these functional cargos to neighboring or distant cells through circulation. In the wound-healing process, exosomes in the human blood and body fluids perform various functions, including proliferation, angiogenesis, differentiation, and wound healing, owing to their unique compositions. However, there is very limited information on the wound-healing effect of proteins in human cord blood plasma exosomes (CBPexo). Therefore, we studied the wound-healing potential of these proteins in terms of fibroblast functions, angiogenesis, and M2 macrophage differentiation. When scratch wound assays were conducted using human fibroblasts, CBPexo exhibited better wound-healing effects than adult blood plasma exosomes (ABPexo). CBPexo also promoted angiogenesis and differentiation of M2 macrophages, thus promoting the transition from inflammation to proliferation. To evaluate the CBPexo molecules involved, five proteins, GAL-3, GAL-7, HSP-72, PIP, and S100-A7, were selected through proteomic analysis, and their functions were investigated using an artificial exosome that expresses these proteins. Among these, HSP72 and PIP exhibited wound-healing effects similar to CBPexo. Furthermore, artificial exosomes expressing both HSP72 and PIP showed better wound-healing effects than CBPexo. Therefore, the use of artificial CBPexo can potentially overcome the limitations related to exosome production from CB.
Collapse
Affiliation(s)
- Sueon Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeongwon Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su-Yeon Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea and Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Parker ER. The influence of climate change on skin cancer incidence - A review of the evidence. Int J Womens Dermatol 2021; 7:17-27. [PMID: 33537393 PMCID: PMC7838246 DOI: 10.1016/j.ijwd.2020.07.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Climate change is broadly affecting human health, with grave concern that continued warming of the earth's atmosphere will result is serious harm. Since the mid-20th century, skin cancer incidence rates have risen at an alarming rate worldwide. OBJECTIVE This review examines the relationship between climate change and cutaneous carcinogenesis. METHODS A literature review used the National Institutes of Health databases (PubMed and Medline), the Surveillance, Epidemiology, and End Results and International Agency for Research on Cancer registries, and published reports by federal and international agencies and consortia, including the Australian Institute of Health and Welfare, Climate and Clean Air Coalition, U.S. Environmental Protection Agency, Intergovernmental Panel on Climate Change, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, United Nations Environment Programme, World Health Organization, and World Meteorological Organization. RESULTS Skin cancer risk is determined by multiple factors, with exposure to ultraviolet radiation being the most important. Strong circumstantial evidence supports the hypothesis that factors related to climate change, including stratospheric ozone depletion, global warming, and ambient air pollution, have likely contributed to the increasing incidence of cutaneous malignancy globally and will continue to impose a negative on influence skin cancer incidence for many decades to come. CONCLUSION Because much of the data are based on animal studies and computer simulations, establishing a direct and definitive link remains challenging. More epidemiologic studies are needed to prove causality in skin cancer, but the evidence for overall harm to human health as a direct result of climate change is clear. Global action to mitigate these negative impacts to humans and the environment is imperative.
Collapse
Affiliation(s)
- Eva Rawlings Parker
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
12
|
Hinchliffe A, Kogevinas M, Pérez-Gómez B, Ardanaz E, Amiano P, Marcos-Delgado A, Castaño-Vinyals G, Llorca J, Moreno V, Alguacil J, Fernandez-Tardón G, Salas D, Marcos-Gragera R, Aragonés N, Guevara M, Gil L, Martin V, Benavente Y, Gomez-Acebo I, Santibáñez M, Ángel Alba M, García AM, Pollán M, Turner MC. Occupational Heat Exposure and Breast Cancer Risk in the MCC-Spain Study. Cancer Epidemiol Biomarkers Prev 2020; 30:364-372. [PMID: 33268491 DOI: 10.1158/1055-9965.epi-20-0732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/30/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mechanisms linking occupational heat exposure with chronic diseases have been proposed. However, evidence on occupational heat exposure and cancer risk is limited. METHODS We evaluated occupational heat exposure and female breast cancer risk in a large Spanish case-control study. We enrolled 1,738 breast cancer cases and 1,910 frequency-matched population controls. A Spanish job-exposure matrix, MatEmEsp, was used to assign estimates of the proportion of workers exposed (P ≥ 25% for at least 1 year) and work time with heat stress (wet bulb globe temperature ISO 7243) for each occupation. We used three exposure indices: ever versus never exposed, lifetime cumulative exposure, and duration of exposure (years). We estimated ORs and 95% confidence intervals (CI), applying a lag period of 5 years and adjusting for potential confounders. RESULTS Ever occupational heat exposure was associated with a moderate but statistically significant higher risk of breast cancer (OR 1.22; 95% CI, 1.01-1.46), with significant trends across categories of lifetime cumulative exposure and duration (P trend = 0.01 and 0.03, respectively). Stronger associations were found for hormone receptor-positive disease (OR ever exposure = 1.38; 95% CI, 1.12-1.67). We found no confounding effects from multiple other common occupational exposures; however, results attenuated with adjustment for occupational detergent exposure. CONCLUSIONS This study provides some evidence of an association between occupational heat exposure and female breast cancer risk. IMPACT Our results contribute substantially to the scientific literature. Further investigations are needed considering multiple occupational exposures.
Collapse
Affiliation(s)
- Alice Hinchliffe
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Eva Ardanaz
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Instituto de Salud Pública de Navarra (IdiSNA), Pamplona, Spain
| | - Pilar Amiano
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Public Health Division of Gipuzkoa, Biodonostia Health Research Institute, Ministry of Health of the Basque Government, San Sebastian, Spain
| | | | - Gemma Castaño-Vinyals
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Javier Llorca
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,University of Cantabria - IDIVAL, Santander, Spain
| | - Víctor Moreno
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO) and Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Juan Alguacil
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, Huelva, Spain
| | - Guillermo Fernandez-Tardón
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Institute of Health Research of the Principality of Asturias (ISPA), Public Health Department, University of Oviedo, Oviedo, Spain
| | - Dolores Salas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Valencia, Spain.,General Directorate Public Health, Valencian Community, Valencia, Spain
| | - Rafael Marcos-Gragera
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Department of Health, Autonomous Government of Catalonia, Catalan Institute of Oncology, Girona, Spain.,Descriptive Epidemiology, Genetics and Cancer Prevention Group, Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Nuria Aragonés
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Epidemiology Section, Public Health Division, Department of Health of Madrid, Madrid, Spain
| | - Marcela Guevara
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Instituto de Salud Pública de Navarra (IdiSNA), Pamplona, Spain
| | - Leire Gil
- Public Health Division of Gipuzkoa, Biodonostia Health Research Institute, Ministry of Health of the Basque Government, San Sebastian, Spain
| | - Vicente Martin
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Instituto de Biomedicina (IBIOMED)
| | - Yolanda Benavente
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Unit of Infections and Cancer (UNIC), Cancer Epidemiology Research Programme, IDIBELL, Institut Català d'Oncologia, L'Hospitalet De Llobregat, Barcelona, Spain
| | - Ines Gomez-Acebo
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,University of Cantabria - IDIVAL, Santander, Spain
| | | | - Miguel Ángel Alba
- Industrial Hygiene Department, Quirón Prevención, S.L.U., Barcelona, Barcelona, Spain
| | - Ana M García
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Departamento de Medicina Preventiva y Salud Pública, Universitat de València, València, Spain.,Center for Research in Occupational Health (CISAL), Universitat Pompeu Fabra, Barcelona, Spain
| | - Marina Pollán
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| |
Collapse
|
13
|
Heck T, Ludwig M, Frizzo M, Rasia-Filho A, Homem de Bittencourt PI. Suppressed anti-inflammatory heat shock response in high-risk COVID-19 patients: lessons from basic research (inclusive bats), light on conceivable therapies. Clin Sci (Lond) 2020; 134:1991-2017. [PMID: 32749472 PMCID: PMC7403894 DOI: 10.1042/cs20200596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The major risk factors to fatal outcome in COVID-19 patients, i.e., elderliness and pre-existing metabolic and cardiovascular diseases (CVD), share in common the characteristic of being chronic degenerative diseases of inflammatory nature associated with defective heat shock response (HSR). The molecular components of the HSR, the principal metabolic pathway leading to the physiological resolution of inflammation, is an anti-inflammatory biochemical pathway that involves molecular chaperones of the heat shock protein (HSP) family during homeostasis-threatening stressful situations (e.g., thermal, oxidative and metabolic stresses). The entry of SARS coronaviruses in target cells, on the other hand, aggravates the already-jeopardized HSR of this specific group of patients. In addition, cellular counterattack against virus involves interferon (IFN)-mediated inflammatory responses. Therefore, individuals with impaired HSR cannot resolve virus-induced inflammatory burst physiologically, being susceptible to exacerbated forms of inflammation, which leads to a fatal "cytokine storm". Interestingly, some species of bats that are natural reservoirs of zoonotic viruses, including SARS-CoV-2, possess an IFN-based antiviral inflammatory response perpetually activated but do not show any sign of disease or cytokine storm. This is possible because bats present a constitutive HSR that is by far (hundreds of times) more intense and rapid than that of human, being associated with a high core temperature. Similarly in humans, fever is a physiological inducer of HSR while antipyretics, which block the initial phase of inflammation, impair the resolution phase of inflammation through the HSR. These findings offer a rationale for the reevaluation of patient care and fever reduction in SARS, including COVID-19.
Collapse
Affiliation(s)
- Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
| | - Alberto Antonio Rasia-Filho
- Federal University of Health Sciences of Porto Alegre (UFCSPA), Graduate Program in Biosciences, Porto Alegre, RS, 90050-170 Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90050-170 Brazil
| |
Collapse
|
14
|
Wei ZD, Sun YZ, Tu CX, Qi RQ, Huo W, Chen HD, Gao XH. DNAJA4 deficiency augments hyperthermia-induced Clusterin and ERK activation: two critical protective factors of human keratinocytes from hyperthermia-induced injury. J Eur Acad Dermatol Venereol 2020; 34:2308-2317. [PMID: 32277496 DOI: 10.1111/jdv.16432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hyperthermia upregulates DNAJA4, a member of heat shock proteins (HSPs) 40 family, in human keratinocytes and HPV-infected tissue. DNAJA4 deficiency enhances growth arrest induced by hyperthermia. Clusterin (CLU) and phosphorylated ERK (p-ERK) play a role in regulating cell proliferation and apoptosis, under environmental stress. OBJECTIVES To examine the downstream molecules and signalling pathways of DNAJA4 and assess their roles in cell cycle and apoptosis of keratinocytes in response to hyperthermia. METHODS Wild-type and DNAJA4-knockout (KO) HaCaT cells were exposed to either 44 °C (hyperthermia) or 37 °C (control) for 30 min. The expression levels of CLU and p-ERK were determined by RT-PCR and Western blotting. RNAi and PD98059 were used to inhibit the expression of CLU and p-ERK, respectively. Cell viability, cell cycle and apoptosis were analysed by MTS assay and flow cytometry. Fresh biopsy samples of human normal foreskin or condyloma acuminatum (CA) were utilized to examine the expression of CLU and p-ERK after ex vivo culture at 44 °C. RESULTS The expression of CLU and p-ERK was significantly increased by hyperthermia treatment at 44 °C in HaCaT cells, foreskin and HPV-infected tissues. In HaCaT cells subjected to hyperthermia, DNAJA4 deficiency further augmented the expression of CLU and p-ERK. CLU deficiency enhanced the p-ERK expression. Hyperthermia-induced CLU and p-ERK exerted protective roles mainly through inhibiting apoptosis and maintaining cell cycle, respectively. CONCLUSIONS In keratinocytes, CLU and p-ERK are induced by hyperthermia, an effect which can be further enhanced by DNAJA4 deficiency. CLU deficiency also increases p-ERK expression. Both CLU and p-ERK are critical protective factors of human keratinocytes from hyperthermia-induced injury.
Collapse
Affiliation(s)
- Z-D Wei
- China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China.,Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Y-Z Sun
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - C-X Tu
- Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, China
| | - R-Q Qi
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - W Huo
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - H-D Chen
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - X-H Gao
- China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| |
Collapse
|
15
|
Grandi C, D’Ovidio MC. Balance between Health Risks and Benefits for Outdoor Workers Exposed to Solar Radiation: An Overview on the Role of Near Infrared Radiation Alone and in Combination with Other Solar Spectral Bands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1357. [PMID: 32093162 PMCID: PMC7068431 DOI: 10.3390/ijerph17041357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/31/2022]
Abstract
Near infrared or infrared A (IRA) accounts for over 40% of the solar spectrum (SS) and is able to reach subcutaneous tissue as well as the retina. Outdoor workers are occupationally exposed to solar radiation (SR), but the level of exposure may differ widely depending on the job performed, time spent outdoors, latitude, altitude, season, personal protection, etc. Until now, risk assessment and management for outdoor workers has focused on the prevention of both acute and long-term effects on the eye and the skin due to solar ultraviolet radiation (UVR) with little consideration of the other components of the SS (a possible exception is represented by visible radiation with reference to the eye). A growing body of evidence coming from in vitro studies indicates that IRA is involved in cellular reactive oxygen species (ROS) production and may interfere with the respiratory chain in the mitochondria. Moreover, it can modulate gene expression and some metabolic pathways. The biological action of IRA is only partly attributable to a thermal mechanism, should it be also involved in photochemical ones. The cellular and molecular pathways affected by IRA are partly similar and partly different with respect to those involved in the case of visible ultraviolet A (UVA) and ultraviolet B (UVB) radiation. Consequently, the net effect of the SS is very difficult to predict at different levels of the biological organization, making more difficult the final balance of health risk and benefits (for the skin, eye, immune system, blood pressure, etc.) in a given exposure situation. Moreover, few in vivo studies and no epidemiological data are presently available in this regard. Investigating this topic may contribute to better defining the individual exposome. More practically, it is expected to bring benefits to the risk assessment and management for outdoor workers exposed to SS, contributing to: (1) better definition of the individual profiles of susceptibility, (2) more focused preventive and protective measures, (3) better implementation of the health surveillance and (4) a more effective information and training.
Collapse
Affiliation(s)
- Carlo Grandi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), 00078 Monte Porzio Catone, Rome, Italy;
| | | |
Collapse
|
16
|
Woo YK, Park J, Ryu JH, Cho HJ. The anti-inflammatory and anti-apoptotic effects of advanced anti-inflammation composition (AAIC) in heat shock-induced human HaCaT keratinocytes. J Cosmet Dermatol 2019; 19:2114-2124. [PMID: 31868297 DOI: 10.1111/jocd.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/03/2019] [Accepted: 11/27/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND The development of natural cosmetic materials without side effects to protect skin from heat shock is necessary. We recently reported that advanced cooling composition (ACC) has anti-inflammatory effect in RAW 264.7 cells stimulated with lipopolysaccharide (LPS) and strong anti-microbial effect against Pseudomonas aeruginosa, Staphylococcus aureus, MRSA (Methicillin-resistant Staphylococcus aureus), Candida albicans, and Streptococcus mutans. AIMS To further investigate whether advanced anti-inflammation composition (AAIC), newly developed from existing ACC has beneficial effects in heat shock-induced immortalized human keratinocytes (HaCaT cells), HaCaT cells were pretreated with AAIC before heat shock treatment. METHODS Cell viability for heat shock treatment and different concentrations of AAIC in HaCaT cells were assessed by MTT assay. Anti-oxidative activity of AAIC was measured using the DPPH assay. The protein expression in heat shock-induced HaCaT cells treated with AAIC was evaluated by immunofluorescence staining and western blot analysis. RESULTS AAIC, which is effective at 100 µg/mL concentration, was nontoxic in HaCaT cells and had an anti-oxidative effect demonstrated by scavenging DPPH free radicals. AAIC treatment significantly attenuated the aberrant levels of pro-inflammatory and pro-apoptotic signaling molecules in heat shock-induced HaCaT cells compared with control cells. CONCLUSION AAIC potentially includes effective anti-oxidative activity, anti-inflammatory, and anti-apoptotic properties against heat shock-induced keratinocytes, suggesting that it can be provided as a raw material for imparting skin health.
Collapse
Affiliation(s)
| | | | | | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, Korea
| |
Collapse
|
17
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
18
|
Rocca MS, Benna C, Mocellin S, Rossi CR, Msaki A, Di Nisio A, Opocher G, Foresta C. E2F1 germline copy number variations and melanoma susceptibility. J Transl Med 2019; 17:181. [PMID: 31142321 PMCID: PMC6542053 DOI: 10.1186/s12967-019-1933-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/20/2019] [Indexed: 01/29/2023] Open
Abstract
Background Melanoma is an aggressive type of skin cancer whose aetiology remains elusive as both environmental and genetic factors can contribute to its development. Recent studies have demonstrated the existence of multiple copies of E2F1 gene in melanoma specimens which could explain the deregulated E2F1 activity in this type of cancer. This finding suggests a key role for this transcription factor in the malignant transformation of melanocytes. Therefore, E2F1 has been considered as a potential therapeutic target for this form of skin cancer. Since germline copy number variations (CNVs) have been associated with increased susceptibility to different types of cancer, the aim of our study was to assess germline E2F1 CNV in melanoma patients. However, CNVs not necessarily lead to gene dosage imbalance, hence, further factors, in association with CNVs, could contribute to clinical manifestations. Considering that heat stress has been hypothesised as a contributing factor to skin cancer, we also investigated the effect of heat stress on E2F1 expression. Methods E2F1 CNV was measured in genomic DNA isolated from blood of 552 patients diagnosed with melanoma and 520 healthy subjects using TaqMan Copy Number Assays. E2F1 mRNA expression was also evaluated by RT-qPCR in the melanoma cell line, SK MEL 267, before and after exposure to heat stress. Results We found that patients diagnosed with melanoma (1.6%, 9/552) harboured frequently altered germline E2F1 copies compared to healthy subjects (0%, 0/520). Moreover, the difference among the two groups was statistically significant (p = 0.004). Furthermore, we found that heat exposure alone can significantly induce E2F1 expression. Conclusions This is the first study that shows a relation between germline E2F1 CNV and melanoma, suggesting that altered copies of this gene might be a predisposing factor to skin cancer. Our results also suggest that environmental insults, such as heat stress, could contribute to an aberrant E2F1 activity by inducing E2F1 mRNA expression. Therefore, subjects with multiple constitutive copies of E2F1 are at greater risk of developing melanoma when exposed to heat. Altogether our results corroborate with the hypothesis that susceptibility to melanoma depends on both the environment and genetic factors.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Familial Cancer Clinic, Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Clara Benna
- Department of Surgery Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy.,First Surgical Clinic, Azienda Ospedaliera di Padova, Padua, Italy
| | - Simone Mocellin
- Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy.,Department of Surgery Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Carlo Riccardo Rossi
- Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy.,Department of Surgery Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Aichi Msaki
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Andrea Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Giuseppe Opocher
- Familial Cancer Clinic, Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
19
|
de Assis LVM, Moraes MN, Castrucci AMDL. Heat shock antagonizes UVA-induced responses in murine melanocytes and melanoma cells: an unexpected interaction. Photochem Photobiol Sci 2018; 16:633-648. [PMID: 28203671 DOI: 10.1039/c6pp00330c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The skin is under the influence of oscillatory factors such as light and temperature. This organ possesses a local system that controls several aspects in a time-dependent manner; moreover, the skin has a well-known set of opsins whose function is still unknown. We demonstrate that heat shock reduces Opn2 expression in normal Melan-a melanocytes, while the opposite effect is found in malignant B16-F10 cells. In both cell lines, UVA radiation increases the expression of Opn4 and melanin content. Clock genes and Xpa, a DNA repair gene, of malignant melanocytes are more responsive to UVA radiation when compared to normal cells. Most UVA-induced effects are antagonized by heat shock, a phenomenon shown for the first time. Based on our data, the heat produced during UV experiments should be carefully monitored since temperature represents, according to our results, an important confounding factor, and therefore it should, when possible, be dissociated from UV radiation. The responses displayed by murine melanoma cells, if proven to also take place in human melanoma, may represent an important step in cancer development and progression.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
20
|
de Assis LVM, Moraes MN, Magalhães-Marques KK, Castrucci AMDL. Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: Unravelling the photosensitive system of the skin. Eur J Cell Biol 2018; 97:150-162. [PMID: 29395480 DOI: 10.1016/j.ejcb.2018.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
The mammalian skin has a photosensitive system comprised by several opsins, including rhodopsin (OPN2) and melanopsin (OPN4). Recently, our group showed that UVA (4.4 kJ/m2) leads to immediate pigment darkening (IPD) in murine normal and malignant melanocytes. We show the role of OPN2 and OPN4 as UVA sensors: UVA-induced IPD was fully abolished when OPN4 was pharmacologically inhibited by AA9253 or when OPN2 and OPN4 were knocked down by siRNA in both cell lines. Our data, however, demonstrate that phospholipase C/protein kinase C pathway, a classical OPN4 pathway, is not involved in UVA-induced IPD in either cell line. Nonetheless, in both cell types we have shown that: a) intracellular calcium signal is necessary for UVA-induced IPD; b) the involvement of CaMK II, whose inhibition, abolished the UVA-induced IPD; c) the role of CAMK II/NOS/sGC/cGMP pathway in the process since inhibition of either NOS or sGC abolished the UVA-induced IPD. Taken altogether, we show that OPN2 and OPN4 participate in IPD induced by UVA in murine normal and malignant melanocytes through a conserved common pathway. Interestingly, upon knockdown of OPN2 or OPN4, the UVA-driven IPD is completely lost, which suggests that both opsins are required and cooperatively signal in murine both cell lines. The participation of OPN2 and OPN4 system in UVA radiation-induced response, if proven to take place in human skin, may represent an interesting pharmacological target for the treatment of depigmentary disorders and skin-related cancer.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Keila Karoline Magalhães-Marques
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
21
|
Ueda T, Kohama Y, Kuge A, Kido E, Sakurai H. GADD45 family proteins suppress JNK signaling by targeting MKK7. Arch Biochem Biophys 2017; 635:1-7. [PMID: 29037961 DOI: 10.1016/j.abb.2017.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 01/22/2023]
Abstract
Growth arrest and DNA damage-inducible 45 (GADD45) family genes encode related proteins, including GADD45α, GADD45β, and GADD45γ. In HeLa cells, expression of GADD45 members is differentially regulated under a variety of environmental conditions, but thermal and genotoxic stresses induce the expression of all genes. The heat shock response of GADD45β is mediated by the heat shock transcription factor 1 (HSF1), and GADD45β is necessary for heat stress survival. Heat and genotoxic stress-induced activation of c-Jun N-terminal kinase (JNK) is suppressed by the expression of GADD45 proteins. GADD45 proteins bind the JNK kinase mitogen-activated protein kinase kinase 7 (MKK7) and inhibit its activity, even under normal physiological conditions. Our findings indicate that GADD45 essentially suppresses the MKK7-JNK pathway and suggest that differentially expressed GADD45 family members fine-tune stress-inducible JNK activity.
Collapse
Affiliation(s)
- Takumi Ueda
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Yuri Kohama
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Ayana Kuge
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Eriko Kido
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
22
|
Maghsudlu M, Farashahi Yazd E. Heat-induced inflammation and its role in esophageal cancer. J Dig Dis 2017; 18:431-444. [PMID: 28749599 DOI: 10.1111/1751-2980.12511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Esophageal cancer, the sixth most common cause of death from cancer worldwide, consists of different histological types and displays various patterns of incidence. Esophageal adenocarcinoma and esophageal squamous cell carcinoma are the most prevalent types. As epidemiological studies report that ingesting hot substances is one major risk factor for squamous cell carcinoma, evaluating the effect of this external stress on esophagus cells seems desirable. This specific kind of stress brings about cellular changes and stabilizes them by affecting different cellular features such as genetic stability, membrane integrity and the regulation of signaling pathways. It also causes tissue injury by affecting the extracellular matrix and cell viability. Thus, one of the main consequences of thermal injury is the activation of the immune system, which can result in chronic inflammation. The genetic alteration that has occurred during thermal injury and the consequent reduction in the function of repair systems is further strengthened by chronic inflammation, thereby increasing the probability that mutated cell lines may appear. The molecules that present in this circumstance, such as heat shock proteins, cytokines, chemokines and other inflammatory factors, affect intercellular signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells, signal transducer activator of transcription-3 and hypoxia-inducible factor 1α in supporting the survival and emergence of mutant phenotypes and the consequent malignant progression in altered cell lines. This investigation of these effective factors and their probable role in the tumorigenic path may improve current understanding.
Collapse
Affiliation(s)
- Mohaddese Maghsudlu
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
23
|
Muller AWJ. Cancer is an adaptation that selects in animals against energy dissipation. Med Hypotheses 2017; 104:104-115. [PMID: 28673566 DOI: 10.1016/j.mehy.2017.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/30/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023]
Abstract
As cancer usually follows reproduction, it is generally assumed that cancer does not select. Graham has however argued that juvenile cancer, which precedes reproduction, could during evolution have implemented a "cancer selection" that resulted in novel traits that suppress this juvenile cancer; an example is protection against UV sunlight-induced cancer, required for the emergence of terrestrial animals from the sea. We modify the cancer selection mechanism to the posited "cancer adaptation" mechanism, in which juvenile mortality is enhanced through the diminished care received by juveniles from their (grand) parents when these suffer from cancer in old age. Moreover, it is posited that the cancer adaptation selects against germline "dissipative genes", genes that result in enhanced free energy dissipation. Cancer's progression is interpreted as a cascade at increasing scale of repeated amplification of energy dissipation, a cascade involving heat shock, the Warburg effect, the cytokine IL-6, tumours, and hypermetabolism. Disturbance of any physiological process must enhance energy dissipation if the animal remains functioning normally, what explains multicausality, why "everything gives you cancer". The hypothesis thus comprises two newly invoked partial processes-diminished (grand) parental care and dissipation amplification-and results in a "selection against enhanced energy dissipation" which gives during evolution the benefit of energy conservation. Due to this benefit, cancer would essentially be an adaptation, and not a genetic disease, as assumed in the "somatic mutation theory". Cancer by somatic mutations is only a side process. The cancer adaptation hypothesis is substantiated by (1) cancer's extancy, (2) the failure of the somatic mutation theory, (3) cancer's initiation by a high temperature, (4) the interpretation of cancer's progression as a thermal process, and (5) the interpretation of tumours as organs that implement thermogenesis. The hypothesis could in principle be verified by monitoring in a population over several generations (1) the presence of dissipative genes, (2) the incidence of cancer, and (3) the beneficial effect of dissipative gene removal by cancer on starvation/famine survival.
Collapse
Affiliation(s)
- Anthonie W J Muller
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Lan CCE, Wang YT, Lu CY, Fang AH, Wu CS. The effect of interaction of heat and UVB on human keratinocyte: Novel insights on UVB-induced carcinogenesis of the skin. J Dermatol Sci 2017; 88:207-215. [PMID: 28687416 DOI: 10.1016/j.jdermsci.2017.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/27/2017] [Accepted: 06/16/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Skin cancer is an important environmentally-related health issue. Although sun exposure is closely associated with increasing environmental heat, the effects of environmental heat on the skin, especially in the context of photocarcinogenesis, has not been carefully examined. OBJECTIVES This study aimed to explore the effects and interactions of UVB radiation and environmental heat on photocarcinogenesis of the skin using cell and animal models. METHODS Cultured keratinocytes and hairless mice were exposed to different treatment conditions including UVB radiation and environmental heat. The effects of treatment on keratinocyte and mice skin were evaluated at indicated time points. RESULTS UVB induced DNA damage was significantly lower in keratinocytes that were pretreated in an environment with slightly elevated temperature followed by UVB treatment (Heat-UVB) as compared to UVB and UVB radiation followed by exposure to equivalent increase in environmental heat (UVB-Heat) groups. Similar phenomenon was observed in terms of keratinocyte viability. In the animal model, it was found that Heat-UVB treated mice showed delayed and reduced tumor formation as compared to the UVB and UVB-Heat treated groups. Quantum simulation analyses demonstrated that the energy required for CPD formation at environment with higher temperature required considerable higher energy as compared to CPD formation at lower temperature. CONCLUSION Taken together, our results demonstrated that with equivalent UVB exposure, higher temperature environment may protect cells against subsequent UVB-induced DNA damages.
Collapse
Affiliation(s)
- Cheng-Che E Lan
- Department of Dermatology, Kaohsiung Medical University Hospital, and College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeng-Tseng Wang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ai-Hui Fang
- Department of Microbiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Shuang Wu
- Department of Medical Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
25
|
Calapre L, Gray ES, Kurdykowski S, David A, Descargues P, Ziman M. SIRT1 activation mediates heat-induced survival of UVB damaged Keratinocytes. BMC DERMATOLOGY 2017; 17:8. [PMID: 28601088 PMCID: PMC5466784 DOI: 10.1186/s12895-017-0060-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/02/2017] [Indexed: 11/10/2022]
Abstract
Background Exposure to heat stress after UVB irradiation induces a reduction of apoptosis, resulting in survival of DNA damaged human keratinocytes. This heat-mediated evasion of apoptosis appears to be mediated by activation of SIRT1 and inactivation of p53 signalling. In this study, we assessed the role of SIRT1 in the inactivation of p53 signalling and impairment of DNA damage response in UVB plus heat exposed keratinocytes. Results Activation of SIRT1 after multiple UVB plus heat exposures resulted in increased p53 deacetylation at K382, which is known to affect its binding to specific target genes. Accordingly, we noted decreased apoptosis and down regulation of the p53 targeted pro-apoptotic gene BAX and the DNA repair genes ERCC1 and XPC after UVB plus heat treatments. In addition, UVB plus heat induced increased expression of the cell survival gene Survivin and the proliferation marker Ki67. Notably, keratinocytes exposed to UVB plus heat in the presence of the SIRT1 inhibitor, Ex-527, showed a similar phenotype to those exposed to UV alone; i.e. an increase in p53 acetylation, increased apoptosis and low levels of Survivin. Conclusion This study demonstrate that heat-induced SIRT1 activation mediates survival of DNA damaged keratinocytes through deacetylation of p53 after exposure to UVB plus heat Electronic supplementary material The online version of this article (doi:10.1186/s12895-017-0060-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leslie Calapre
- School of Medical Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Elin S Gray
- School of Medical Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | | | - Anthony David
- GENOSKIN Centre Pierre Potier, Oncopole, Toulouse, France
| | | | - Mel Ziman
- School of Medical Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia. .,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
26
|
Wilczyński S, Deda A, Koprowski R, Banyś A, Błońska-Fajfrowska B. The Use of Directional Reflectance Measurement for in vivo Assessment of Protective Properties of Cosmetics in the Infrared Radiation Range. Photochem Photobiol 2017; 93:1303-1311. [PMID: 28471503 DOI: 10.1111/php.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/06/2017] [Indexed: 11/29/2022]
Abstract
Photoprotection of skin is now focused on UV radiation. The aim of this study was to evaluate in vivo cosmetic products in terms of protection against infrared radiation (IR) and propose a methodology for conducting such measurements. The directional reflectance (DR) of 12 UV filters, six care creams and two preparations containing fumed silica applied on the forearm of 36 volunteers was examined in six spectral bands for two angles of incidence. SOC-410 Directional Hemispherical Reflectometer was used to measure DR. There is very little change in DR for all spectral bands for both incident angles for both UV filters, care creams and preparations containing fumed silica. For example, for 15% of fumed silica in glycerin for the spectral band of 0.9-1.1 μm and the incident angle of 20°, skin DR prior to application was 0.543; 5 min after application was 0.533 and 30 min after application was 0.559. Both UV filters, care creams and fumed silica do not protect skin against IR. The proposed method of in vivo measurements is superior to in vitro studies which have been conducted so far because it takes into account both the refractive index at the tissue/air interface and the absorption of IR by adipose tissue.
Collapse
Affiliation(s)
- Sławomir Wilczyński
- Department of Basic Biomedical Science, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Anna Deda
- Department of Skin Structural Studies, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Robert Koprowski
- Department of Biomedical Computer Systems, Faculty of Computer Science and Materials Science, Institute of Computer Science, University of Silesia, Sosnowiec, Poland
| | - Anna Banyś
- Department of Applied Pharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Barbara Błońska-Fajfrowska
- Department of Basic Biomedical Science, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
27
|
Yang X, Cui Y, Yue J, He H, Yu C, Liu P, Liu J, Ren X, Meng Y. The histological characteristics, age-related thickness change of skin, and expression of the HSPs in the skin during hair cycle in yak (Bos grunniens). PLoS One 2017; 12:e0176451. [PMID: 28463974 PMCID: PMC5413005 DOI: 10.1371/journal.pone.0176451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 04/11/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE This experiment was conducted to study the histological characteristics, age-related thickness changes, and expression of HSPs in the skin of yak. METHODS A total of 20 yaks (10 males and 10 females) were used. Different regions of the normal skin of three different ages (newborn, half-year-old and adult) of yaks were harvested for histological study and thickness measurement. Biopsy samples were taken from the scapula regions of the skin from the same five approximately 1-year-old yaks during the hair cycle (telogen, anagen and catagen). RT-PCR, western blot and immunohistochemistry methods using the mRNA and protein levels were used to detect the expression of HSP27, HSP70 and HSP90. RT-PCR method was used to detect the mRNA expression of CGI-58 and KDF1. The IPP6.0 software was used to analyze the immunohistochemistry and measure the thickness of the skin. RESULTS The general histological structure of hairy yak skin was similar to other domestic mammals. The unique features included prominent cutaneous vascular plexuses, underdeveloped sweat glands, a large number of nasolabial glands in the nasolabial plate, and hair follicle groups composed of one primary follicle and several secondary follicles. The skin, epidermis and dermis thickness did vary significantly between different body regions and different ages. The thickness of the skin, epidermis and dermis increased from newborn to adult in yaks. Yak skin thickness decreased from dorsally to ventrally on the trunk. The skin on the lateral surface was thicker than the skin on the medial surface on the limbs. HSP27, HSP70 and HSP90 showed different expression patterns during the hair cycle using RT-PCR, western blot and immunohistochemistry methods. The expression of HSP27 mRNA and protein in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of HSP70 mRNA and protein in the telogen stage was the highest, followed by the anagen stage, and the expression in the catagen stage was the lowest. The expression of HSP90 mRNA and protein in the anagen stage was the highest, followed by the telogen stage, and the expression in the catagen stage was the lowest. HSPs were mainly expressed in the outer root sheath of hair follicle during the hair cycle, also expressed in epidermis, sebaceous gland and sweat gland in the skin of Yak. The expression of CGI-58 mRNA in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of KDF1 mRNA in the telogen stage was the highest, followed by the catagen stage, and the expression in the anagen stage was the lowest. MEANING In this study, we examined and fully described the histology of normal skin in Yak and measured the skin thickness of different ages and different regions in Yak. These data may be useful to better understand and appreciate the adaptability features of yak skin. Our investigation reports the expression patterns of HSPs in yak skin for the first time. The different expression pattern of HSPs during the hair cycle suggests they may play different roles in yak hair follicle biology.
Collapse
Affiliation(s)
- Xue Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jing Yue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Honghong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chuan Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Penggang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiandong Ren
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yun Meng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
28
|
Leite JSM, Cruzat VF, Krause M, Homem de Bittencourt PI. Physiological regulation of the heat shock response by glutamine: implications for chronic low-grade inflammatory diseases in age-related conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41110-016-0021-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Alfonso JH, Martinsen JI, Pukkala E, Weiderpass E, Tryggvadottir L, Nordby KC, Kjærheim K. Occupation and relative risk of cutaneous squamous cell carcinoma (cSCC): A 45-year follow-up study in 4 Nordic countries. J Am Acad Dermatol 2016; 75:548-555. [PMID: 27262759 DOI: 10.1016/j.jaad.2016.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The age-adjusted incidence of cutaneous squamous cell carcinoma (cSCC) in the Nordic countries has increased during the last 60 years, and the identification of occupational variation in the relative risk of cSCC may have preventive implications. OBJECTIVE We sought to describe variation in the relative risk of cSCC between occupational categories in Finland, Iceland, Norway, and Sweden. METHODS This is a historical prospective cohort study based on record linkages between census data for 12.9 million people and cancer registry data from 1961 to 2005. Standardized incidence ratios for cSCC were estimated for 53 occupational categories with the cSCC incidence rates for the national population of each country used as reference. RESULTS During follow-up, 87,619 incident cases of cSCC were reported to the national cancer registries. In all countries combined, significant increased standardized incidence ratios were observed among seamen, military personnel, public safety workers, technical workers, teachers, transport workers, physicians, dentists, nurses, other health workers, religious workers, clerical workers, administrators, and sale agents (standardized incidence ratios between 1.08 and 1.77). LIMITATIONS Information on occupation was based on 1 point in time only. CONCLUSION The occupational variation of the relative risk of cSCC might be associated with socioeconomic factors, and to some extent to occupational exposures.
Collapse
Affiliation(s)
- Jose Hernán Alfonso
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway.
| | | | - Eero Pukkala
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland; School of Health Sciences, University of Tampere, Tampere, Finland
| | - Elisabete Weiderpass
- Cancer Registry of Norway, Oslo, Norway; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Community Medicine, Faculty of Health Sciences, University of Tromsø-Arctic University of Norway, Tromsø, Norway; Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Laufey Tryggvadottir
- Icelandic Cancer Registry, Icelandic Cancer Society, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Karl-Christian Nordby
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | | |
Collapse
|
30
|
Calapre L, Gray ES, Kurdykowski S, David A, Hart P, Descargues P, Ziman M. Heat-mediated reduction of apoptosis in UVB-damaged keratinocytes in vitro and in human skin ex vivo. BMC DERMATOLOGY 2016; 16:6. [PMID: 27230291 PMCID: PMC4882820 DOI: 10.1186/s12895-016-0043-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/18/2016] [Indexed: 01/18/2023]
Abstract
Background UV radiation induces significant DNA damage in keratinocytes and is a known risk factor for skin carcinogenesis. However, it has been reported previously that repeated and simultaneous exposure to UV and heat stress increases the rate of cutaneous tumour formation in mice. Since constant exposure to high temperatures and UV are often experienced in the environment, the effects of exposure to UV and heat needs to be clearly addressed in human epidermal cells. Methods In this study, we determined the effects of repeated UVB exposure 1 kJ/m2 followed by heat (39 °C) to human keratinocytes. Normal human ex vivo skin models and primary keratinocytes (NHEK) were exposed once a day to UVB and/or heat stress for four consecutive days. Cells were then assessed for changes in proliferation, apoptosis and gene expression at 2 days post-exposure, to determine the cumulative and persistent effects of UV and/or heat in skin keratinocytes. Results Using ex vivo skin models and primary keratinocytes in vitro, we showed that UVB plus heat treated keratinocytes exhibit persistent DNA damage, as observed with UVB alone. However, we found that apoptosis was significantly reduced in UVB plus heat treated samples. Immunohistochemical and whole genome transcription analysis showed that multiple UVB plus heat exposures induced inactivation of the p53-mediated stress response. Furthermore, we demonstrated that repeated exposure to UV plus heat induced SIRT1 expression and a decrease in acetylated p53 in keratinocytes, which is consistent with the significant downregulation of p53-regulated pro-apoptotic and DNA damage repair genes in these cells. Conclusion Our results suggest that UVB-induced p53-mediated cell cycle arrest and apoptosis are reduced in the presence of heat stress, leading to increased survival of DNA damaged cells. Thus, exposure to UVB and heat stress may act synergistically to allow survival of damaged cells, which could have implications for initiation skin carcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12895-016-0043-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leslie Calapre
- School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Elin S Gray
- School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | | | - Anthony David
- GENOSKIN Centre Pierre Potier, Oncopole, Toulouse, France
| | - Prue Hart
- Telethon Kids Institute, University of Western Australia, 100 Roberts Road, Subiaco, Perth, 6008, Australia
| | | | - Mel Ziman
- School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia. .,Department of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
31
|
de Assis LVM, Moraes MN, da Silveira Cruz-Machado S, Castrucci AML. The effect of white light on normal and malignant murine melanocytes: A link between opsins, clock genes, and melanogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1119-33. [PMID: 26947915 DOI: 10.1016/j.bbamcr.2016.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/26/2022]
Abstract
The skin possesses a photosensitive system comprised of opsins whose function is not fully understood, and clock genes which exert an important regulatory role in skin biology. Here, we evaluated the presence of opsins in normal (Melan-a cells) and malignant (B16-F10 cells) murine melanocytes. Both cell lines express Opn2, Opn4--for the first time reported in these cell types--as well as S-opsin. OPN4 protein was found in a small area capping the cell nuclei of B16-F10 cells kept in constant dark (DD); twenty-four hours after the white light pulse (WLP), OPN4 was found in the cell membrane. Despite the fact that B16-F10 cells expressed less Opn2 and Opn4 than Melan-a cells, our data indicate that the malignant melanocytes exhibited increased photoresponsiveness. The clock gene machinery is also severely downregulated in B16-F10 cells as compared to Melan-a cells. Per1, Per2, and Bmal1 expression increased in B16-F10 cells in response to WLP. Although no response in clock gene expression to WLP was observed in Melan-a cells, gene correlational data suggest a minor effect of WLP. In contrast to opsins and clock genes, melanogenesis is significantly upregulated in malignant melanocytes in comparison to Melan-a cells. Tyrosinase expression increased after WLP only in B16-F10 cells; however no increase in melanin content after WLP was seen in either cell line. Our findings may prove useful in the treatment and the development of new pharmacological approaches of depigmentation diseases and skin cancer.
Collapse
Affiliation(s)
- L V M de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - M N Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - S da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - A M L Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Russo I, Cona C, Saponeri A, Bassetto F, Baldo V, Alaibac M. Association between Toll-like receptor 7 Gln11Leu single-nucleotide polymorphism and basal cell carcinoma. Biomed Rep 2016; 4:459-462. [PMID: 27073632 DOI: 10.3892/br.2016.597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/19/2016] [Indexed: 12/12/2022] Open
Abstract
Non-melanoma skin cancers (NMSC) are the most common form of human skin cancer. The majority of NMSC are basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) with a BCC:SCC incidence ratio of 4:1 in immunocompetent patients. Toll-like receptors (TLRs) are transmembrane glycoproteins that recognize pathogen-associated molecular patterns and damage-associated molecular patterns, against which they activate the innate immune response and initiate the adaptive immune response. Genetic variations of these receptors can alter the immune system and are involved in evolution and susceptibility of various diseases, including cancer. Imiquimod, an agonist of TLR7, is applied topically in the treatment of premalignant and malignant skin disorders, in particular BCC. The high efficacy of this TLR7 agonist toward BCC supports a possible role of this receptor in the induction of BCC and, consequently, polymorphisms of this receptor could be responsible for a greater or lesser susceptibility to BCC. The aim of the present study was to evaluate whether the presence of the functional TLR7 rs179008/Gln11Leu promoter polymorphism conferred an increased susceptibility to BCC. A case-control study with 177 BCC cases and 158 controls was performed to highlight the possible association between this polymorphism and the susceptibility to BCC. As the TLR7 gene is localized on chromosome X, the allelic frequency of this polymorphism was analyzed separately in males and females. The analysis of the distribution of frequencies of wild-type TLR7 and variant TLR7 carrying the single-nucleotide polymorphism (SNP) rs179008 in patients with BCC and healthy subjects did not reveal any statistically significant difference between cases and controls. This study does not suggest the involvement of the SNP rs179008 of TLR7 in the susceptibility to BCC, but cannot exclude a role for TLR7 in BCC carcinogenesis considering the high efficacy of the TLR7 agonist, imiquimod, in the treatment of this neoplastic disorder.
Collapse
Affiliation(s)
- Irene Russo
- Dermatology Unit, Department of Medicine, University of Padova, I-35121 Padova, Italy
| | - Camilla Cona
- Plastic Surgery Unit, University of Padova, I-35128 Padova, Italy
| | - Andrea Saponeri
- Dermatology Unit, Department of Medicine, University of Padova, I-35121 Padova, Italy
| | - Franco Bassetto
- Plastic Surgery Unit, University of Padova, I-35128 Padova, Italy
| | - Vincenzo Baldo
- Public Health Unit, University of Padova, I-35121 Padova, Italy
| | - Mauro Alaibac
- Dermatology Unit, Department of Medicine, University of Padova, I-35121 Padova, Italy
| |
Collapse
|
33
|
Ahmed RR, Mahmoud A, Ahmed OM, Metwalli A, Ebaid H. Up-regulation of Hsp72 and keratin16 mediates wound healing in streptozotocin diabetic rats. Biol Res 2015; 48:54. [PMID: 26428860 PMCID: PMC4591711 DOI: 10.1186/s40659-015-0044-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/17/2015] [Indexed: 01/17/2023] Open
Abstract
Background Impaired wound healing is a complication of diabetes and a serious problem in clinical practice. We previously found that whey protein (WP) was able to regulate wound healing normally in streptozotocin (STZ)-diabetic models. This subsequent study was designed to assess the effect of WP on heat shock protein-72 (Hsp72) and keratin16 (Krt16) expression during wound healing in diabetic rats. Methods WP at a dosage of 100 mg/kg of body weight was orally administered daily to wounded normal and STZ-diabetic rats for 8 days. Results At day 4, the WP-treated diabetic wound was significantly reduced compared to that in the corresponding control. Diabetic wounded rats developed severe inflammatory infiltration and moderate capillary dilatation and regeneration. Treated rats had mild necrotic formation, moderate infiltration, moderate to severe capillary dilatation and regeneration, in addition to moderate epidermal formation. Hsp72 and Krt16 densities showed low and dense activity in diabetic wounded and diabetic wounded treated groups, respectively. At day 8, WP-treatment of diabetic wounded animals revealed great amelioration with complete recovery and closure of the wound. Reactivity of Hsp72 and Krt16 was reversed, showing dense and low, or medium and low, activity in the diabetic wounded and diabetic wounded treated groups, respectively. Hsp72 expression in the pancreas was found to show dense reactivity with WP-treated diabetic wound rats. Conclusion This data provides evidence for the potential impact of WP in the up-regulation of Hsp72 and Krt16 in T1D, resulting in an improved wound healing process in diabetic models.
Collapse
Affiliation(s)
- Rasha R Ahmed
- Cell Biology and Histology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Ayman Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Ali Metwalli
- Department of Food Science, College of Agriculture and Food Science, King Saud University, Riyadh, Saudi Arabia. .,Department of Dairy, Faculty of Agriculture, El-Minia University, El-Minia, Egypt.
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, KSA. .,Department of Zoology, Faculty of Science, El-Minia University, El-Minia, Egypt.
| |
Collapse
|
34
|
Krause M, Bock PM, Takahashi HK, Homem De Bittencourt PI, Newsholme P. The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci (Lond) 2015; 128:789-803. [PMID: 25881670 DOI: 10.1042/cs20140695] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The 70 kDa heat-shock protein (HSP70) family is important for a dynamic range of cellular processes that include protection against cell stress, modulation of cell signalling, gene expression, protein synthesis, protein folding and inflammation. Within this family, the inducible 72 kDa and the cognate 73 kDa forms are found at the highest level. HSP70 has dual functions depending on location. For example, intracellular HSP70 (iHSP70) is anti-inflammatory whereas extracellular HSP70 (eHSP70) has a pro-inflammatory function, resulting in local and systemic inflammation. We have recently identified a divergence in the levels of eHSP70 and iHSP70 in subjects with diabetes compared with healthy subjects and also reported that eHSP70 was correlated with insulin resistance and pancreatic β-cell dysfunction/death. In the present review, we describe possible mechanisms by which HSP70 participates in cell function/dysfunction, including the activation of NADPH oxidase isoforms leading to oxidative stress, focusing on the possible role of HSPs and signalling in pancreatic islet α- and β-cell physiological function in health and Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mauricio Krause
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Martins Bock
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hilton Kenji Takahashi
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem De Bittencourt
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Philip Newsholme
- ‡School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia
| |
Collapse
|
35
|
Petersen B, Philipsen PA, Wulf HC. Skin temperature during sunbathing--relevance for skin cancer. Photochem Photobiol Sci 2015; 13:1123-5. [PMID: 24930491 DOI: 10.1039/c4pp00066h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been found that exposure to heat and infrared radiation (IR) can be carcinogenic, and that a combination of ultraviolet radiation (UVR) and IR possibly amplifies carcinogenesis. To investigate how the skin temperature is affected by sunbathing, we measured the skin temperature on 20 healthy volunteers over 6 days' sun holiday in Egypt. Temperatures were measured with an infrared thermometer gun at 8 skin sites on the volunteers while they were indoors in the morning and when sunbathing during the day. Skin temperatures were higher during sunbathing (33.5 °C ± 2.1 °C) (mean ± SD) than when indoors in the morning (32.6 °C ± 1.4 °C) (mean ± SD) (P < 0.0001). The average skin temperature for men was higher than for women by 0.40 °C in the morning (P = 0.02) and by 0.44 °C during sunbathing (P < 0.0001). Our results show that sunbathing has an impact on skin temperature, which possibly by activation of the heat shock response, is likely to contribute to the immediate and delayed effects of UV in a way that has to be found out in future studies.
Collapse
Affiliation(s)
- Bibi Petersen
- Copenhagen University, Bispebjerg Hospital, Bispebjerg Bakke 23, Copenhagen-2400, Denmark.
| | | | | |
Collapse
|
36
|
Michal Freedman D, Kitahara CM, Linet MS, Alexander BH, Neta G, Little MP, Cahoon EK. Ambient temperature and risk of first primary basal cell carcinoma: A nationwide United States cohort study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:284-289. [PMID: 25996074 DOI: 10.1016/j.jphotobiol.2015.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
The Earth's surface is warming and animal studies have shown higher temperatures promote ultraviolet radiation (UVR) skin carcinogenesis. There are, however, no population studies of long-term temperature exposure and basal cell carcinoma (BCC) risk. We linked average lifetime summer ambient temperatures (based on weather station data) and satellite-based UVR estimates to self-reported lifetime residences in the U.S. Radiologic Technologists' cohort. We assessed the relationship between time-dependent average lifetime summer ambient temperature (20-year lag) in quintiles and BCC in whites, using Cox proportional hazards regression. Risks were adjusted for time-dependent lagged average lifetime UVR and time outdoors, body mass index, eye color, and sex (baseline hazard stratified on birth cohort). During a median 19.4 years follow-up, we identified 3556 BCC cases. There was no significant trend in risk between temperature and BCC. However, BCC risk was highest in the fourth quintile of temperature (Q4 vs. Q1; hazards ratio (HR)=1.18; 95% confidence interval (CI)=1.06-1.31, p-trend=0.09). BCC risk was strongly related to average lifetime ambient UVR exposure (Q5 vs. Q1; HR=1.54 (95% CI=1.35-1.75, p-trend=<0.001)). Future studies of temperature and BCC risk should include a broad range of UVR and temperature values, along with improved indicators of exposure to temperatures and UVR.
Collapse
Affiliation(s)
- D Michal Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD, USA.
| | - Cari M Kitahara
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD, USA
| | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD, USA
| | - Bruce H Alexander
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Gila Neta
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD, USA
| | - Mark P Little
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD, USA
| | - Elizabeth K Cahoon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD, USA
| |
Collapse
|
37
|
Newsholme P, de Bittencourt PIH. The fat cell senescence hypothesis: a mechanism responsible for abrogating the resolution of inflammation in chronic disease. Curr Opin Clin Nutr Metab Care 2014; 17:295-305. [PMID: 24878874 DOI: 10.1097/mco.0000000000000077] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Obesity is a chronic inflammatory disease in which the physiological resolution of inflammation is attenuated, leading to low-grade inflammation throughout the body. However, the heat shock response, which is a key component of the physiological response to resolve inflammation, is seriously hampered in adipose tissue and other metabolic organs (e.g. skeletal muscle, liver, pancreatic β-cells) in metabolic diseases. In this review, we hypothesize that adipocyte metabolic stress triggers the onset of fat cell senescence, and companion senescence-associated secretory phenotype (SASP), and that such a scenario is responsible for attenuating the resolution of inflammation. RECENT FINDINGS We shall discuss the role of the heat shock response in the context of the resolution of inflammation and the relevance of heat shock response blockade in chronic inflammatory diseases. Sirtuin-1 is responsible for the induction of heat shock transcription factor-1 mRNA expression and for the stabilization of heat shock transcription factor-1 in a high-profile activity state. However, adipose tissue-emanated SASP depress sirtuin-1 expression, leading adipocytes to a perpetual state of unresolved inflammation, due to a dampening of the heat shock response. SUMMARY The advance of inflammasome-mediated SASP from adipose to other tissues promotes cellular senescence in many other cells of the organism, aggravating obesity-dependent chronic inflammation. Inducers of heat shock response (e.g. heat shock itself, physical exercise and calorie restriction) may efficiently interrupt this vicious cycle and are envisaged as the best and also the most economical treatment for obesity-related chronic diseases.
Collapse
Affiliation(s)
- Philip Newsholme
- aSchool of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia bLaboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre cNational Institute of Hormones and Women's Health, Porto Alegre, RS, Brazil
| | | |
Collapse
|
38
|
Wang X, Jiang Q, Wang W, Su L, Han Y, Wang C. Molecular mechanism of polypeptides from Chlamys farreri (PCF)’s anti-apoptotic effect in UVA-exposed HaCaT cells involves HSF1/HSP70, JNK, XO, iNOS and NO/ROS. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:47-56. [DOI: 10.1016/j.jphotobiol.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/01/2022]
|