1
|
Wang X, Yang K, Yang B, Wang R, Zhu Y, Pan T. ANKRD22 participates in the proinflammatory activities of macrophages in the colon cancer tumor microenvironment. Cancer Immunol Immunother 2025; 74:86. [PMID: 39891675 PMCID: PMC11787111 DOI: 10.1007/s00262-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/21/2024] [Indexed: 02/03/2025]
Abstract
Tumor-associated macrophages (TAMs) are among the most common types of immune cells in the colon cancer microenvironment. Reprogramming M2-type TAMs with immunosuppressive functions into M1-type TAMs with proinflammatory functions is a novel strategy for reshaping the tumor microenvironment (TME) and enhancing the efficacy of immunotherapy in colon cancer. However, the key molecules and mechanisms underlying TAM polarization require further clarification. Our previous study suggested that ANKRD22 may play a role in regulating the functional state transition of macrophages. However, the expression levels of ANKRD22 in colon TAMs and its specific effects on tumor proliferation remain unclear. In the present study, we observed elevated ANKRD22 expression in M1-type TAMs. The expression level of ANKRD22 was positively correlated with the survival period of patients with colon cancer and with the infiltration abundance of M1-type TAMs, and ANKRD22 expression was negatively correlated with the infiltration abundance of M2-type TAMs. A significant decrease in ANKRD22 expression in macrophages cocultured with colon cancer cell culture supernatant as well as in macrophages directly derived from colorectal cancer tissues was observed. Single-cell RNA sequencing, spatial transcriptomic studies, and subcutaneous xenograft experiments in mice revealed that Ankrd22 silencing altered the subtype distribution of macrophages, attenuated their proinflammatory activity, and enhanced their protumor activity. Additionally, we identified a small-molecule ANKRD22 upregulator that could aid in the development of novel therapeutics targeting TAM remodeling.
Collapse
Affiliation(s)
- Xiaoying Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Keqing Yang
- Internal Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, People's Republic of China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.
| | - Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Santana PT, de Lima IS, da Silva e Souza KC, Barbosa PHS, de Souza HSP. Persistent Activation of the P2X7 Receptor Underlies Chronic Inflammation and Carcinogenic Changes in the Intestine. Int J Mol Sci 2024; 25:10874. [PMID: 39456655 PMCID: PMC11507540 DOI: 10.3390/ijms252010874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Aberrant signaling through damage-associated molecular patterns (DAMPs) has been linked to several health disorders, attracting considerable research interest over the last decade. Adenosine triphosphate (ATP), a key extracellular DAMP, activates the purinergic receptor P2X7, which acts as a danger sensor in immune cells and is implicated in distinct biological functions, including cell death, production of pro-inflammatory cytokines, and defense against microorganisms. In addition to driving inflammation mediated by immune and non-immune cells, the persistent release of endogenous DAMPs, including ATP, has been shown to result in epigenetic modifications. In intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), consequent amplification of the inflammatory response and the resulting epigenetic reprogramming may impact the development of pathological changes associated with specific disease phenotypes. P2X7 is overexpressed in the gut mucosa of patients with IBD, whereas the P2X7 blockade prevents the development of chemically induced experimental colitis. Recent data suggest a role for P2X7 in determining gut microbiota composition. Regulatory mechanisms downstream of the P2X7 receptor, combined with signals from dysbiotic microbiota, trigger intracellular signaling pathways and inflammasomes, intensify inflammation, and foster colitis-associated CRC development. Preliminary studies targeting the ATP-P2X7 pathway have shown favorable therapeutic effects in human IBD and experimental colitis.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| | - Isadora Schmukler de Lima
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Karen Cristina da Silva e Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Pedro Henrique Sales Barbosa
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| |
Collapse
|
3
|
Torke S, Walther W, Stein U. Immune Response and Metastasis-Links between the Metastasis Driver MACC1 and Cancer Immune Escape Strategies. Cancers (Basel) 2024; 16:1330. [PMID: 38611008 PMCID: PMC11010928 DOI: 10.3390/cancers16071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Metastasis remains the most critical factor limiting patient survival and the most challenging part of cancer-targeted therapy. Identifying the causal drivers of metastasis and characterizing their properties in various key aspects of cancer biology is essential for the development of novel metastasis-targeting approaches. Metastasis-associated in colon cancer 1 (MACC1) is a prognostic and predictive biomarker that is now recognized in more than 20 cancer entities. Although MACC1 can already be linked with many hallmarks of cancer, one key process-the facilitation of immune evasion-remains poorly understood. In this review, we explore the direct and indirect links between MACC1 and the mechanisms of immune escape. Therein, we highlight the signaling pathways and secreted factors influenced by MACC1 as well as their effects on the infiltration and anti-tumor function of immune cells.
Collapse
Affiliation(s)
- Sebastian Torke
- Experimental and Clinical Research Center, Charité, Medical Centre Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany; (W.W.); (U.S.)
| | | | | |
Collapse
|
4
|
Li H, Chen J, Li Z, Chen M, Ou Z, Mo M, Wang R, Tong S, Liu P, Cai Z, Zhang C, Liu Z, Deng D, Liu J, Cheng C, Hu J, Zu X. S100A5 Attenuates Efficiency of Anti-PD-L1/PD-1 Immunotherapy by Inhibiting CD8 + T Cell-Mediated Anti-Cancer Immunity in Bladder Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300110. [PMID: 37414584 PMCID: PMC10477882 DOI: 10.1002/advs.202300110] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/11/2023] [Indexed: 07/08/2023]
Abstract
Although immune checkpoint blockade (ICB) therapies have been approved for bladder cancer (BLCA), only a minority of patients respond to these therapies, and there is an urgent need to explore combined therapies. Systematic multi-omics analysis identified S100A5 as a novel immunosuppressive target for BLCA. The expression of S100A5 in malignant cells inhibited CD8+ T cell recruitment by decreasing pro-inflammatory chemokine secretion. Furthermore, S100A5 attenuated effector T cell killing of cancer cells by inhibiting CD8+ T cell proliferation and cytotoxicity. In addition, S100A5 acted as an oncogene, thereby promoting tumor proliferation and invasion. Targeting S100A5 synergized with the efficacy of anti-PD-1 treatment by enhancing infiltration and cytotoxicity of CD8+ T cells in vivo. Clinically, there was a spatially exclusive relationship between S100A5+ tumor cells and CD8+ T cells in tissue microarrays. Moreover, S100A5 negatively correlated with immunotherapy efficacy in our real-world and several public immunotherapy cohorts. In summary, S100A5 shapes a non-inflamed tumor microenvironment in BLCA by inhibiting the secretion of pro-inflammatory chemokines and the recruitment and cytotoxicity of CD8+ T cells. Targeting S100A5 converts cold tumors into hot tumors, thus enhancing the efficacy of ICB therapy in BLCA.
Collapse
Affiliation(s)
- Huihuang Li
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Jinbo Chen
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhenghao Li
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research and Division of Hepato‐Biliary‐Pancreatic SurgeryDepartment of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Minfeng Chen
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhenyu Ou
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Miao Mo
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Ruizhe Wang
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Shiyu Tong
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Peihua Liu
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhiyong Cai
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Chunyu Zhang
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhi Liu
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Dingshan Deng
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Jinhui Liu
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Chunliang Cheng
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Jiao Hu
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Xiongbing Zu
- Department of UrologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
5
|
Dialog beyond the Grave: Necrosis in the Tumor Microenvironment and Its Contribution to Tumor Growth. Int J Mol Sci 2023; 24:ijms24065278. [PMID: 36982351 PMCID: PMC10049335 DOI: 10.3390/ijms24065278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released from the necrotic cells dying after exposure to various stressors. After binding to their receptors, they can stimulate various signaling pathways in target cells. DAMPs are especially abundant in the microenvironment of malignant tumors and are suspected to influence the behavior of malignant and stromal cells in multiple ways often resulting in promotion of cell proliferation, migration, invasion, and metastasis, as well as increased immune evasion. This review will start with a reminder of the main features of cell necrosis, which will be compared to other forms of cell death. Then we will summarize the various methods used to assess tumor necrosis in clinical practice including medical imaging, histopathological examination, and/or biological assays. We will also consider the importance of necrosis as a prognostic factor. Then the focus will be on the DAMPs and their role in the tumor microenvironment (TME). We will address not only their interactions with the malignant cells, frequently leading to cancer progression, but also with the immune cells and their contribution to immunosuppression. Finally, we will emphasize the role of DAMPs released by necrotic cells in the activation of Toll-like receptors (TLRs) and the possible contributions of TLRs to tumor development. This last point is very important for the future of cancer therapeutics since there are attempts to use TLR artificial ligands for cancer therapeutics.
Collapse
|
6
|
Li X, Wang Z, Jiao C, Zhang Y, Xia N, Yu W, Chen X, Wikana LP, Liu Y, Sun L, Chen M, Xiao Y, Shi Y, Han S, Pu L. Hepatocyte SGK1 activated by hepatic ischemia-reperfusion promotes the recurrence of liver metastasis via IL-6/STAT3. J Transl Med 2023; 21:121. [PMID: 36788538 PMCID: PMC9926712 DOI: 10.1186/s12967-023-03977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Liver metastasis is the leading cause of death in patients with colorectal cancer (CRC). Surgical resection of the liver metastases increases the incidence of long-term survival in patients with colorectal liver metastasis (CRLM). However, many patients experience CRLM recurrence after the initial liver resection. As an unavoidable pathophysiological process in liver surgery, liver ischemia-reperfusion (IR) injury increases the risk of tumor recurrence and metastasis. METHODS Colorectal liver metastasis (CRLM) mouse models and mouse liver partial warm ischemia models were constructed. The levels of lipid peroxidation were detected in cells or tissues. Western Blot, qPCR, elisa, immunofluorescence, immunohistochemistry, scanning electron microscope, flow cytometry analysis were conducted to evaluate the changes of multiple signaling pathways during CRLM recurrence under liver ischemia-reperfusion (IR) background, including SGK1/IL-6/STAT3, neutrophil extracellular traps (NETs) formation, polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) infiltration. RESULTS Hepatocyte serum/glucocorticoid regulated kinase 1 (SGK1) was activated in response to hepatic ischemia-reperfusion injury to pass hepatocyte STAT3 phosphorylation and serum amyloid A (SAA) hyperactivation signals in CRLM-IR mice, such regulation is dependent on SGK-activated IL-6 autocrine. Administration of the SGK1 inhibitor GSK-650394 further reduced ERK-related neutrophil extracellular traps (NETs) formation and polymorphonucler myeloid-derived suppressor cells (PMN-MDSC) infiltration compared with targeting hepatocyte SGK1 alone, thereby alleviating CRLM in the context of IR. CONCLUSIONS Our study demonstrates that hepatocyte and immune cell SGK1 synergistically promote postoperative CRLM recurrence in response to hepatic IR stress, and identifies SGK1 as a translational target that may improve postoperative CRLM recurrence.
Collapse
Affiliation(s)
- Xiangdong Li
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Ziyi Wang
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Chenyu Jiao
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yu Zhang
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Nan Xia
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Wenjie Yu
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xuejiao Chen
- grid.89957.3a0000 0000 9255 8984Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Likalamu Pascalia Wikana
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yue Liu
- grid.89957.3a0000 0000 9255 8984Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Linfeng Sun
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Minhao Chen
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yuhao Xiao
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yuhua Shi
- Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China.
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China. .,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China. .,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| |
Collapse
|
7
|
Photon- and Proton-Mediated Biological Effects: What Has Been Learned? LIFE (BASEL, SWITZERLAND) 2022; 13:life13010030. [PMID: 36675979 PMCID: PMC9866122 DOI: 10.3390/life13010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The current understanding of the effects of radiation is gradually becoming broader. However, it still remains unclear why some patients respond to radiation with a pronounced positive response, while in some cases the disease progresses. This is the motivation for studying the effects of radiation therapy not only on tumor cells, but also on the tumor microenvironment, as well as studying the systemic effects of radiation. In this framework, we review the biological effects of two types of radiotherapy: photon and proton irradiations. Photon therapy is a commonly used type of radiation therapy due to its wide availability and long-term history, with understandable and predictable outcomes. Proton therapy is an emerging technology, already regarded as the method of choice for many cancers in adults and children, both dosimetrically and biologically. This review, written after the analysis of more than 100 relevant literary sources, describes the local effects of photon and proton therapy and shows the mechanisms of tumor cell damage, interaction with tumor microenvironment cells and effects on angiogenesis. After systematic analysis of the literature, we can conclude that proton therapy has potentially favorable toxicological profiles compared to photon irradiation, explained mainly by physical but also biological properties of protons. Despite the fact that radiobiological effects of protons and photons are generally similar, protons inflict reduced damage to healthy tissues surrounding the tumor and hence promote fewer adverse events, not only local, but also systemic.
Collapse
|
8
|
Sakic A, Chaabane C, Ambartsumian N, Klingelhöfer J, Lemeille S, Kwak BR, Grigorian M, Bochaton-Piallat ML. Neutralization of S100A4 induces stabilization of atherosclerotic plaques: role of smooth muscle cells. Cardiovasc Res 2022; 118:141-155. [PMID: 33135065 PMCID: PMC8752361 DOI: 10.1093/cvr/cvaa311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023] Open
Abstract
AIMS During atherosclerosis, smooth muscle cells (SMCs) accumulate in the intima where they switch from a contractile to a synthetic phenotype. From porcine coronary artery, we isolated spindle-shaped (S) SMCs exhibiting features of the contractile phenotype and rhomboid (R) SMCs typical of the synthetic phenotype. S100A4 was identified as a marker of R-SMCs in vitro and intimal SMCs, in pig and man. S100A4 exhibits intra- and extracellular functions. In this study, we investigated the role of extracellular S100A4 in SMC phenotypic transition. METHODS AND RESULTS S-SMCs were treated with oligomeric recombinant S100A4 (oS100A4), which induced nuclear factor (NF)-κB activation. Treatment of S-SMCs with oS100A4 in combination with platelet-derived growth factor (PDGF)-BB induced a complete SMC transition towards a pro-inflammatory R-phenotype associated with NF-κB activation, through toll-like receptor-4. RNA sequencing of cells treated with oS100A4/PDGF-BB revealed a strong up-regulation of pro-inflammatory genes and enrichment of transcription factor binding sites essential for SMC phenotypic transition. In a mouse model of established atherosclerosis, neutralization of extracellular S100A4 decreased area of atherosclerotic lesions, necrotic core, and CD68 expression and increased α-smooth muscle actin and smooth muscle myosin heavy chain expression. CONCLUSION We suggest that the neutralization of extracellular S100A4 promotes the stabilization of atherosclerotic plaques. Extracellular S100A4 could be a new target to influence the evolution of atherosclerotic plaques.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antibodies, Neutralizing/pharmacology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Becaplermin/pharmacology
- Cells, Cultured
- Disease Models, Animal
- Humans
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Phenotype
- Plaque, Atherosclerotic
- S100 Calcium-Binding Protein A4/antagonists & inhibitors
- S100 Calcium-Binding Protein A4/metabolism
- S100 Calcium-Binding Protein A4/pharmacology
- Signal Transduction
- Smooth Muscle Myosins/metabolism
- Sus scrofa
- Toll-Like Receptor 4/metabolism
- Mice
Collapse
Affiliation(s)
- Antonija Sakic
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Noona Ambartsumian
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jörg Klingelhöfer
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mariam Grigorian
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | |
Collapse
|
9
|
Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR, Liu Y, Horani A, Huang T, Gunsten SP, Case JB, Yang W, Diamond MS, Brody SL, Dougherty J, Kutluay SB. The translational landscape of SARS-CoV-2 and infected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.03.367516. [PMID: 33173862 PMCID: PMC7654850 DOI: 10.1101/2020.11.03.367516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2 infected model cell lines and primary airway cells grown at the air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We find that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy in comparison to HIV-1, suggesting utilization of distinct structural elements. In the highly permissive cell models, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokines, cytokines and interferon stimulated genes, many of these mRNAs were not translated efficiently. Impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yiqing Wang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hung R Vuong
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amjad Horani
- Department of Pediatrics, Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tao Huang
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sean P Gunsten
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James B Case
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
10
|
Plasmin and Plasminogen System in the Tumor Microenvironment: Implications for Cancer Diagnosis, Prognosis, and Therapy. Cancers (Basel) 2021; 13:cancers13081838. [PMID: 33921488 PMCID: PMC8070608 DOI: 10.3390/cancers13081838] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we present a detailed discussion of how the plasminogen-activation system is utilized by tumor cells in their unrelenting attack on the tissues surrounding them. Plasmin is an enzyme which is responsible for digesting several proteins that hold the tissues surrounding solid tumors together. In this process tumor cells utilize the activity of plasmin to digest tissue barriers in order to leave the tumour site and spread to other parts of the body. We specifically focus on the role of plasminogen receptor—p11 which is an important regulatory protein that facilitates the conversion of plasminogen to plasmin and by this means promotes the attack by the tumour cells on their surrounding tissues. Abstract The tumor microenvironment (TME) is now being widely accepted as the key contributor to a range of processes involved in cancer progression from tumor growth to metastasis and chemoresistance. The extracellular matrix (ECM) and the proteases that mediate the remodeling of the ECM form an integral part of the TME. Plasmin is a broad-spectrum, highly potent, serine protease whose activation from its precursor plasminogen is tightly regulated by the activators (uPA, uPAR, and tPA), the inhibitors (PAI-1, PAI-2), and plasminogen receptors. Collectively, this system is called the plasminogen activation system. The expression of the components of the plasminogen activation system by malignant cells and the surrounding stromal cells modulates the TME resulting in sustained cancer progression signals. In this review, we provide a detailed discussion of the roles of plasminogen activation system in tumor growth, invasion, metastasis, and chemoresistance with specific emphasis on their role in the TME. We particularly review the recent highlights of the plasminogen receptor S100A10 (p11), which is a pivotal component of the plasminogen activation system.
Collapse
|
11
|
Interactions between tumor-derived proteins and Toll-like receptors. Exp Mol Med 2020; 52:1926-1935. [PMID: 33299138 PMCID: PMC8080774 DOI: 10.1038/s12276-020-00540-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are danger signals (or alarmins) alerting immune cells through pattern recognition receptors (PRRs) to begin defense activity. Moreover, DAMPs are host biomolecules that can initiate a noninflammatory response to infection, and pathogen-associated molecular pattern (PAMPs) perpetuate the inflammatory response to infection. Many DAMPs are proteins that have defined intracellular functions and are released from dying cells after tissue injury or chemo-/radiotherapy. In the tumor microenvironment, DAMPs can be ligands for Toll-like receptors (TLRs) expressed on immune cells and induce cytokine production and T-cell activation. Moreover, DAMPs released from tumor cells can directly activate tumor-expressed TLRs that induce chemoresistance, migration, invasion, and metastasis. Furthermore, DAMP-induced chronic inflammation in the tumor microenvironment causes an increase in immunosuppressive populations, such as M2 macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). Therefore, regulation of DAMP proteins can reduce excessive inflammation to create an immunogenic tumor microenvironment. Here, we review tumor-derived DAMP proteins as ligands of TLRs and discuss their association with immune cells, tumors, and the composition of the tumor microenvironment. Tumor cells killed by radiotherapy or chemotherapy release signaling molecules that stimulate both immune response and tumor aggressiveness; regulating these molecules could improve treatment efficacy. Tae Heung Kang, Yeong-Min Park, and co-workers at Konkuk University, Seoul, South Korea, have reviewed the role of damage-associated molecular patterns (DAMPs) in immunity and cancer. These signaling molecules act as danger signals, activating immune cells by binding to specific receptors. However, tumor cells have the same receptors, and DAMPs binding triggers chemoresistance and increases invasiveness. The researchers report that although DAMPs can trigger a helpful immune response, they can also cause chronic inflammation, which in turn promotes an immune suppression response, allowing tumors to escape immune detection. Improving our understanding of the functions of different DAMPs could improve our ability to boost the immune response and decrease tumor aggressiveness.
Collapse
|
12
|
Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR-ABL-Negative Myeloproliferative Neoplasm. Antioxidants (Basel) 2020; 9:antiox9111037. [PMID: 33114087 PMCID: PMC7690801 DOI: 10.3390/antiox9111037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR-ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.
Collapse
|
13
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
14
|
Yuan Q, Hou S, Zhai J, Tian T, Wu Y, Wu Z, He J, Chen Z, Zhang J. S100A4 promotes inflammation but suppresses lipid accumulation via the STAT3 pathway in chronic ethanol-induced fatty liver. J Mol Med (Berl) 2019; 97:1399-1412. [PMID: 31321478 DOI: 10.1007/s00109-019-01808-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
S100A4, a member of the S100 calcium-binding protein family, has been identified in a subpopulation of liver macrophages and promotes liver fibrosis via hepatic stellate cell activation. However, the specific role of S100A4 in alcoholic liver disease (ALD) has not been well investigated. Here, S100A4 knockout (S100A4-/-) mice were used in a chronic-binge ethanol model for studying the role of S100A4 and its related molecular mechanism in ALD. S100A4 expression was increased in ethanol-induced liver tissues of wild-type (WT) mice. Macrophage-derived S100A4 promoted liver inflammation but suppressed lipid accumulation under the ethanol feeding condition. S100A4 deficiency promoted ethanol-induced liver injury and hepatic fat accumulation. Further mechanistic studies found that S100A4 inhibited liver fat accumulation mainly by activating the STAT3 pathway and downregulating lipogenic gene expression, especially that of SREBP-1c. In AML-12 cells, a STAT3 inhibitor abolished STAT3 levels and decreased the expression of SREBP1c. Furthermore, the administration of a neutralizing S100A4 antibody to WT mice significantly promoted ethanol-induced liver injury and fatty accumulation. Thus, S100A4 may represent a potential candidate target for the prevention and treatment of ethanol-induced fatty liver. In this study, we discovered the special role of S100A4 in alcoholic liver disease. S100A4 deficiency attenuated ethanol-induced hepatitis and promoted hepatic fat accumulation in ethanol-induced liver tissues. Further mechanistic studies have found that S100A4 promotes early alcoholic hepatitis mainly by activating the STAT3 pathway and its downstream proinflammatory gene expression. Interestingly, activation of the STAT3 pathway downregulates lipogenic gene expression, especially SREBP-1c. KEY MESSAGES: In this study, we discovered the special role of S100A4 in alcoholic liver disease. S100A4 deficiency attenuated ethanol-induced hepatitis and promoted hepatic fat accumulation in ethanol-induced liver tissues. Further mechanistic studies have found that S100A4 promotes early alcoholic hepatitis mainly by activating the STAT3 pathway and its downstream proinflammatory gene expression. Interestingly, activation of the STAT3 pathway downregulates lipogenic gene expression, especially SREBP-1c.
Collapse
Affiliation(s)
- Qi Yuan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China
| | - Shasha Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China
| | - Junfeng Zhai
- The Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Tian Tian
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China
| | - Yingjie Wu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Zhenlong Wu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Jinsheng He
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China
| | - Zhinan Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China.,The Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, People's Republic of China.
| |
Collapse
|
15
|
Abstract
The metastasis-promoting S100A4 protein, a member of the S100 family, has recently been discovered as a potent factor implicated in various inflammation-associated diseases. S100A4 is involved in a range of biological functions such as angiogenesis, cell differentiation, apoptosis, motility, and invasion. Moreover, S100A4 is also a potent trigger of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions.Indeed, the release of S100A4 upon stress and mainly its pro-inflammatory role emerges as the most decisive activity in disease development, such as rheumatoid arthritis (RA), systemic sclerosis (SSc) allergy, psoriasis, and cancer. In the scope of this review, we will focus on the role of S100A4 as a mediator of pro-inflammatory pathways and its associated biological processes involved in the pathogenesis of various human noncommunicable diseases (NCDs) including cancer.
Collapse
|
16
|
Dunkel Y, Reid AL, Ear J, Aznar N, Millward M, Gray E, Pearce R, Ziman M, Ghosh P. Prognostic Relevance of CCDC88C (Daple) Transcripts in the Peripheral Blood of Patients with Cutaneous Melanoma. Sci Rep 2018; 8:18036. [PMID: 30575751 PMCID: PMC6303298 DOI: 10.1038/s41598-018-36173-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023] Open
Abstract
A loss of balance between G protein activation and deactivation has been implicated in the initiation of melanomas, and non-canonical Wnt signaling via the Wnt5A/Frizzled (FZD) pathway has been shown to be critical for the switch to an invasive phenotype. Daple [CCDC88C], a cytosolic guanine nucleotide exchange modulator (GEM) which enhances non-canonical Wnt5A/FZD signaling via activation of trimeric G protein, Gαi, has been shown to serve opposing roles-as an inducer of EMT and invasiveness and a potent tumor suppressor-via two isoforms, V1 (full-length) and V2 (short spliced isoform), respectively. Here we report that the relative abundance of these isoforms in the peripheral circulation, presumably largely from circulating tumor cells (CTCs), is a prognostic marker of cutaneous melanomas. Expression of V1 is increased in both the early and late clinical stages (p < 0.001, p = 0.002, respectively); V2 is decreased exclusively in the late clinical stage (p = 0.003). The two isoforms have opposing prognostic effects: high expression of V2 increases relapse-free survival (RFS; p = 0.014), whereas high expression of V1 tends to decrease RFS (p = 0.051). Furthermore, these effects are additive, in that melanoma patients with a low V2-high V1 signature carry the highest risk of metastatic disease. We conclude that detection of Daple transcripts in the peripheral blood (i.e., liquid biopsies) of patients with melanoma may serve as a prognostic marker and an effective strategy for non-invasive long-term follow-up of patients with melanoma.
Collapse
Affiliation(s)
- Ying Dunkel
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Anna L Reid
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Jason Ear
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nicolas Aznar
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Centre de Recherche enCancérologie de Lyon (CRCL), Lyon, France
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Elin Gray
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Robert Pearce
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Melanie Ziman
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia.
- School of Biomedical Science, University of Western Australia, Crawley, Australia.
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA.
- Rebecca and John Moores Cancer Center, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
17
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
18
|
Prasmickaite L, Tenstad EM, Pettersen S, Jabeen S, Egeland EV, Nord S, Pandya A, Haugen MH, Kristensen VN, Børresen-Dale AL, Engebråten O, Maelandsmo GM. Basal-like breast cancer engages tumor-supportive macrophages via secreted factors induced by extracellular S100A4. Mol Oncol 2018; 12:1540-1558. [PMID: 29741811 PMCID: PMC6120223 DOI: 10.1002/1878-0261.12319] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) may influence both cancer progression and therapeutic response. In breast cancer, particularly in the aggressive triple‐negative/basal‐like subgroup, patient outcome is strongly associated with the tumor's inflammatory profile. Tumor‐associated macrophages (TAMs) are among the most abundant immune cells in the TME, shown to be linked to poor prognosis and therapeutic resistance. In this study, we investigated the effect of the metastasis‐ and inflammation‐associated microenvironmental factor S100A4 on breast cancer cells (BCCs) of different subtypes and explored their further interactions with myeloid cells. We demonstrated that extracellular S100A4 activates BCCs, particularly the basal‐like subtype, to elevate secretion of pro‐inflammatory cytokines. The secreted factors promoted conversion of monocytes to TAM‐like cells that exhibited protumorigenic activities: stimulated epithelial–mesenchymal transition, proliferation, chemoresistance, and motility in cancer cells. In conclusion, we have shown that extracellular S100A4 instigates a tumor‐supportive microenvironment, involving a network of cytokines and TAM‐like cells, which was particularly characteristic for basal‐like BCCs and potentiated their aggressive properties. The S100A4–BCC–TAM interaction cascade could be an important contributor to the aggressive behavior of this subtype and should be further explored for therapeutic targeting.
Collapse
Affiliation(s)
- Lina Prasmickaite
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Norway
| | - Ellen M Tenstad
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Norway
| | - Solveig Pettersen
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Norway
| | - Shakila Jabeen
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Eivind V Egeland
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Norway
| | - Silje Nord
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Norway
| | - Abhilash Pandya
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Norway
| | - Mads H Haugen
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Norway
| | - Vessela N Kristensen
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Norway
| | | | - Olav Engebråten
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Oncology, Oslo University Hospital, Norway
| | - Gunhild M Maelandsmo
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT/The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
19
|
TLR4 and RAGE conversely mediate pro-inflammatory S100A8/9-mediated inhibition of proliferation-linked signaling in myeloproliferative neoplasms. Cell Oncol (Dordr) 2018; 41:541-553. [DOI: 10.1007/s13402-018-0392-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 11/26/2022] Open
|
20
|
Liu Y, Geng YH, Yang H, Yang H, Zhou YT, Zhang HQ, Tian XX, Fang WG. Extracellular ATP drives breast cancer cell migration and metastasis via S100A4 production by cancer cells and fibroblasts. Cancer Lett 2018; 430:1-10. [PMID: 29733962 DOI: 10.1016/j.canlet.2018.04.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022]
Abstract
Our previous work has demonstrated that extracellular ATP is an important pro-invasive factor, and in this study, we tapped into a possible mechanism involved. We discovered that ATP could upregulate both the intracellular expression and secretion of S100A4 in breast cancer cells and fibroblasts. Apart from stimulating breast cancer cell motility via intracellular S100A4, ATP enhanced the ability of breast cancer cells to transform fibroblasts into cancer-associated fibroblast (CAF)-like cells, which in turn secreted S100A4 to further promote cancer cell motility. Both apyrase and niclosamide treatments could inhibit metastasis of inoculated tumors to lung, liver and kidney in mice model, and CAFs from these treated tumors exhibited weakened migration-stimulating capacity for breast cancer cells. Collectively, our data indicate that extracellular ATP promotes the interactions between breast cancer cells and fibroblasts, which work collaboratively via production of S100A4 to exacerbate breast cancer metastasis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Pathology, Peking University Third Hospital, Beijing, 100191, China
| | - Yue-Hang Geng
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Pathology, Peking University Third Hospital, Beijing, 100191, China
| | - Han Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Pathology, Peking University Third Hospital, Beijing, 100191, China
| | - Yan-Ting Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Pathology, Peking University Third Hospital, Beijing, 100191, China
| | - Hong-Quan Zhang
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, 100191, China
| | - Xin-Xia Tian
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Pathology, Peking University Third Hospital, Beijing, 100191, China.
| | - Wei-Gang Fang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Pathology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
21
|
Klee NS, McCarthy CG, Martinez-Quinones P, Webb RC. Out of the frying pan and into the fire: damage-associated molecular patterns and cardiovascular toxicity following cancer therapy. Ther Adv Cardiovasc Dis 2017; 11:297-317. [PMID: 28911261 PMCID: PMC5933669 DOI: 10.1177/1753944717729141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
Cardio-oncology is a new and rapidly expanding field that merges cancer and cardiovascular disease. Cardiovascular disease is an omnipresent side effect of cancer therapy; in fact, it is the second leading cause of death in cancer survivors after recurrent cancer. It has been well documented that many cancer chemotherapeutic agents cause cardiovascular toxicity. Nonetheless, the underlying cause of cancer therapy-induced cardiovascular toxicity is largely unknown. In this review, we discuss the potential role of damage-associated molecular patterns (DAMPs) as an underlying contributor to cancer therapy-induced cardiovascular toxicity. With an increasing number of cancer patients, as well as extended life expectancy, understanding the mechanisms underlying cancer therapy-induced cardiovascular disease is of the utmost importance to ensure that cancer is the only disease burden that cancer survivors have to endure.
Collapse
Affiliation(s)
- Nicole S. Klee
- Department of Physiology, Medical College of Georgia at Augusta University, 1120 15 Street, Augusta, GA 30912, USA
| | - Cameron G. McCarthy
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Patricia Martinez-Quinones
- Departments of Physiology and Surgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
22
|
Padilla L, Dakhel S, Adan J, Masa M, Martinez JM, Roque L, Coll T, Hervas R, Calvis C, Llinas L, Buenestado S, Castellsague J, Messeguer R, Mitjans F, Hernandez JL. S100A7: from mechanism to cancer therapy. Oncogene 2017; 36:6749-6761. [PMID: 28825725 DOI: 10.1038/onc.2017.283] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/02/2017] [Accepted: 07/08/2017] [Indexed: 12/21/2022]
Abstract
Within the tumor, malignant and stromal cells support each other by secreting a wide variety of growth factors and cytokines, allowing tumor growth and disease progression. The identification and regulation of those key factors in this crosstalk has opened the opportunity to develop new therapeutic strategies that not only act on the tumor cells but also on the stroma. Among these factors, S100A7 protein has gained interest in the last years. With key roles in cell motility its expression correlates with increased tumor growth, angiogenesis and metastatic potential. This work aims to deepen in the role played by extracellular S100A7 in the tumor microenvironment, offering a new integrative insight of its mechanism of action on each cellular compartment (tumor, endothelial, immune and fibroblast). As a result, we demonstrate its implication in cell migration and invasion, and its important contribution to the formation of a proinflammatory and proangiogenic environment that favors tumor progression and metastasis. Furthermore, we define its possible role in the pre-metastatic niche formation. Considering the relevance of S100A7 in cancer progression, we have developed neutralizing monoclonal antibodies, reporting for the first time the proof of principle of this promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- L Padilla
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - S Dakhel
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - J Adan
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - M Masa
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - J M Martinez
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - L Roque
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - T Coll
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - R Hervas
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - C Calvis
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - L Llinas
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - S Buenestado
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - J Castellsague
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - R Messeguer
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - F Mitjans
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - J L Hernandez
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| |
Collapse
|
23
|
Fei F, Qu J, Zhang M, Li Y, Zhang S. S100A4 in cancer progression and metastasis: A systematic review. Oncotarget 2017; 8:73219-73239. [PMID: 29069865 PMCID: PMC5641208 DOI: 10.18632/oncotarget.18016] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the leading cause of cancer-related death and directly associates with cancer progression, resistance to anticancer therapy, and poor patient survival. Current efforts focusing on the underlying molecular mechanisms of cancer metastasis attract a special attention to cancer researchers. The epithelial-mesenchymal transition is a complex of molecular program during embryogenesis, inflammation, tissue fibrosis, and cancer progression and metastasis. S100A4, an important member of S100 family proteins, functions to increase the tumor progression and metastasis. The molecular mechanisms of S100A4 involving in the progression and metastasis are diverse in various malignant tumors. Detection of S100A4 expression becomes a promising candidate biomarker in cancer early diagnosis and prediction of cancer metastasis and therefore, S100A4 may be a therapeutic target. This review summarized up to date advancement on the role of S100A4 in human cancer development, progression, and metastasis and the underlying molecular events and then strategies to target S100A4 expression experimentally.
Collapse
Affiliation(s)
- Fei Fei
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R.China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Jie Qu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R.China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Mingqing Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| |
Collapse
|
24
|
Egeland EV, Boye K, Park D, Synnestvedt M, Sauer T, Naume B, Borgen E, Mælandsmo GM. Prognostic significance of S100A4-expression and subcellular localization in early-stage breast cancer. Breast Cancer Res Treat 2017; 162:127-137. [PMID: 28058579 DOI: 10.1007/s10549-016-4096-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE Prognostic factors are useful in order to identify early-stage breast cancer patients who might benefit from adjuvant treatment. The metastasis-promoting protein S100A4 has previously been associated with poor prognosis in breast cancer patients. The protein is expressed in diverse subcellular compartments, including the cytoplasm, extracellular space, and nucleus. Nuclear expression is an independent predictor of poor outcome in several cancer types, but the significance of subcellular expression has not yet been assessed in breast cancer. METHODS Nuclear and cytoplasmic expression of S100A4 was assessed by immunohistochemistry in prospectively collected tumor samples from early-stage breast cancer patients using tissue microarrays. RESULTS In patients not receiving adjuvant systemic therapy, nuclear or cytoplasmic expression was found in 44/291 tumors (15%). Expression of either nuclear or cytoplasmic S100A4 was associated with histological grade III, triple-negative subtype, and Ki-67-expression. Patients with S100A4-positive tumors had inferior metastasis-free and overall survival compared to S100A4-negative. When expression was analyzed separately, nuclear S100A4 was a significant predictor of outcome, while cytoplasmic was not. In patients who received adjuvant treatment 23/300 tumors (8%) were S100A4-positive, but no tumors displayed nuclear staining alone. S100A4-expression was strongly associated with histological grade III and triple-negative subtype. Although not significant, metastasis-free and overall survival was numerically reduced in patients with S100A4-positive tumors. CONCLUSION S100A4-expression was associated with poor outcome in early-stage breast cancer, but the low percentage of positive tumors and the modest survival differences imply that the clinical utility in selection of patients for adjuvant treatment is limited.
Collapse
Affiliation(s)
- Eivind Valen Egeland
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, 0424, Nydalen, Oslo, Norway.
| | - Kjetil Boye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, 0424, Nydalen, Oslo, Norway.,Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Daehoon Park
- Department of Pathology, Vestre Viken Health Trust, Drammen, Norway
| | - Marit Synnestvedt
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | | | - Bjørn Naume
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elin Borgen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, 0424, Nydalen, Oslo, Norway. .,Department of Pharmacy, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
25
|
Luo C, Wang X, An C, Hwang CF, Miao W, Yang L, Xu M, Bai A, Deng S. Molecular inhibition mechanisms of cell migration and invasion by coix polysaccharides in A549 NSCLC cells via targeting S100A4. Mol Med Rep 2016; 15:309-316. [PMID: 27922683 DOI: 10.3892/mmr.2016.5985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/21/2016] [Indexed: 11/05/2022] Open
Abstract
S100 calcium binding protein A4 (S100A4) promotes extracellular signal transduction, intercellular adhesion, motility and mobility. Different extracts from Coix lachryma-jobi have been used for the treatment of various types of cancer in Asia. In our previous study, the polysaccharide fraction extact, CP1, induced cell apoptosis of non‑small cell lung cancer cells. In the current study, CP1 inhibited migration and invasion of A549 cells in a scratch wound healing assay and matrigel invasion assay, respectively. Furthermore, reverse transcription‑polymerase chain reaction and western blotting demonstrated that CP1 downregulated the gene and protein expression levels of S100A4. In silico docking analysis demonstrated that polysaccharides may not interfere with dimerization, whereas, the affinity of polysaccharides for an S100A4‑NMIIA pocket was margnially greater than at the dimerization sites. Thus, CP1 inhibited A549 cell migration and invasion potentially via downregulation of S100A4, and may also interact with the binding site of S100A4‑NMIIA, which indicated that CP1 has potential as an alternative cancer chemotherapeutic by targeting S100A4.
Collapse
Affiliation(s)
- Cheng Luo
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, P.R. China
| | - Xin Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, P.R. China
| | - Can An
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, P.R. China
| | - Chin-Fa Hwang
- Department of Food Science and Technology, Hung Kuang University, Taichung 43302, Taiwan, R.O.C
| | - Wenhua Miao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, P.R. China
| | - Lu Yang
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Maonian Xu
- Department of Food and Environmental Sciences, Division of Food Chemistry, University of Helsinki, F‑00014 Helsinki, Finland
| | - Aiping Bai
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
| | - Shanggui Deng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, P.R. China
| |
Collapse
|
26
|
|
27
|
Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 2016; 35:5931-5941. [PMID: 27086930 PMCID: PMC5119456 DOI: 10.1038/onc.2016.104] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/14/2022]
Abstract
Damage-associated molecular patterns (DAMPs) are released in response to cell
death and stress, and are potent triggers of sterile inflammation. Recent evidence
suggests that DAMPs may also have a key role in the development of cancer as well as in
the host response to cytotoxic anti-tumor therapy. As such, DAMPs may exert protective
functions by alerting the immune system to the presence of dying tumor cells, thereby
triggering immunogenic tumor cell death. On the other hand, cell death and release of
DAMPs may also trigger chronic inflammation and thereby promote the development or
progression of tumors. Here, we will review the contribution of candidate DAMPs and their
receptors and discuss the evidence for DAMPs as tumor-promoting and anti-tumor effectors
as well as unsolved questions such as DAMP release from non-tumor cells as well as the
existence of tumor-specific DAMPs.
Collapse
|
28
|
Evensen L, Johansen PL, Koster G, Zhu K, Herfindal L, Speth M, Fenaroli F, Hildahl J, Bagherifam S, Tulotta C, Prasmickaite L, Mælandsmo GM, Snaar-Jagalska E, Griffiths G. Zebrafish as a model system for characterization of nanoparticles against cancer. NANOSCALE 2016; 8:862-77. [PMID: 26648525 DOI: 10.1039/c5nr07289a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general in vivo properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate in vitro, by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells. In vivo in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing.
Collapse
Affiliation(s)
- Lasse Evensen
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Patrick L Johansen
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Gerbrand Koster
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Kaizheng Zhu
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371, Oslo, Norway
| | - Lars Herfindal
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Martin Speth
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Jon Hildahl
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Shahla Bagherifam
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371, Oslo, Norway
| | - Claudia Tulotta
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Lina Prasmickaite
- Department of Tumour Biology, Oslo University Hospital Radiumhospital, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumour Biology, Oslo University Hospital Radiumhospital, Oslo, Norway
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| |
Collapse
|
29
|
From autonomy to community; new perspectives on tumorigenicity and therapy resistance. Cancer Treat Rev 2015; 41:809-13. [DOI: 10.1016/j.ctrv.2015.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022]
|
30
|
Nasser MW, Elbaz M, Ahirwar DK, Ganju RK. Conditioning solid tumor microenvironment through inflammatory chemokines and S100 family proteins. Cancer Lett 2015; 365:11-22. [PMID: 25963887 PMCID: PMC11707611 DOI: 10.1016/j.canlet.2015.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/13/2022]
Abstract
Recently, there has been growing attention to the role of the tumor microenvironment (TME) in cancer growth, metastasis and emergence of chemotherapy resistance. Stromal and tumor cells make up the TME and interact with each other through a complex cross-talk manner. This interaction is facilitated by a variety of growth factors, cytokines, chemokines and S100 proteins. In this review, we focus on chemokines and their cognate receptors in regulating the tumorigenic process. Chemokines are cytokines that have chemotactic potential. Chemokine receptors are expressed on tumor cells and stromal cells. Chemokines and their cognate receptors modulate tumor growth and metastasis in a paracrine and autocrine manner. They play a major role in the modulation of stromal cell recruitment, angiogenic potential, cancer cell proliferation, survival, adhesion, invasion and metastasis to distant sites. In addition, a new class of calcium binding family S100 proteins has been getting attention as they play significant roles in tumor progression and metastasis by modulating TME. Here, we highlight recent developments regarding the inflammatory chemokine/S100 protein systems in the TME. We also focus on how chemokines/S100 proteins, through their role in the TME, modulate cancer cell ability to grow, proliferate, invade and metastasize to different organs. This review highlights the possibility of using the chemokine/chemokine receptor axis as a promising strategy in cancer therapy, the current difficulties in achieving this goal, and how it could be overcome for successful future therapeutic intervention.
Collapse
Affiliation(s)
- Mohd W Nasser
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA.
| | - Mohamad Elbaz
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA
| | - Dinesh K Ahirwar
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA
| |
Collapse
|
31
|
De Paoli M, Perco P, Mühlberger I, Lukas A, Pandha H, Morgan R, Feng GJ, Marquette C. Disease map-based biomarker selection and pre-validation for bladder cancer diagnostic. Biomarkers 2015; 20:328-37. [DOI: 10.3109/1354750x.2015.1068867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Poh AR, O'Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015; 6:15752-71. [PMID: 26087188 PMCID: PMC4599235 DOI: 10.18632/oncotarget.4199] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Robert J.J. O'Donoghue
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| |
Collapse
|
33
|
Yuan X, Wang LU, Xue J, Li LI, Zhang J. Endocrine MPA enhances the effects of TAC chemotherapy on improvement of prognosis and increase in long-term survival rates for patients with endometrial cancer. Oncol Lett 2015; 10:1902-1906. [PMID: 26622772 DOI: 10.3892/ol.2015.3395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of taxol, adriamycin and carboplatin (TAC) chemotherapy combined with endocrine medroxyprogesterone acetate (MPA) therapy for the treatment of patients with endometrial cancer. A retrospective analysis of 124 patients with endometrial cancer was performed by dividing the cohort into an experimental and control group. The 64 patients in the experimental group received TAC and MPA chemotherapy, whereas the 60 patients in the control group were treated with TAC chemotherapy only. Tissue samples scraped from the uterus were used to extract the total proteins and RNAs for the western blot and reverse transcription-quantitative polymerase chain reaction analyses, respectively. All the patients were followed up for 20-45 months, during which time prognostic data, and one- to three-year survival rates were recorded and compared. The rate of recurrence or metastasis was significantly lower in the experimental group compared with that in the control group (P<0.05) and the three-year survival rate of the experimental group was significantly higher than that of the control group (P<0.05). Furthermore, the mean metastasis-associated 1 (MTA1) protein and RNA expression levels were significantly lower in the experimental group compared with the control group (P<0.05), exhibiting ~30 and ~15% of the levels in the control group, respectively. Therefore, a treatment strategy of TAC chemotherapy combined with endocrine MPA therapy appears to effectively improve the prognosis and increase the long-term survival rates of patients with endometrial cancer. Such an enhancing effect may be mediated by the transcriptional downregulation of MTA1 expression.
Collapse
Affiliation(s)
- Xiuhong Yuan
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - L U Wang
- Department of Neurobiology, Medical School of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Juan Xue
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - L I Li
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Jing Zhang
- Department of Neurobiology, Medical School of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
34
|
Bettum IJ, Gorad SS, Barkovskaya A, Pettersen S, Moestue SA, Vasiliauskaite K, Tenstad E, Øyjord T, Risa Ø, Nygaard V, Mælandsmo GM, Prasmickaite L. Metabolic reprogramming supports the invasive phenotype in malignant melanoma. Cancer Lett 2015; 366:71-83. [PMID: 26095603 DOI: 10.1016/j.canlet.2015.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/05/2015] [Accepted: 06/09/2015] [Indexed: 11/29/2022]
Abstract
Invasiveness is a hallmark of aggressive cancer like malignant melanoma, and factors involved in acquisition or maintenance of an invasive phenotype are attractive targets for therapy. We investigated melanoma phenotype modulation induced by the metastasis-promoting microenvironmental protein S100A4, focusing on the relationship between enhanced cellular motility, dedifferentiation and metabolic changes. In poorly motile, well-differentiated Melmet 5 cells, S100A4 stimulated migration, invasion and simultaneously down-regulated differentiation genes and modulated expression of metabolism genes. Metabolic studies confirmed suppressed mitochondrial respiration and activated glycolytic flux in the S100A4 stimulated cells, indicating a metabolic switch toward aerobic glycolysis, known as the Warburg effect. Reversal of the glycolytic switch by dichloracetate induced apoptosis and reduced cell growth, particularly in the S100A4 stimulated cells. This implies that cells with stimulated invasiveness get survival benefit from the glycolytic switch and, therefore, become more vulnerable to glycolysis inhibition. In conclusion, our data indicate that transition to the invasive phenotype in melanoma involves dedifferentiation and metabolic reprogramming from mitochondrial oxidation to glycolysis, which facilitates survival of the invasive cancer cells. Therapeutic strategies targeting the metabolic reprogramming may therefore be effective against the invasive phenotype.
Collapse
Affiliation(s)
- Ingrid J Bettum
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Saurabh S Gorad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; St. Olavs University Hospital, Trondheim, Norway
| | - Anna Barkovskaya
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Solveig Pettersen
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Siver A Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; St. Olavs University Hospital, Trondheim, Norway
| | - Kotryna Vasiliauskaite
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ellen Tenstad
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tove Øyjord
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Øystein Risa
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; St. Olavs University Hospital, Trondheim, Norway
| | - Vigdis Nygaard
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Lina Prasmickaite
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
35
|
Bacolod MD, Das SK, Sokhi UK, Bradley S, Fenstermacher DA, Pellecchia M, Emdad L, Sarkar D, Fisher PB. Examination of Epigenetic and other Molecular Factors Associated with mda-9/Syntenin Dysregulation in Cancer Through Integrated Analyses of Public Genomic Datasets. Adv Cancer Res 2015; 127:49-121. [PMID: 26093898 DOI: 10.1016/bs.acr.2015.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mda-9/Syntenin (melanoma differentiation-associated gene 9) is a PDZ domain containing, cancer invasion-related protein. In this study, we employed multiple integrated bioinformatic approaches to identify the probable epigenetic factors, molecular pathways, and functionalities associated with mda-9 dysregulation during cancer progression. Analyses of publicly available genomic data (e.g., expression, copy number, methylation) from TCGA, GEO, ENCODE, and Human Protein Atlas projects led to the following observations: (a) mda-9 expression correlates with both copy number and methylation level of an intronic CpG site (cg1719774) located downstream of the CpG island, (b) cg1719774 methylation is a likely prognostic marker in glioma, (c) among 22 cancer types, melanoma exhibits the highest mda-9 level, and lowest level of methylation at cg1719774, (d) cg1719774 hypomethylation is also associated with histone modifications (at the mda-9 locus) indicative of more active transcription, (e) using Gene Set Enrichment Analysis (GSEA), and the Virtual Gene Overexpression or Repression (VIGOR) analytical scheme, we were able to predict mda-9's association with extracellular matrix organization (e.g., MMPs, collagen, integrins), IGFBP2 and NF-κB signaling pathways, phospholipid metabolism, cytokines (e.g., interleukins), CTLA-4, and components of complement cascade pathways. Indeed, previous publications have shown that many of the aforementioned genes and pathways are associated with mda-9's functionality.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Upneet K Sokhi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Steven Bradley
- VCU Bioinformatics Program, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David A Fenstermacher
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
36
|
Abstract
In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
Collapse
Affiliation(s)
- Anne R. Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - David J. Weber
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| | - Danna B. Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| |
Collapse
|
37
|
Spina A, De Pasquale V, Cerulo G, Cocchiaro P, Della Morte R, Avallone L, Pavone LM. HGF/c-MET Axis in Tumor Microenvironment and Metastasis Formation. Biomedicines 2015; 3:71-88. [PMID: 28536400 PMCID: PMC5344235 DOI: 10.3390/biomedicines3010071] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Tumor metastases are responsible for approximately 90% of all cancer-related deaths. Metastasis formation is a multistep process that requires acquisition by tumor cells of a malignant phenotype that allows them to escape from the primary tumor site and invade other organs. Each step of this mechanism involves a deep crosstalk between tumor cells and their microenvironment where the host cells play a key role in influencing metastatic behavior through the release of many secreted factors. Among these signaling molecules, Hepatocyte Growth Factor (HGF) is released by many cell types of the tumor microenvironment to target its receptor c-MET within the cells of the primary tumor. Many studies reveal that HGF/c-MET axis is implicated in various human cancers, and genetic and epigenetic gain of functions of this signaling contributes to cancer development through a variety of mechanisms. In this review, we describe the specific types of cells in the tumor microenvironment that release HGF in order to promote the metastatic outgrowth through the activation of extracellular matrix remodeling, inflammation, migration, angiogenesis, and invasion. We dissect the potential use of new molecules that interfere with the HGF/c-MET axis as therapeutic targets for future clinical trials in cancer disease.
Collapse
Affiliation(s)
- Anna Spina
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Giuliana Cerulo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
38
|
Yuan TM, Liang RY, Hsiao NW, Chuang SM. The S100A4 D10V polymorphism is related to cell migration ability but not drug resistance in gastric cancer cells. Oncol Rep 2014; 32:2307-18. [PMID: 25310523 PMCID: PMC4240476 DOI: 10.3892/or.2014.3540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/21/2014] [Indexed: 01/16/2023] Open
Abstract
Upregulation of the metastasis-promoting S100A4 protein has been linked to tumor migration and invasion, and clinical studies have demonstrated that significant expression of S100A4 in primary tumors is indicative of poor prognosis. However, the involvement of S100A4 in the drug responsiveness of gastric cancer remains unclear. In the present study, we used gastric cancer cell lines as a model to investigate the involvement of S100A4 in drug responsiveness. We overexpressed S100A4 in AGS and SCM-1 cells, which are characterized by relatively low-level expression of endogenous S100A4, and found that this significantly enhanced cell migration but did not affect cell survival in the presence of six common anticancer drugs. Moreover, in vitro cell proliferation was unchanged. Using RNA interference, we suppressed S100A4 expression in MKN-45 and TMK-1 cells (which are characterized by high-level expression of endogenous S100A4), and found that knockdown of S100A4 markedly attenuated cell motility but did not affect cell survival in the presence of six common anticancer drugs. Further study revealed that a single nucleotide polymorphism (SNP) of S100A4 (rs1803245; c.29A>T), which substitutes an Asp residue with Val (D10V), is localized within the conserved binding surface for Annexin II. Cells overexpressing S100A4D10V showed a significant reduction in cell migration ability, but no change in cell survival, upon anticancer drug treatment. Taken together, our novel results indicate that the expression level of S100A4 does not significantly affect cell survival following anticancer drug treatment. Thus, depending on the cell context, the metastasis-promoting effects of S100A4 may not be positively correlated with anticancer drug resistance in the clinic.
Collapse
Affiliation(s)
- Tein-Ming Yuan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Ruei-Yue Liang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Nai-Wan Hsiao
- Institute of Biotechnology, National Changhua University of Education, Changhua 50007, Taiwan, R.O.C
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
39
|
Xuan X, Li Q, Zhang Z, Du Y, Liu P. Increased expression levels of S100A4 associated with hypoxia-induced invasion and metastasis in esophageal squamous cell cancer. Tumour Biol 2014; 35:12535-43. [PMID: 25217321 DOI: 10.1007/s13277-014-2573-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/28/2014] [Indexed: 12/25/2022] Open
Abstract
Here, we explored the expression of S100A4 in esophageal squamous cell cancer (ESCC) tissues and investigated its role in hypoxia-induced invasion and metastasis in ESCC cell lines EC-1 and EC-9706. Immunohistochemistry analysis demonstrated that S100A4 was overexpressed in human ESCC tissues especially in ESCC tissues with deep invasion and lymph node metastasis. Hypoxia-induced S100A4 overexpression was observed in EC-1 and EC-9706 cells, in which it was associated with invasion and metastasis. Furthermore, we used EC-1 and EC-9706 cells again to upregulate or knockdown the expression S100A4 to investigate the mechanism role of S100A4 in hypoxia-induced invasion and metastasis in ESCC cells. And the results showed that S100A4 played an important role in promoting the invasion and metastasis of EC-1 and EC-9706 cells under hypoxia. Therefore, S100A4 overexpression might be an important mechanism by which hypoxia induced invasion and metastasis, and S100A4 could also be a potential target for the treatment of ESCC.
Collapse
Affiliation(s)
- Xiaoyan Xuan
- Department of Microbiology and Immunology, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | | | | | | | | |
Collapse
|
40
|
Eisenbacher JL, Schrezenmeier H, Jahrsdörfer B, Kaltenmeier C, Rojewski MT, Yildiz T, Beyer T, Erle A, Wiegmann DS, Grassl S, Hang R, Körper S, Wiesneth M, Lotze MT, Lotfi R. S100A4 and Uric Acid Promote Mesenchymal Stromal Cell Induction of IL-10+/IDO+ Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2014; 192:6102-10. [DOI: 10.4049/jimmunol.1303144] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|