1
|
Fardous AM, Heydari AR. Uncovering the Hidden Dangers and Molecular Mechanisms of Excess Folate: A Narrative Review. Nutrients 2023; 15:4699. [PMID: 37960352 PMCID: PMC10648405 DOI: 10.3390/nu15214699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
This review delves into the intricate relationship between excess folate (vitamin B9) intake, especially its synthetic form, namely, folic acid, and its implications on health and disease. While folate plays a pivotal role in the one-carbon cycle, which is essential for DNA synthesis, repair, and methylation, concerns arise about its excessive intake. The literature underscores potential deleterious effects, such as an increased risk of carcinogenesis; disruption in DNA methylation; and impacts on embryogenesis, pregnancy outcomes, neurodevelopment, and disease risk. Notably, these consequences stretch beyond the immediate effects, potentially influencing future generations through epigenetic reprogramming. The molecular mechanisms underlying these effects were examined, including altered one-carbon metabolism, the accumulation of unmetabolized folic acid, vitamin-B12-dependent mechanisms, altered methylation patterns, and interactions with critical receptors and signaling pathways. Furthermore, differences in the effects and mechanisms mediated by folic acid compared with natural folate are highlighted. Given the widespread folic acid supplementation, it is imperative to further research its optimal intake levels and the molecular pathways impacted by its excessive intake, ensuring the health and well-being of the global population.
Collapse
Affiliation(s)
- Ali M. Fardous
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| | - Ahmad R. Heydari
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
2
|
Young O, Ngo N, Lin L, Stanbery L, Creeden JF, Hamouda D, Nemunaitis J. Folate Receptor as a Biomarker and Therapeutic Target in Solid Tumors. Curr Probl Cancer 2023; 47:100917. [PMID: 36508886 DOI: 10.1016/j.currproblcancer.2022.100917] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022]
Abstract
Folate is a B vitamin necessary for basic biological functions, including rapid cell turnover occurring in cancer cell proliferation. Though the role of folate as a causative versus protective agent in carcinogenesis is debated, several studies have indicated that the folate receptor (FR), notably subtype folate receptor alpha (FRα), could be a viable biomarker for diagnosis, progression, and prognosis. Several cancers, including gastrointestinal, gynecological, breast, lung, and squamous cell head and neck cancers overexpress FR and are currently under investigation to correlate receptor status to disease state. Traditional chemotherapies have included antifolate medications, such as methotrexate and pemetrexed, which generate anticancer activity during the synthesis phase of the cell cycle. Increasingly, the repertoire of pharmacotherapies is expanding to include FR as a target, with a heterogenous pool of directed therapies. Here we discuss the FR, expression and effect in cancer biology, and relevant pharmacologic inhibitors.
Collapse
Affiliation(s)
- Olivia Young
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Nealie Ngo
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | | - Justin Fortune Creeden
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
3
|
Miclea LC, Mihailescu M, Tarba N, Brezoiu AM, Sandu AM, Mitran RA, Berger D, Matei C, Moisescu MG, Savopol T. Evaluation of intracellular distribution of folate functionalized silica nanoparticles using fluorescence and hyperspectral enhanced dark field microscopy. NANOSCALE 2022; 14:12744-12756. [PMID: 36000453 DOI: 10.1039/d2nr01821g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using nanoparticles as carriers for drug delivery systems has become a widely applied strategy in therapeutics and diagnostics. However, the pattern of their intracellular distribution is yet to be clarified. Here we present an in vitro study on the incorporation of mesoporous silica nanoparticles conjugated with folate and loaded with a cytotoxic drug, Irinotecan. The nanoparticles count and distribution within the cell frame were evaluated by means of enhanced dark field microscopy combined with hyperspectral imagery and 3D reconstructions from double-labeled fluorescent samples. An original post-processing procedure was developed to emphasize the nanoparticles' localization in 3D reconstruction of cellular compartments. By these means, it has been shown that the conjugation of mesoporous silica nanoparticles with folate increases the efficiency of nanoparticles entering the cell and their preferential localization in the close vicinity of the nucleus. As revealed by metabolic viability assays, the nanoparticles functionalized with folate enhance the cytotoxic efficiency of Irinotecan.
Collapse
Affiliation(s)
- Luminita Claudia Miclea
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| | - Mona Mihailescu
- Digital Holography Imaging and Processing Laboratory, Fundamental Sciences Applied in Engineering Research Center, Faculty of Applied Sciences, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania.
| | - Nicolae Tarba
- Physics Department, Faculty of Applied Sciences, Doctoral School of Automatic Control and Computers, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Ana-Maria Brezoiu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Ana Maria Sandu
- CAMPUS Research Center, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Raul-Augustin Mitran
- "Ilie Murgulescu" Institute of Physical-Chemistry, Romanian Academy, 202 Splaiul Indepedenţei, Bucharest, 060021, Romania
| | - Daniela Berger
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Mihaela Georgeta Moisescu
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| |
Collapse
|
4
|
Sun Y, Lin Y, Deng Y, Wu X, Zhong J, Huang Y, Jiang W, Chi P. Identification of proteins associated with treatment response of neoadjuvant chemoradiotherapy in rectal mucinous adenocarcinoma by co-expression network analysis based on proteomic analysis. J Proteomics 2022; 254:104472. [PMID: 34990823 DOI: 10.1016/j.jprot.2021.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 11/19/2022]
Abstract
For rectal mucinous adenocarcinoma (MAC), identifying biomarkers of neoadjuvant chemoradiotherapy (NCRT) response has become imperative. This study applied label-free mass spectrometry and weighted gene co-expression network analysis to identify hub proteins in association with the NCRT response in 20 rectal MAC patients. We identified 131 differentially abundant proteins and 7 candidate proteins associated with the NCRT response. The immunostaining expressions of six proteins (ENOA, ILEU, MDHM, RM11, PTGDS, and RL3) were significantly associated with the NCRT response. Logistic regression analysis revealed that ENOA (OR = 6.275, P = 0.006) was independent risk hub protein for the NCRT response. Tow hub proteins (ENOA and PTGDS) were identified as significant risk factors by Cox regression analysis. A prognostic risk score system was constructed: risk score = (0.910 × EXPENOA) + (-1.519 × EXPPTGDS), and found to be an independent predictor of DFS in rectal MAC patients (HR = 10.308, P < 0.001). Our study suggested that ENOA may be a novel biomarker for the NCRT response and prognosis in rectal MAC patients. A two-hub-protein-based risk score system might be used for predicting tumor recurrence in rectal MAC patients. SIGNIFICANCE: NCRT resistance is a major problem in the treatment of rectal MAC patients. Identifying robust predictive biomarkers for NCRT resistance is beneficial to the stratified treatment of rectal MAC patients. In this study, label-free mass spectrometry and weighted gene co-expression network analysis identified ENOA as a potential novel biomarker for the NCRT response and prognosis. ENOA may be involved in the process of the NCRT resistance and tumor recurrence through the carbon metabolism pathway.
Collapse
Affiliation(s)
- Yanwu Sun
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Minimal Invasive Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yu Lin
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Minimal Invasive Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yu Deng
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Fujian Medical University, Fuzhou, Fujian, PR China
| | - Xuejing Wu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China
| | | | - Ying Huang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Minimal Invasive Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Fujian Medical University, Fuzhou, Fujian, PR China
| | - Weizhong Jiang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Minimal Invasive Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Fujian Medical University, Fuzhou, Fujian, PR China.
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Minimal Invasive Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, PR China; Fujian Medical University, Fuzhou, Fujian, PR China.
| |
Collapse
|
5
|
Costantino L, Ferrari S, Santucci M, Salo-Ahen OMH, Carosati E, Franchini S, Lauriola A, Pozzi C, Trande M, Gozzi G, Saxena P, Cannazza G, Losi L, Cardinale D, Venturelli A, Quotadamo A, Linciano P, Tagliazucchi L, Moschella MG, Guerrini R, Pacifico S, Luciani R, Genovese F, Henrich S, Alboni S, Santarem N, da Silva Cordeiro A, Giovannetti E, Peters GJ, Pinton P, Rimessi A, Cruciani G, Stroud RM, Wade RC, Mangani S, Marverti G, D'Arca D, Ponterini G, Costi MP. Destabilizers of the thymidylate synthase homodimer accelerate its proteasomal degradation and inhibit cancer growth. eLife 2022; 11:73862. [PMID: 36475542 PMCID: PMC9831607 DOI: 10.7554/elife.73862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Drugs that target human thymidylate synthase (hTS), a dimeric enzyme, are widely used in anticancer therapy. However, treatment with classical substrate-site-directed TS inhibitors induces over-expression of this protein and development of drug resistance. We thus pursued an alternative strategy that led us to the discovery of TS-dimer destabilizers. These compounds bind at the monomer-monomer interface and shift the dimerization equilibrium of both the recombinant and the intracellular protein toward the inactive monomers. A structural, spectroscopic, and kinetic investigation has provided evidence and quantitative information on the effects of the interaction of these small molecules with hTS. Focusing on the best among them, E7, we have shown that it inhibits hTS in cancer cells and accelerates its proteasomal degradation, thus causing a decrease in the enzyme intracellular level. E7 also showed a superior anticancer profile to fluorouracil in a mouse model of human pancreatic and ovarian cancer. Thus, over sixty years after the discovery of the first TS prodrug inhibitor, fluorouracil, E7 breaks the link between TS inhibition and enhanced expression in response, providing a strategy to fight drug-resistant cancers.
Collapse
Affiliation(s)
- Luca Costantino
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Outi MH Salo-Ahen
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical StudiesHeidelbergGermany
| | - Emanuele Carosati
- Department of Chemistry, Biology and Biotechnology, University of PerugiaPerugiaItaly
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Angela Lauriola
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of SienaSienaItaly
| | - Matteo Trande
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Gaia Gozzi
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Puneet Saxena
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Daniela Cardinale
- Respiratory, Critical Care & Anesthesia UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alberto Venturelli
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Antonio Quotadamo
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | | | - Maria Gaetana Moschella
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, ItalyModenaItaly
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Science, University of FerraraFerraraItaly
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Science, University of FerraraFerraraItaly
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Filippo Genovese
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Stefan Henrich
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical StudiesHeidelbergGermany
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | | | - Anabela da Silva Cordeiro
- IBMC I3SPortoPortugal,Department of Biological Sciences, Faculty of Pharmacy, University of PortoPortoPortugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, 1081HV, Vrije Universiteit AmsterdamAmsterdamNetherlands,CancerPharmacology Lab, Fondazione Pisana per la ScienzaPisaItaly
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, 1081HV, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Paolo Pinton
- Dept. of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of FerraraFerraraItaly
| | - Alessandro Rimessi
- Dept. of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of FerraraFerraraItaly
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of PerugiaPerugiaItaly
| | - Robert M Stroud
- Biochemistry and Biophysics Department, University of California San FranciscoSan FranciscoUnited States
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical StudiesHeidelbergGermany,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg UniversityHeidelbergGermany,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg UniversityHeidelbergGermany
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of SienaSienaItaly
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Glauco Ponterini
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
6
|
Kifle ZD, Tadele M, Alemu E, Gedamu T, Ayele AG. A recent development of new therapeutic agents and novel drug targets for cancer treatment. SAGE Open Med 2021; 9:20503121211067083. [PMID: 34992782 PMCID: PMC8725032 DOI: 10.1177/20503121211067083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Despite recent advances in cancer diagnosis, prevention, detection, as well as management, the disease is expected to be the top cause of death globally. The chemotherapy approach for cancer has become more advanced in its design, yet no medication can cure enough against all types of cancer and its stage. Thus, this review aimed to summarize a recent development of new therapeutic agents and novel drug targets for the treatment of cancer. Several obstacles stand in the way of effective cancer treatment and drug development, including inaccessibility of tumor site by appropriate drug concentration, debilitating untoward effects caused by non-selective tissue distribution of chemotherapeutic agents, and occurrence of drug resistance, which leads to cross-resistance to a variety of drugs. Resistance to treatment with anticancer drugs results from multiple factors and the most common reason for acquiring drug resistance is marking and expelling drugs that prevent cancer cells to be targeted by chemotherapeutic agents. Moreover, insensitivity to drug-induced apoptosis, alteration, and mutation of drug target and interference/change of DNA replication are other main causes of treatment failure.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Meklit Tadele
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Eyerusalem Alemu
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tadele Gedamu
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
The Timing and Duration of Folate Restriction Differentially Impacts Colon Carcinogenesis. Nutrients 2021; 14:nu14010016. [PMID: 35010891 PMCID: PMC8746403 DOI: 10.3390/nu14010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Diet plays a crucial role in the development of colorectal cancer (CRC). Of particular importance, folate, present in foods and supplements, is a crucial modulator of CRC risk. The role of folate, and, specifically, the synthetic variant, folic acid, in the primary prevention of CRC has not been fully elucidated. Animal studies varied considerably in the timing, duration, and supplementation of folates, leading to equivocal results. Our work attempts to isolate these variables to ascertain the role of folic acid in CRC initiation, as we previously demonstrated that folate restriction conferred protection against CRC initiation in a β-pol haploinsufficient mouse model. Here we demonstrated that prior adaptation to folate restriction altered the response to carcinogen exposure in wild-type C57BL/6 mice. Mice adapted to folate restriction for 8 weeks were protected from CRC initiation compared to mice placed on folate restriction for 1 week, irrespective of antibiotic supplementation. Through analyses of mTOR signaling, DNA methyltransferase, and DNA repair, we have identified factors that may play a critical role in the differential responses to folate restriction. Furthermore, the timing and duration of folate restriction altered these pathways differently in the absence of carcinogenic insult. These results represent novel findings, as we were able to show that, in the same model and under controlled conditions, folate restriction produced contrasting results depending on the timing and duration of the intervention.
Collapse
|
8
|
Fatima EA, Moha T, Said W, Abdelilah M, Mohammed R. Use of metabolomics data analysis to identify fruit quality markers enhanced by the application of an aminopolysaccharide. RSC Adv 2021; 11:35514-35524. [PMID: 35493193 PMCID: PMC9043226 DOI: 10.1039/d1ra05865g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Chitosan is a biostimulator that has a great effect either on plant physiology, productivity, or fruit quality. However, the metabolic mechanism regulated by chitosan still remains unknown. Untargeted metabolomics analysis, using LC-MS/MS mass spectrometry, was used to investigate fruit quality markers. Thus, this study was focused on the identification of untargeted metabolites of tomato fruits produced under the application of five doses of chitosan at different concentrations (0, 0.25, 0.50, 0.75, and 1 mg ml-1) that was extracted from Parapenaeus longirostris shrimp shells. The identification was carried out using two ion modes (ESI-/ESI+), a web application "Metfamily" to analyze signals, and reference libraries. The analysis of data using partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) showed that chitosan application, especially 0.75 mg ml-1, had a clear and remarkable effect regarding the number of metabolite families identified in both ion modes. This treatment has increased the relative abundance of many metabolites that belong to anthocyanins decorated with sugars, terpenoids, phenylpropanoids, acylsugars, glucosinolates, folates, galactolipids, fatty acids, and phospholipids. Thus, these results showed that chitosan application increased the quality of tomato fruits due to its involvement in the regulation of many metabolic pathways that might be responsible for enhancing the nutritional characteristics as well as the defense of fruits.
Collapse
Affiliation(s)
- El Amerany Fatima
- Laboratory of Bio-Organic Chemistry and Macromolecular, Faculty of Science and Technology of Marrakech, Department of Chemistry, Cadi Ayyad University PO Box 549 Marrakech 40000 Morocco
- Natural Macromolecules Team, Normal Graduate School, Department of Biology, University Cadi Ayyad PO Box 575 Marrakech 40000 Morocco
| | - Taourirte Moha
- Laboratory of Bio-Organic Chemistry and Macromolecular, Faculty of Science and Technology of Marrakech, Department of Chemistry, Cadi Ayyad University PO Box 549 Marrakech 40000 Morocco
| | - Wahbi Said
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources, Faculty of Science Semlalia, Department of Biology, Cadi Ayyad University PO Box 2390 Marrakech 40000 Morocco
| | - Meddich Abdelilah
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources, Faculty of Science Semlalia, Department of Biology, Cadi Ayyad University PO Box 2390 Marrakech 40000 Morocco
| | - Rhazi Mohammed
- Natural Macromolecules Team, Normal Graduate School, Department of Biology, University Cadi Ayyad PO Box 575 Marrakech 40000 Morocco
| |
Collapse
|
9
|
Jiang L, Li S, Yuan M, Ma L, Lin Y, Zhu W, Du H, Wang M, Chen T, Zhu L. Genetic variants in the Folic acid Metabolic Pathway Genes predict outcomes of metastatic Colorectal Cancer patients receiving first-line Chemotherapy. J Cancer 2020; 11:6507-6515. [PMID: 33046972 PMCID: PMC7545690 DOI: 10.7150/jca.44580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/29/2020] [Indexed: 11/05/2022] Open
Abstract
Background: The association between genetic variants in the folic acid metabolic pathway genes and survival, as well as the responses to chemotherapy of metastatic colorectal cancer (mCRC) patients has not been reported. Methods: The association between genetic variants in the folic acid metabolic pathway genes and progression-free survival (PFS) and overall survival (OS) of mCRC patients were analyzed using Cox regression model. The false discovery rate (FDR) correction method was conducted. The logistic regression model was used to explore the effects of the interested genetic variants on disease control rate (DCR). The Cancer Genome Atlas (TCGA) database was applied to compare gene expression differences. Results: We found that rs3786362 G allele of thymidylate synthase (TYMS) gene was significantly associated with PFS (P = 1.10 × 10-2), OS (P = 2.50 × 10-2) and DCR (P = 5.00 × 10-3). The expression of TYMS was overexpressed in CRC tissues compared with adjacent normal tissues. Furthermore, TYMS expression level decreased with respect to younger age and advanced tumor stage. Conclusion: Genetic variants in the folic acid metabolic pathway genes might serve as potential prognostic biomarkers for mCRC patients.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Ming Yuan
- Department of Oncology, Jiangyin People's Hospital, Wuxi, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Lin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiyou Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haina Du
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Meilin Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Tao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Wang ST, Cui WQ, Pan D, Jiang M, Chang B, Sang LX. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J Gastroenterol 2020; 26:562-597. [PMID: 32103869 PMCID: PMC7029350 DOI: 10.3748/wjg.v26.i6.562] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/30/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC), a multifactorial disease, is usually induced and developed through complex mechanisms, including impact of diet and lifestyle, genomic abnormalities, change of signaling pathways, inflammatory response, oxidation stress, dysbiosis, and so on. As natural polyphenolic phytochemicals that exist primarily in tea, tea polyphenols (TPs) have been shown to have many clinical applications, especially as anticancer agents. Most animal studies and epidemiological studies have demonstrated that TPs can prevent and treat CRC. TPs can inhibit the growth and metastasis of CRC by exerting the anti-inflammatory, anti-oxidative or pro-oxidative, and pro-apoptotic effects, which are achieved by modulations at multiple levels. Many experiments have demonstrated that TPs can modulate several signaling pathways in cancer cells, including the mitogen-activated protein kinase pathway, phosphatidylinositol-3 kinase/Akt pathway, Wnt/β-catenin pathway, and 67 kDa laminin receptor pathway, to inhibit proliferation and promote cell apoptosis. In addition, novel studies have also suggested that TPs can prevent the growth and metastasis of CRC by modulating the composition of gut microbiota to improve immune system and decrease inflammatory responses. Molecular pathological epidemiology, a novel multidisciplinary investigation, has made great progress on CRC, and the further molecular pathological epidemiology research should be developed in the field of TPs and CRC. This review summarizes the existing in vitro and in vivo animal and human studies and potential mechanisms to examine the effects of tea polyphenols on CRC.
Collapse
Affiliation(s)
- Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
11
|
Chen XL, Wang YM, Zhao F, Chen Z, Yang X, Sun C, Gao Y, Yang TG, Tian G, Chen YM, Zhu SL, Lin XB, Liu FB. Methylenetetrahydrofolate reductase polymorphisms and colorectal cancer prognosis: A meta-analysis. J Gene Med 2019; 21:e3114. [PMID: 31330573 PMCID: PMC6851539 DOI: 10.1002/jgm.3114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Background The present study focused on understanding the prognostic value of the methylenetetrahydrofolate reductase (MTHFR) single nucleotide polymorphisms rs1801133 (C667T) and rs1801131 (A1298C) in patients with colorectal cancer (CRC). Methods A systematic literature search was conducted in March 2016. Databases, including Medline, EMBASE, Cochrane and Chinese databases (including CNKI, Wanfang and VIP), were searched to identify the relevant articles describing MTHFR polymorphisms in patients with CRC. Data regarding overall survival (OS), progression‐free survival (PFS) and disease‐free survival (DFS) were collected and analysed. Results Twenty‐four studies with 5423 patients with CRC were included. Significant differences in OS, PFS and DFS were not observed among the different comparisons of patients carrying different alleles of the MTHFR rs1801133 polymorphism (including TT versus CC, TT versus CT + CC, CT + TT versus CC and CT versus CC). Compared with patients with the rs1801131 CA + AA genotypes, patients with the CC genotype had a shorter OS (hazard ratio = 1.85; 95% confidence interval = 1.30–2.65) and DFS (hazard ratio = 2.16; 95% confidence interval= 1.19–3.93). Significant differences in OS, PFS and DFS were not observed among the other patient groups (including CC versus AA, CC + CA versus AA and CA versus AA). Subgroup analysis of rs1801133 and rs1801131 showed that patients with CRC from Asian regions and Western regions demonstrated similar results. Conclusions The MTHFR rs1801133 polymorphism was not associated with the prognosis of patients with CRC; however, rs1801131 may be associated with the prognosis of patients with CRC. Well‐designed prospective studies are necessary to obtain a better understanding of the prognostic value of rs1801133 and rs1801131.
Collapse
Affiliation(s)
- Xin-Lin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Mei Wang
- Department of Pharmacology, School of Chinese Material Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Zhao
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Chen
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofei Yang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yunpeng Gao
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tian-Ge Yang
- School of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guo Tian
- School of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Ming Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shui-Lian Zhu
- The First Clinical College, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Bing Lin
- Personnel Department, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng-Bin Liu
- The First Clinical College, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Lehmann DJ, Cortina-Borja M. Genetic influence of plasma homocysteine on Alzheimer's disease. Neurobiol Aging 2019; 76:217-218. [DOI: 10.1016/j.neurobiolaging.2018.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022]
|
13
|
Heidari-Beni M. Early Life Nutrition and Non Communicable Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1121:33-40. [PMID: 31392650 DOI: 10.1007/978-3-030-10616-4_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The origin of some non communicable disease (NCDs) is in early life. Evidence has shown that early life nutrition is associated with the risk of developing chronic non communicable diseases. Pregnancy and infancy are the most critical stages that influence the risks of NCDs in childhood and adult life. Prenatal maternal undernutrition and low birth weight lead to obesity and increase the risk factors of cardiovascular disease and diabetes later in life. Nutrition is one of the easily modifiable environmental factors that may affect outcome of pregnancy, trajectory of growth, and immune system of the fetus and infant. Healthy eating behaviors associate with prevention of weight disorders in pediatric, non communicable diseases, and deficiencies of micronutrient.
Collapse
Affiliation(s)
- Motahar Heidari-Beni
- Nutrition Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Acevedo-Fani A, Soliva-Fortuny R, Martín-Belloso O. Photo-protection and controlled release of folic acid using edible alginate/chitosan nanolaminates. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Ose J, Botma A, Balavarca Y, Buck K, Scherer D, Habermann N, Beyerle J, Pfütze K, Seibold P, Kap EJ, Benner A, Jansen L, Butterbach K, Hoffmeister M, Brenner H, Ulrich A, Schneider M, Chang‐Claude J, Burwinkel B, Ulrich CM. Pathway analysis of genetic variants in folate-mediated one-carbon metabolism-related genes and survival in a prospectively followed cohort of colorectal cancer patients. Cancer Med 2018; 7:2797-2807. [PMID: 29845757 PMCID: PMC6051204 DOI: 10.1002/cam4.1407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/13/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023] Open
Abstract
Folate-mediated one-carbon metabolism (FOCM) is a key pathway essential for nucleotide synthesis, DNA methylation, and repair. This pathway is a critical target for 5-fluorouracil (5-FU), which is predominantly used for colorectal cancer (CRC) treatment. A comprehensive assessment of polymorphisms in FOCM-related genes and their association with prognosis has not yet been performed. Within 1,739 CRC cases aged ≥30 years diagnosed from 2003 to 2007 (DACHS study), we investigated 397 single nucleotide polymorphisms (SNPs) and 50 candidates in 48 FOCM-related genes for associations with overall- (OS) and disease-free survival (DFS) using multiple Cox regression (adjusted for age, sex, stage, grade, BMI, and alcohol). We investigated effect modification by 5-FU-based chemotherapy and assessed pathway-specific effects. Correction for multiple testing was performed using false discovery rates (FDR). After a median follow-up time of 5.0 years, 585 patients were deceased. For one candidate SNP in MTHFR and two in TYMS, we observed significant inverse associations with OS (MTHFR: rs1801133, C677T: HRhet = 0.81, 95% CI: 0.67-0.97; TYMS: rs1001761: HRhet = 0.82, 95% CI: 0.68-0.99 and rs2847149: HRhet = 0.82, 95% CI: 0.68-0.99). After FDR correction, one polymorphism in paraoxonase 1 (PON1; rs3917538) was significantly associated with OS (HRhet = 1.28, 95% CI: 1.07-1.53; HRhzv = 2.02, 95% CI:1.46-2.80; HRlogAdd = 1.31, pFDR = 0.01). Adjusted pathway analyses showed significant associations for pyrimidine biosynthesis (P = 0.04) and fluorouracil drug metabolism (P < 0.01) with significant gene-chemotherapy interactions, including PON1 rs3917538. This study supports the concept that FOCM-related genes could be associated with CRC survival and may modify effects of 5-FU-based chemotherapy in genes in pyrimidine and fluorouracil metabolism, which are relevant targets for therapeutic response and prognosis in CRC. These results require confirmation in additional clinical studies.
Collapse
Affiliation(s)
- Jennifer Ose
- Department of Population Health SciencesHuntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| | - Akke Botma
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Yesilda Balavarca
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Katharina Buck
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Dominique Scherer
- Institute of Medical Biometry and InformaticsUniversity of HeidelbergHeidelbergGermany
| | - Nina Habermann
- Genome Biology, European Molecular Biology LaboratoryGerman Cancer Research Center and National Center for Tumor DiseasesHeidelbergGermany
- Division of Molecular EpidemiologyGerman Cancer Research CenterHeidelbergGermany
| | - Jolantha Beyerle
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Katrin Pfütze
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
- Division Molecular Biology of Breast CancerDepartment of Gynecology and ObstetricsUniversity of HeidelbergHeidelbergGermany
| | - Petra Seibold
- Division of Cancer Epidemiology German Cancer Research CenterHeidelbergGermany
| | - Elisabeth J. Kap
- Division of Cancer Epidemiology German Cancer Research CenterHeidelbergGermany
| | - Axel Benner
- Division of BiostatisticsGerman Cancer Research CenterHeidelbergGermany
| | - Lina Jansen
- Division of Cancer Epidemiology German Cancer Research CenterHeidelbergGermany
| | - Katja Butterbach
- Division of Cancer Epidemiology German Cancer Research CenterHeidelbergGermany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research CenterHeidelbergGermany
| | - Hermann Brenner
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research CenterHeidelbergGermany
| | - Alexis Ulrich
- Clinic for General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | - Martin Schneider
- Clinic for General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | - Jenny Chang‐Claude
- Division Molecular Biology of Breast CancerDepartment of Gynecology and ObstetricsUniversity of HeidelbergHeidelbergGermany
| | - Barbara Burwinkel
- Division of Molecular EpidemiologyGerman Cancer Research CenterHeidelbergGermany
- Division Molecular Biology of Breast CancerDepartment of Gynecology and ObstetricsUniversity of HeidelbergHeidelbergGermany
| | - Cornelia M. Ulrich
- Department of Population Health SciencesHuntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| |
Collapse
|
16
|
Myte R, Gylling B, Häggström J, Schneede J, Löfgren-Burström A, Huyghe JR, Hallmans G, Meyer K, Johansson I, Ueland PM, Palmqvist R, Van Guelpen B. One-carbon metabolism biomarkers and genetic variants in relation to colorectal cancer risk by KRAS and BRAF mutation status. PLoS One 2018; 13:e0196233. [PMID: 29694444 PMCID: PMC5919009 DOI: 10.1371/journal.pone.0196233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
Disturbances in one-carbon metabolism, intracellular reactions involved in nucleotide synthesis and methylation, likely increase the risk of colorectal cancer (CRC). However, results have been inconsistent. To explore whether this inconsistency could be explained by intertumoral heterogeneity, we evaluated a comprehensive panel of one-carbon metabolism biomarkers and some single nucleotide polymorphisms (SNPs) in relation to the risk of molecular subtypes of CRC defined by mutations in the KRAS and BRAF oncogenes. This nested case-control study included 488 CRC cases and 947 matched controls from two population-based cohorts in the Northern Sweden Health and Disease Study. We analyzed 14 biomarkers and 17 SNPs in prediagnostic blood and determined KRAS and BRAF mutation status in tumor tissue. In a multivariate network analysis, no variable displayed a strong association with the risk of specific CRC subtypes. A non-synonymous SNP in the CTH gene, rs1021737, had a stronger association compared with other variables. In subsequent univariate analyses, participants with variant rs1021737 genotype had a decreased risk of KRAS-mutated CRC (OR per allele = 0.72, 95% CI = 0.50, 1.05), and an increased risk of BRAF-mutated CRC (OR per allele = 1.56, 95% CI = 1.07, 2.30), with weak evidence for heterogeneity (Pheterogeneity = 0.01). This subtype-specific SNP association was not replicated in a case-case analysis of 533 CRC cases from The Cancer Genome Atlas (P = 0.85). In conclusion, we found no support for clear subtype-specific roles of one-carbon metabolism biomarkers and SNPs in CRC development, making differences in CRC molecular subtype distributions an unlikely explanation for the varying results on the role of one-carbon metabolism in CRC development across previous studies. Further investigation of the CTH gene in colorectal carcinogenesis with regards to KRAS and BRAF mutations or other molecular characteristics of the tumor may be warranted.
Collapse
Affiliation(s)
- Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- * E-mail:
| | - Björn Gylling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Jenny Häggström
- Department of Statistics, Umeå School of Business and Economics, Umeå University, Umeå, Sweden
| | - Jörn Schneede
- Department of Clinical Pharmacology, Pharmacology and Clinical Neurosciences, Umeå University, Umeå, Sweden
| | | | - Jeroen R. Huyghe
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Göran Hallmans
- Department of Biobank Research, Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
17
|
Synakiewicz A, Sawicka-Zukowska M, Adrianowska N, Galezowska G, Ratajczyk J, Owczarzak A, Konieczna L, Stachowicz-Stencel T. Amino acid profiles as potential biomarkers for pediatric cancers: a preliminary communication. Biomark Med 2017; 11:619-627. [PMID: 28770610 DOI: 10.2217/bmm-2017-0102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Childhood cancer remains one of the main cause of death in the pediatric population. Amino acids (AAs) level alterations in plasma are considered to play a role in carcinogenesis and further course of the disease. METHODS Seventy-seven children with cancer, including 47 with hematological and 30 with solid tumors were enrolled in this study and compared with healthy children. Twenty-two plasma-free AAs were determined by HPLC with fluorometric detection. RESULTS The results revealed significant decrease in glutamine levels for oncological patients and significant increase in aspartic acid, glutamic acid, asparagine, serine, citrulline, alanine, GABA, tryptophan, methionine, valine, phenylalanine and isoleucine levels in cancer children versus control. CONCLUSION Plasma-free AA profile as a biomarker, which combines metabolic and clinical data, as an innovative and interdisciplinary approach, may allow for faster detection of tumor occurrence, and in the future for monitoring patient during treatment, and possible prediction of cancer recurrence.
Collapse
Affiliation(s)
- Anna Synakiewicz
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Natalia Adrianowska
- Department of Pediatrics, Oncology, Hematology & Diabetology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Grazyna Galezowska
- Department of Environmental Toxicology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Joanna Ratajczyk
- Department of Environmental Toxicology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Anna Owczarzak
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Teresa Stachowicz-Stencel
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
18
|
Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, Jemal A. Colorectal cancer statistics, 2017. CA Cancer J Clin 2017; 67:177-193. [PMID: 28248415 DOI: 10.3322/caac.21395] [Citation(s) in RCA: 2829] [Impact Index Per Article: 404.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the United States. Every 3 years, the American Cancer Society provides an update of CRC incidence, survival, and mortality rates and trends. Incidence data through 2013 were provided by the Surveillance, Epidemiology, and End Results program, the National Program of Cancer Registries, and the North American Association of Central Cancer Registries. Mortality data through 2014 were provided by the National Center for Health Statistics. CRC incidence rates are highest in Alaska Natives and blacks and lowest in Asian/Pacific Islanders, and they are 30% to 40% higher in men than in women. Recent temporal patterns are generally similar by race and sex, but differ by age. Between 2000 and 2013, incidence rates in adults aged ≥50 years declined by 32%, with the drop largest for distal tumors in people aged ≥65 years (incidence rate ratio [IRR], 0.50; 95% confidence interval [95% CI], 0.48-0.52) and smallest for rectal tumors in ages 50 to 64 years (male IRR, 0.91; 95% CI, 0.85-0.96; female IRR, 1.00; 95% CI, 0.93-1.08). Overall CRC incidence in individuals ages ≥50 years declined from 2009 to 2013 in every state except Arkansas, with the decrease exceeding 5% annually in 7 states; however, rectal tumor incidence in those ages 50 to 64 years was stable in most states. Among adults aged <50 years, CRC incidence rates increased by 22% from 2000 to 2013, driven solely by tumors in the distal colon (IRR, 1.24; 95% CI, 1.13-1.35) and rectum (IRR, 1.22; 95% CI, 1.13-1.31). Similar to incidence patterns, CRC death rates decreased by 34% among individuals aged ≥50 years during 2000 through 2014, but increased by 13% in those aged <50 years. Progress against CRC can be accelerated by increasing initiation of screening at age 50 years (average risk) or earlier (eg, family history of CRC/advanced adenomas) and eliminating disparities in high-quality treatment. In addition, research is needed to elucidate causes for increasing CRC in young adults. CA Cancer J Clin 2017. © 2017 American Cancer Society. CA Cancer J Clin 2017;67:177-193. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Rebecca L Siegel
- Strategic Director, Surveillance Information Services, Surveillance and Health Services Research, American Cancer Society, Atlanta, GA
| | - Kimberly D Miller
- Epidemiologist, Surveillance and Health Services Research, American Cancer Society, Atlanta, GA
| | - Stacey A Fedewa
- Director, Screening and Risk Factor Surveillance, Surveillance and Health Services Research, American Cancer Society, Atlanta, GA
| | - Dennis J Ahnen
- Professor, Division of Gastroenterology, School of Medicine, University of Colorado, Aurora, CO
| | - Reinier G S Meester
- Epidemiologist, Department of Public Health, Erasmus University, Rotterdam, the Netherlands
| | - Afsaneh Barzi
- Assistant Professor of Clinical Medicine, Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Ahmedin Jemal
- Vice President, Surveillance and Health Services Research, American Cancer Society, Atlanta, GA
| |
Collapse
|
19
|
Guertin KA, Li XS, Graubard BI, Albanes D, Weinstein SJ, Goedert JJ, Wang Z, Hazen SL, Sinha R. Serum Trimethylamine N-oxide, Carnitine, Choline, and Betaine in Relation to Colorectal Cancer Risk in the Alpha Tocopherol, Beta Carotene Cancer Prevention Study. Cancer Epidemiol Biomarkers Prev 2017; 26:945-952. [PMID: 28077427 DOI: 10.1158/1055-9965.epi-16-0948] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022] Open
Abstract
Background: Trimethylamine N-oxide (TMAO), a choline-derived metabolite produced by gut microbiota, and its biomarker precursors have not been adequately evaluated in relation to colorectal cancer risk.Methods: We investigated the relationship between serum concentrations of TMAO and its biomarker precursors (choline, carnitine, and betaine) and incident colorectal cancer risk in a nested case-control study of male smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. We measured biomarker concentrations in baseline fasting serum samples from 644 incident colorectal cancer cases and 644 controls using LC/MS-MS. Logistic regression models estimated the ORs and 95% confidence interval (CI) for colorectal cancer by quartile (Q) of serum TMAO, choline, carnitine, and betaine concentrations.Results: Men with higher serum choline at ATBC baseline had approximately 3-fold greater risk of developing colorectal cancer over the ensuing (median ± IQR) 14 ± 10 years (in fully adjusted models, Q4 vs. Q1, OR, 3.22; 95% CI, 2.24-4.61; Ptrend < 0.0001). The prognostic value of serum choline for prediction of incident colorectal cancer was similarly robust for proximal, distal, and rectal colon cancers (all P < 0.0001). The association between serum TMAO, carnitine, or betaine and colorectal cancer risk was not statistically significant (P = 0.25, 0.71, and 0.61, respectively).Conclusions: Higher serum choline concentration (but not TMAO, carnitine, or betaine) was associated with increased risk of colorectal cancer.Impact: Serum choline levels showed strong prognostic value for prediction of incident colorectal cancer risk across all anatomical subsites, suggesting a role of altered choline metabolism in colorectal cancer pathogenesis. Cancer Epidemiol Biomarkers Prev; 26(6); 945-52. ©2017 AACR.
Collapse
Affiliation(s)
- Kristin A Guertin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland. .,Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Xinmin S Li
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Barry I Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zeneng Wang
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Stanley L Hazen
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
20
|
Chang H, Ma M, Ma R, Zhang C, Zeng W, Xing LQ. Folate deficiency and aberrant expression of cell adhesion molecule 1 are potential indicators of prognosis in laryngeal squamous cell carcinoma. Oncol Lett 2016; 12:4510-4514. [PMID: 28105160 PMCID: PMC5228386 DOI: 10.3892/ol.2016.5264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/19/2016] [Indexed: 11/06/2022] Open
Abstract
The etiology of laryngeal squamous cell carcinoma (LSCC) has not yet been adequately examined. Therefore, the present study aimed to investigate the association between serum folate deficiency and abnormal expression of the cell adhesion molecule 1 (CADM1) protein in the progression of LSCC. Samples were collected from 60 patients with LSCC and 30 healthy people. Radioimmunoassays and immunohistochemical staining were performed to measure serum folate levels and CADM1 protein expression, respectively. The results demonstrated that CADM1 expression in LSCC specimens was significantly lower than in adjacent normal tissues (χ2=28.229, P<0.001), which was associated with histological differentiation and clinical stage (P=0.010 and 0.020, respectively). Levels of serum folate in patients with LSCC were significantly lower than those observed in healthy individuals (P=0.002). Furthermore, TSLCl expression and serum folate levels were positively correlated in LSCC (r=0.642, P=0.001). Thus, the present study determined that decreased CADM1 protein expression and low levels of serum folate were correlated with an increased severity of LSCC.
Collapse
Affiliation(s)
- Hao Chang
- Department of Otolaryngology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Min Ma
- Department of Otolaryngology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Rui Ma
- Department of Central Laboratory, Eye & ENT Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Chao Zhang
- Department of Otolaryngology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wei Zeng
- Department of Otolaryngology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Lu Qi Xing
- Department of Pathology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
21
|
Wang J, Zhu ZH, Yang HB, Zhang Y, Zhao XN, Zhang M, Liu YB, Xu YY, Lei QY. Cullin 3 targets methionine adenosyltransferase IIα for ubiquitylation-mediated degradation and regulates colorectal cancer cell proliferation. FEBS J 2016; 283:2390-402. [PMID: 27213918 DOI: 10.1111/febs.13759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/29/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Cullin 3 (CUL3) serves as a scaffold protein and assembles a large number of ubiquitin ligase complexes. It is involved in multiple cellular processes and plays a potential role in tumor development and progression. In this study, we demonstrate that CUL3 targets methionine adenosyltransferase IIα (MAT IIα) and promotes its proteasomal degradation through the ubiquitylation-mediated pathway. MAT IIα is a key enzyme in methionine metabolism and is associated with uncontrolled cell proliferation in cancer. We presently found that CUL3 down-regulation could rescue folate deprivation-induced MAT IIα exhaustion and growth arrest in colorectal cancer (CRC) cells. Further results from human CRC samples display an inverse correlation between CUL3 and MAT IIα protein levels. Our observations reveal a novel role of CUL3 in regulating cell proliferation by controlling the stability of MAT IIα.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zi-Hua Zhu
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Hong-Bin Yang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ye Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang-Ning Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Bin Liu
- Institute of Biliary Tract Disease, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, China
| | - Ying-Ying Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Li X, Cai H, Zheng W, Tong M, Li H, Ao L, Li J, Hong G, Li M, Guan Q, Yang S, Yang D, Lin X, Guo Z. An individualized prognostic signature for gastric cancer patients treated with 5-Fluorouracil-based chemotherapy and distinct multi-omics characteristics of prognostic groups. Oncotarget 2016; 7:8743-55. [PMID: 26840027 PMCID: PMC4891001 DOI: 10.18632/oncotarget.7087] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
5-Fluorouracil (5-FU)-based chemotherapy is currently the first-line treatment for gastric cancer. In this study, using gene expression profiles for a panel of cell lines with drug sensitivity data and two cohorts of patients, we extracted a signature consisting of two gene pairs (KCNE2 and API5, KCNE2 and PRPF3) whose within-sample relative expression orderings (REOs) could robustly predict prognoses of gastric cancer patients treated with 5-FU-based chemotherapy. This REOs-based signature was insensitive to experimental batch effects and could be directly applied to samples measured by different laboratories. Taking this unique advantage of the REOs-based signature, we classified gastric cancer samples of The Cancer Genome Atlas (TCGA) into two prognostic groups with distinct transcriptional characteristics, circumventing the usage of confounded TCGA survival data. We further showed that the two prognostic groups displayed distinct copy number, gene mutation and DNA methylation landscapes using the TCGA multi-omics data. The results provided hints for understanding molecular mechanisms determining prognoses of gastric cancer patients treated with 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Xiangyu Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hao Cai
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weicheng Zheng
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengsha Tong
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hongdong Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lu Ao
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jing Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guini Hong
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengyao Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qingzhou Guan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Sheng Yang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Da Yang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, USA
| | - Xu Lin
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zheng Guo
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Delchier N, Herbig AL, Rychlik M, Renard CMGC. Folates in Fruits and Vegetables: Contents, Processing, and Stability. Compr Rev Food Sci Food Saf 2016; 15:506-528. [PMID: 33401816 DOI: 10.1111/1541-4337.12193] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023]
Abstract
Folates play a key role in human one-carbon metabolism and are provided by food. It is well established that folates are beneficial in the prevention of neural tube defects and cardiovascular and neurodegenerative diseases. Fruits and vegetables, and especially green vegetables, are the main sources of folates. In parallel, fruits and vegetables, with high contents of folates, are mostly consumed after processing, such as, canning, freezing, or home-cooking, which involve folate losses during their preparation. Hence, it is important to know the percentage of folate losses during processing and, moreover, the mechanisms underlying those losses. The current knowledge on folate losses from fruit and vegetables are presented in this review. They depend on the nature of the respective fruit or vegetable and the respective treatment. For example, steaming involves almost no folate losses in contrast to boiling. Two main mechanisms are involved in folate losses: (i) leaching into the surrounding liquid and (ii) oxidation during heat treatment, the latter of which depending on the nature of the vitamer considered. In this respect, a vitamer stability decreases in the order starting from folic acid followed by 5-HCO-H4 folate, 5-CH3 -H4 folate, and, finally, H4 folate. Further studies are required, especially on the diffusion of the vitamers in real foods and on the determination of folate degradation products.
Collapse
Affiliation(s)
- Nicolas Delchier
- Chair of Analytical Food Chemistry, Technische Univ. München, Alte Akademie 10, D-85354, Freising, Germany
| | - Anna-Lena Herbig
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Domaine Saint Paul, Site Agroparc, F-84000, Avignon, France.,Univ. d'Avignon et des Pays du Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, F-84000, Avignon, France
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technische Univ. München, Alte Akademie 10, D-85354, Freising, Germany
| | - Catherine M G C Renard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Domaine Saint Paul, Site Agroparc, F-84000, Avignon, France.,Univ. d'Avignon et des Pays du Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, F-84000, Avignon, France
| |
Collapse
|
24
|
Rea IM, Dellet M, Mills KI. Living long and ageing well: is epigenomics the missing link between nature and nurture? Biogerontology 2015; 17:33-54. [PMID: 26133292 DOI: 10.1007/s10522-015-9589-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
Human longevity is a complex trait and increasingly we understand that both genes and lifestyle interact in the longevity phenotype. Non-genetic factors, including diet, physical activity, health habits, and psychosocial factors contribute approximately 50% of the variability in human lifespan with another 25% explained by genetic differences. Family clusters of nonagenarian and centenarian siblings, who show both exceptional age-span and health-span, are likely to have inherited facilitatory gene groups, but also have nine decades of life experiences and behaviours which have interacted with their genetic profiles. Identification of their shared genes is just one small step in the link from genes to their physical and psychological profiles. Behavioural genomics is beginning to demonstrate links to biological mechanisms through regulation of gene expression, which directs the proteome and influences the personal phenotype. Epigenetics has been considered the missing link between nature and nurture. Although there is much that remains to be discovered, this article will discuss some of genetic and environmental factors which appear important in good quality longevity and link known epigenetic mechanisms to themes identified by nonagenarians themselves related to their longevity. Here we suggest that exceptional 90-year old siblings have adopted a range of behaviours and life-styles which have contributed to their ageing-well-phenotype and which link with important public health messages.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK. .,School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Margaret Dellet
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast , Belfast, Northern Ireland, UK
| | - Ken I Mills
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
25
|
Casati L, Sendra R, Sibilia V, Celotti F. Endocrine disrupters: the new players able to affect the epigenome. Front Cell Dev Biol 2015; 3:37. [PMID: 26151052 PMCID: PMC4471431 DOI: 10.3389/fcell.2015.00037] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/17/2015] [Indexed: 01/27/2023] Open
Abstract
Epigenetics represents the way by which the environment is able to program the genome; there are three main levels of epigenetic control on genome: DNA methylation, post-translational histone modification and microRNA expression. The term Epigenetics has been widened by NIH to include “both heritable changes in gene activity and expression but also stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable.” These changes might be produced mostly by the early life environment and might affect health influencing the susceptibility to develop diseases, from cancer to mental disorder, during the entire life span. The most studied environmental influences acting on epigenome are diet, infections, wasting, child care, smoking and environmental pollutants, in particular endocrine disrupters (EDs). These are environmental xenobiotics able to interfere with the normal development of the male and female reproductive systems of wildlife, of experimental animals and possibly of humans, disrupting the normal reproductive functions. Data from literature indicate that EDs can act at different levels of epigenetic control, in some cases transgenerationally, in particular when the exposure to these compounds occurs during the prenatal and earliest period of life. Some of the best characterized EDs will be considered in this review. Among the EDs, vinclozolin (VZ), and methoxychlor (MXC) promote epigenetic transgenerational effects. Polychlorinated biphenils (PCBs), the most widespread environmental EDs, affect histone post-translational modifications in a dimorphic way, possibly as the result of an alteration of gene expression of the enzymes involved in histone modification, as the demethylase Jarid1b, an enzyme also involved in regulating the interaction of androgens with their receptor.
Collapse
Affiliation(s)
- Lavinia Casati
- Department of Medical Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Ramon Sendra
- Departament de Bioquímica i Biologia Molecular, Universitat de València Valencia, Spain
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| |
Collapse
|
26
|
Polymeric complex micelles with double drug-loading strategies for folate-mediated paclitaxel delivery. Colloids Surf B Biointerfaces 2015; 131:191-201. [PMID: 25988283 DOI: 10.1016/j.colsurfb.2015.04.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/15/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
Drug loading is a key procedure in the preparation of drug-loaded nano-carriers. In this study, the paclitaxel (PTX)-loaded polymeric complex micelles (FA-P123-PTX/PTX micelles) with double drug-loading strategies were designed and prepared to improve the drug loading percentage of carriers and its anti-tumor efficiency. PTX was simultaneously conjugated to pluronic P123 (P123) polymer and encapsulated inside the P123 complex micelle. Folate (FA) was linked to the surface of micelles for the active target delivery of micelles to tumor cells. The FA-P123-PTX/PTX micelles showed spherical shaped with high drug loading of 18.08±0.64%. The results of cellular uptake studies suggested that FA could promote the internalization of micelles into the FR positive cells. FA-P123-PTX/PTX micelles showed significant higher anti-tumor activity against FR positive tumor cells compared to Taxol(®) (p<0.05). Moreover, the FA-P123-PTX/PTX micelles exhibited higher anti-tumor efficacy in B16 bearing mice with better safety property compared with Taxol(®). These results suggested that FA-P123-PTX/PTX micelles with double drug-loading strategies showed great potential for targeted delivery of anti-cancer drugs.
Collapse
|
27
|
Germline oncopharmacogenetics, a promising field in cancer therapy. Cell Oncol (Dordr) 2015; 38:65-89. [PMID: 25573079 DOI: 10.1007/s13402-014-0214-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenetics (PGx) is the study of the relationship between inter-individual genetic variation and drug responses. Germline variants of genes involved in drug metabolism, drug transport, and drug targets can affect individual response to medications. Cancer therapies are characterized by an intrinsically high toxicity; therefore, the application of pharmacogenetics to cancer patients is a particularly promising method for avoiding the use of inefficacious drugs and preventing the associated adverse effects. However, despite continuing efforts in this field, very few labels include information about germline genetic variants associated with drug responses. DPYD, TPMT, UGT1A1, G6PD, CYP2D6, and HLA are the sole loci for which the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) report specific information. This review highlights the germline PGx variants that have been approved to date for anticancer treatments, and also provides some insights about other germline variants with potential clinical applications. The continuous and rapid evolution of next-generation sequencing applications, together with the development of computational methods, should help to refine the implementation of personalized medicine. One day, clinicians may be able to prescribe the best treatment and the correct drug dosage based on each patient's genotype. This approach would improve treatment efficacy, reduce toxicity, and predict non-responders, thereby decreasing chemotherapy-associated morbidity and improving health benefits.
Collapse
|
28
|
Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol 2014; 2:49. [PMID: 25364756 PMCID: PMC4207041 DOI: 10.3389/fcell.2014.00049] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022] Open
Abstract
Epigenetics has the potential to explain various biological phenomena that have heretofore defied complete explication. This review describes the various types of endogenous human developmental milestones such as birth, puberty, and menopause, as well as the diverse exogenous environmental factors that influence human health, in a chronological epigenetic context. We describe the entire course of human life from periconception to death and chronologically note all of the potential internal timepoints and external factors that influence the human epigenome. Ultimately, the environment presents these various factors to the individual that influence the epigenome, and the unique epigenetic and genetic profile of each individual also modulates the specific response to these factors. During the course of human life, we are exposed to an environment that abounds with a potent and dynamic milieu capable of triggering chemical changes that activate or silence genes. There is constant interaction between the external and internal environments that is required for normal development and health maintenance as well as for influencing disease load and resistance. For example, exposure to pharmaceutical and toxic chemicals, diet, stress, exercise, and other environmental factors are capable of eliciting positive or negative epigenetic modifications with lasting effects on development, metabolism and health. These can impact the body so profoundly as to permanently alter the epigenetic profile of an individual. We also present a comprehensive new hypothesis of how these diverse environmental factors cause both direct and indirect epigenetic changes and how this knowledge can ultimately be used to improve personalized medicine.
Collapse
Affiliation(s)
- Riya R Kanherkar
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Naina Bhatia-Dey
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Antonei B Csoka
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| |
Collapse
|
29
|
Binia A, Contreras AV, Canizales-Quinteros S, Alonzo VA, Tejero ME, Silva-Zolezzi I. Geographical and ethnic distribution of single nucleotide polymorphisms within genes of the folate/homocysteine pathway metabolism. GENES & NUTRITION 2014; 9:421. [PMID: 25106483 PMCID: PMC4172644 DOI: 10.1007/s12263-014-0421-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/25/2014] [Indexed: 12/22/2022]
Abstract
High levels of plasma homocysteine are associated with an increased risk of many health conditions influenced by both environmental and genetic factors. The objective of this study was to provide the geographical distribution of folate pathway genetic polymorphisms in Mexico and the comparison with the reported frequencies in different continental populations. This study included the analysis of the genotypic frequencies of eight polymorphisms in genes of the folate/homocysteine metabolic pathway in 1,350 Mestizo and Amerindian subjects from different regions in Mexico and 836 individuals from European, African and Asian populations of the 1,000 Genomes Project. In Mexican Mestizo and Amerindian populations, the MTHFR C677T risk genotype (TT) was highly prevalent (frequency: 25 and 57 %, respectively). In Mestizos, the frequency showed clear regional variation related to ancestry; the Guerrero subpopulation with the highest Amerindian contribution had the highest TT frequency (33 %). The MTHFD1 G1958A AA risk genotype was also enriched in Mexican Mestizos and Amerindians (frequency: 34 and 58 %, respectively), whereas in African and Asian ancestry populations the frequency for AA was low (~4 %). All together risk genotypes showed regional differences, and Sonora had significantly different genetic frequencies compared with the other regions (P value <0.05). Our study illustrates differential geographical distribution of the risk variants in the folate/homocysteine metabolic pathway relative to ethnic background. This work supports that certain areas of the world have increased needs for folic acid and vitamin B supplementation, and this information needs to be considered in public health guidelines and eventually policies.
Collapse
Affiliation(s)
- Aristea Binia
- Nutrition and Health Research, Nestlé Research Center, Lausanne, Switzerland,
| | | | | | | | | | | |
Collapse
|